Karanja Bio Diesel-A Future Alternative Oil with High Efficiency and Improved Performance Parameters with Diesel Blends
Pages : 1577-1580, DOI: https://doi.org/10.14741/ijcet/v.8.6.10
Download PDF
Abstract
The limited amount of petroleum resources have caused interests in the development of alternative fuels for internal combustion (IC) Engines. As an alternative, biodegradable, renewable and sulphur free biodiesel is receiving increasing attention. The use of biodiesel is rapidly increasing around the world, making it imperative to fully understand the impacts of biodiesel on the diesel engine combustion process. Biodiesel is known as the mono-alkyl-esters of long chain fatty acids derived from renewable feedstock such as vegetable oils or animal’s fats for use in compression ignition engines. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine fuelled first with the diesel, pure Karanja oil and then with blends of Karanja oil and diesel (70-30%, 50-50% and 30-70 %) and it is denoted by K70, K50 and K30 respectively. A series of engine tests, have been conducted using each of the above fuel blends for comparative performance evaluation. The performance parameters evaluated include horse power, thermal efficiency, brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC), and exhaust gas temperature. These parameters were evaluated in a single cylinder compression ignition medium duty engine typically used in agriculture sector of developing countries. The results of the experiment in each case were compared with baseline data of pure diesel oil. Significant improvements have been observed in the performance parameters of the engine. The results indicate that the performance of engine is improved with K70 blend. At full load condition, K 70 blends produces more brake horse power and brake thermal efficiency than pure Diesel. Hence it can be concluded that the K70 blend of karanja oil is a suitable alternative fuel for diesel.
Keywords: Karanja oil, Diesel Engine, transesterification, brake thermal efficiency, brake horse power.
Article published in International Journal of Current Engineering and Technology, Vol.8, No.6 (Nov/Dec 2018)