News Updates Thursday 26th Dec 2024 :
  • Welcome to INPRESSCO, world's leading publishers, We have served more than 10000+ authors
  • Articles are invited in engineering, science, technology, management, industrial engg, biotechnology etc.
  • Paper submission is open. Submit online or at editor.ijcet@inpressco.com
  • Our journals are indexed in NAAS, University of Regensburg Germany, Google Scholar, Cross Ref etc.
  • DOI is given to all articles

The Experimental Analysis of Stir Casting Method on Aluminium-Fly Ash Composites


Author : Vivekanandan.P and Arunachalam.V.P

Pages : 215-219
Download PDF
Abstract

Metal matrix composites (MMCs) possess significantly improved properties including high specific strength; specific modulus, damping capacity and good wear resistance compared to unreinforced alloys. There has been an increasing interest in composites containing low density and low cost reinforcements. Among various discontinuous dispersoids used, fly ash is one of the most inexpensive and low density reinforcement available in large quantities as solid waste by- product during combustion of coal in thermal power plants. Hence, composites with fly ash as reinforcement are likely to overcome the cost barrier for wide spread applications in automotive and small engine applications. It is therefore expected that the incorporation of fly ash particles in aluminium alloy will promote yet another use of this low-cost waste by-product and, at the same time, has the potential for conserving energy intensive aluminium and thereby, reducing the cost of aluminium products. Now a days the particulate reinforced aluminium matrix composite are gaining importance because of their low cost with advantages like isotropic properties and the possibility of secondary processing facilitating fabrication of secondary components. The present investigation has been focused on the utilization of abundantly available industrial waste fly-ash in useful manner by dispersing it into aluminium to produce composites by stir casting method.

Keywords: particulate composites, industrial waste, applied load and sliding velocity

Article published in International Journal of Current  Engineering  and Technology, Vol.3,No.1 (March- 2013)

 

 

 

Call for Papers
  1. IJCET- Current Issue
  2. Issues are published in Feb, April, June, Aug, Oct and Dec
  3. DOI is given to all articles
  • Inpressco Google Scholar
  • Inpressco Science Central
  • Inpressco Global impact factor
  • Inpressco aap

International Press corporation is licensed under a Creative Commons Attribution-Non Commercial NoDerivs 3.0 Unported License
©2010-2023 INPRESSCO® All Rights Reserved