
International Journal of Current Engineering and Technology          E-ISSN 2277 – 4106, P-ISSN 2347 – 5161 
©2021 INPRESSCO®, All Rights Reserved  Available at http://inpressco.com/category/ijcet 

 

  Research Article 
 

661| International Journal of Current Engineering and Technology, Vol.11, No.6 (Nov/Dec 2021) 

 

Utilizing Docker Containers for Reproducible Builds and Scalable Web 
Application Deployments 
 
Vasudhar Sai Thokala1* 
 
1Independent Researcher 

   
Received 01 Nov 2021, Accepted 10 Dec 2021, Available online 13 Dec 2021, Vol.11, No.6 (Nov/Dec 2021) 

 

 
Abstract  
  
Docker, developed and released in 2013 by Docker Inc. under the Apache 2.0 license, is an open-source container 
engine. Due to their significance in infrastructure virtualisation, containers have a special position in the annals of 
computing. This paper provides a complete discussion of Docker technology and how it has been applied in the 
current software development cycle, specifically in containerisation, to arrive at a highly efficient, repeatable, and 
portable application deployment method. Docker is an application container platform that packs code and 
dependencies together to run everywhere at scale. This capability is critical in the DevOps and CI/CD settings to cut 
down on deployment problems while using up less of the software development life cycle. Docker Essentials–Docker 
engine, Docker client-server, Docker images, Docker containers, and the role of these derivatives in constructing 
applications inside isolated containers are explained. Further, Docker utility in the attainable scalabilities is followed 
by frames such as Docker Swarm and Kubernetes that address the idea of horizontal scaling, Load Balancing, and 
features like microservices. The paper also revisits basic Docker tools and practices like Docker Compose and CI/CD 
for easier management of containers. A literature review addresses current research, emphasising gaps in Docker-
based systems related to cloud environments and security. Last but not least, this paper provides a future work 
outlook which aims at improving the use of Docker in large-scale distributed systems. 
 
Keywords: Docker Container, Deployment, CI/CD pipelines, Load Balancing, Scalability, Kubernetes.  
 
 
Introduction 
 

One of the most important parts of developing and 
deploying software nowadays is using Docker 
containers. Containerisation is a technology that 
Docker uses to package apps and their dependencies. 
Application source code, libraries, and dependencies 
may be packaged into a standardised executable 
component called a container. This component allows 
the app to execute in any environment. This approach 
also addresses the issue of difficulty that is involved 
when it comes to fulfilling the application deployment 
and improves on the duplication of builds of the 
software across the different computing platforms [1]. 
Docker is designed as an extension of this, where 
applications are isolated at the process level through 
containerisation technology that is lighter than full 
machine virtualisation than a virtual machine, utilising 
fewer resources and being faster to launch[2]. 

This reliability of Docker containers is even more 
critical from the DevOps’ and CI/CD’s perceptive[3], 
docker guarantees that an application performs as 
required when it is shifted between the development, 
testing, and production phases.  

 

*Corresponding authors’ ORCID ID: 0000-0000-0000-0000 

DOI: https://doi.org/10.14741/ijcet/v.11.6.10 

This brings the much-needed reproducibility to the mix 
to help avoid “works on my machine” issues and help 
to reduce the development life cylce. Furthermore, 
Docker isolates the software environment, which 
makes this tool truly valuable for developers striving to 
deliver code that will work in the same way regardless 
of the platform. 

Scalability is another critical capability helped by 
Docker mainly through Docker Swarm and Kubernetes 
to ensure that new containers are created where 
needed across the large network [4][5]. Containers 
implemented in microservices architecture take 
advantage of Docker features concerning scalability. 
Docker containers can be easily containerised and 
deployed across multiple host systems efficiently for 
high-availability applications and microservices-based 
architecture patterns where there is a huge variability 
of application usage and, hence, a huge variability of 
the network load[6]. 

 

Additionally, the examples of its use together with 
various CI/CD tools describe how Docker contributes 
to shaping scalable web application deployment [7]. It 
also points out that Docker usage in CI/CD pipelines 
helps make the deployment and testing as flexible and 
reliable as possible, as Docker creates environments 

http://inpressco.com/category/ijcet


Vasudhar Sai Thokala                    Utilizing Docker Containers for Reproducible Builds and Scalable Web Application Deployments 

 

662| International Journal of Current Engineering and Technology, Vol.11, No.4 (Nov/Dec 2021) 

 

that are similar to the production environments[8][9]. 
This capability not only leads to better quality and 
faster delivery of application releases but also makes 
the deployed applications more secure because all 
modifications are tested in a development 
environment first. The large-scale adoption of Docker 
implies that it provides a solution for both 
reproducibility and scalability challenges of SW 
development and deployment cycles[10]. 
 
Motivation of the Study 
 
This paper is motivated by the need for efficient, 
reproducible, and scalable deployment in modern 
software development. Traditional models are 
resource-consumptive and sensitive to the 
environment, but Docker rises above this by running 
applications within disposable and minimally intrusive 
containers. Due to microservices' continuous 
integration and continuous delivery, Docker has 
become critical for agile development. This paper 
provides a comprehensive overview of Docker 
technology to support advancements in scalable, 
containerised solutions for modern deployment needs. 
 
Organized of this paper 
 
The paper is structured as follows: Section II overviews 
Docker technology, Section III provides the Docker 
Container Management Tool For Web Deployment, 
Section IV covers scalable deployment with Docker, 
Section V discusses Docker deployment tools, Section 
VI reviews related research, and the final section 
concludes with future work. 
 
Docker Technology Overview 
 
Technology known as "containerisation" organises 
application components, their dependencies, and 
system libraries into a single, cohesive unit. The 
developed and structured apps may run and be 
released in a container. This platform, which ensures 
that applications function in all environments, is called 
Docker. Additionally, the apps that will be deployed 
into containers are automated [11]. Applications are 
run and virtualised in a container environment with 
the inclusion of Docker's deployment engine [12]. 
Docker facilitates the efficient execution of programs 
by providing a lightweight and fast environment. What 
makes Docker tick are its four primary components: 
containers, clients, images, and engine [13]. The 
sections that follow will provide a detailed explanation 
of these components. Docker Container Architecture is 
shown in Figure 1. 
 

Docker Engine 
 

Docker Engine is the central component of the Docker 
system. It is a client-server program that requires the 
following components to be installed on the host 
computer. 

Docker Daemon: an executable software that runs 
continuously (the dockerd command) that makes it 
easier to build and run apps.  

The Docker daemon is communicated with via a 
Rest API.  

A client requests access to the operations from the 
docker daemon via the console. 

 
 

Architecture of Docker Container. 
 
Docker Client-Server 
 
Docker technology relies on a client-server design. 
Docker daemon, the server process executing on the 
host computer, communicates with the client. The 
daemon's primary roles are to run the system, build 
containers, and distribute them. One computer may 
host both the container and the daemon for Docker. 
Figure 1 depicts the Docker architecture. 
 
Docker Images  
 
Two distinct approaches exist for creating Docker 
images. Using a read-only template to construct a 
picture is the main approach. The template is built 
using low-overhead operating system images, which 
may be CentOS, Ubuntu 16.04, Fedora, or any other 
lightweight base OS image [14]. Base photos are often 
the starting point for all photographs. Every time base 
pictures are made from scratch, a new image must be 
constructed [15]. "Committing a change" is the term for 
this kind of establishing a new image. The next step is 
to create a Docker file that contains all the necessary 
instructions for creating a Docker image [16]. When 
executed from the terminal, the docker build command 
will ensure that the created image has all of the criteria 
specified in the docker file. The term for this procedure 
is "automated image building"[17]. 
 

Docker Containers  
 
A Docker image is what really creates a Docker 
container. The container must include all of the 
necessary components for the program in order to 
execute it in a constrained manner. Application or 
software service requirements might inform the 
creation of container images [18]. Imagine the 
following situation: an application that runs on the 



Vasudhar Sai Thokala                    Utilizing Docker Containers for Reproducible Builds and Scalable Web Application Deployments 

 

663| International Journal of Current Engineering and Technology, Vol.11, No.4 (Nov/Dec 2021) 

 

Nginx server and Ubuntu operating system must be 
included in the docker file. The "docker run" command 
builds and starts a container with an Ubuntu OS image 
that includes the Nginx server. 
 
Advantages of Docker Container 
 
In recent years, Linux containers have grown in 
sophistication and popularity. The advantages offered 
by docker container are largely responsible for 
Docker's meteoric rise in popularity. The key benefits 
of docker are density, speed, portability, scalability, 
and quick delivery.  
 
Speed 
 
The speed of containers is one of their most highly 
praised features. When discussing the advantages of 
utilising Docker, it would be absurd to exclude 
mentioning both its speed and its functionality. Due to 
their compact size, containers may be constructed in a 
relatively short amount of time. The compact nature of 
containers allows for more rapid development, testing, 
and deployment. After construction is complete, 
containers may be moved to the testing environment 
for evaluation before being moved to the production 
environment [19]. 
 
Portability  
 
Software developed in a Docker container is very 
portable. These mobile apps are lightweight and 
moveable, so you can take them with you anywhere 
without sacrificing performance [19]. 
 
Scalability 
 
It is possible to install Docker on several physical 
servers, data servers, and cloud platforms. In addition, 
it is compatible with every Linux system. It is easy and 
fast to move containers between different cloud 
environments, local hosts, and back to the cloud. 
Simple adjustments allow the user to quickly and easily 
adjust the scale to their exact specifications [20]. 
 

Rapid Delivery 
 
Docker Containers' standardised format eliminates the 
need for programmers to worry about each other's 
work. The administrator is in charge of setting up and 
maintaining the server with containers, while the 
developer is in charge of the applications that operate 
within the container. Because containers are tested and 
have all necessary dependencies integrated into the 
programs, they can operate in any environment [19]. 
 
Density 
 
By eliminating the need for a hypervisor, Docker is able 
to maximise resource utilisation. That is why it is 
possible to run more containers on a single host than 

VMS. The greater density and absence of resource 
waste in Docker containers make them perform better 
[20]. 
 
Disadvantages of Docker Container 
 
The following are some of the negative aspects of 
docker containers [21][22]:  

The local host is responsible for providing the Linux 
kernel, so a docker cannot provide complete 
virtualisation.  

Docker is not compatible with older computers at 
this time. Local computers that are 64 bits only are 
supported. 

The Docker container is required to provide the 
whole virtualised environment for Mac and Windows 
computers. There has to be confirmation that the 
integration and performance with the hostmachine's 
OS are adequate and that user adoption of these 
systems is not hindered, even if the boot2docker 
software resolves this problem.  

Evaluating the likelihood of security vulnerabilities 
is essential. Digitally signing docker images might 
make it simpler to build off of trusted binaries in the 
future.  

Determining whether academics and researchers 
will really consider using Docker is a major challenge. 

Docker Container Management Tool For Web 
Deployment  

Programs without a graphical user interface (GUI) 
often run in the background using container 
technology. To facilitate user engagement, however, 
many programs need GUI functionality. The Docker 
Swarm Visualiser is an open-source project on Github 
that aims to provide a visualisation tool for Docker 
Swarm. Anyone using the host container may see this 
project. Having said that, it is useless for understanding 
overlay networks [23]. The platform monitoring 
technique that Docker employs is inadequate. The stat 
command is Docker's only monitoring option by 
default. This should only be used when very simple 
container data is required rather than complex 
monitoring. 

 

 
 

Portainer Dashboard for Monitoring 



Vasudhar Sai Thokala                    Utilizing Docker Containers for Reproducible Builds and Scalable Web Application Deployments 

 

664| International Journal of Current Engineering and Technology, Vol.11, No.4 (Nov/Dec 2021) 

 

An improved self-hosted data centre may be built with 
the help of Portainer, shown in Figure 2, which 
manages containerised Nginx web servers and is 
compatible with Kubernetes, Docker, and Docker 
Swarm, among other services. It is possible to swiftly 
deploy, monitor, and watch the behaviour of the web 
server containers and offer adequate and instant 
security whenever required by giving a command line 
interface (CLI) instead of the Docker graphical user 
interface (GUI). Application, cluster, registry/image, 
identity/access, storage, network, monitoring, and 
alert management are some of the extra capabilities 
that Portainer develops for infrastructure teams and 
developers. 
 
Scalable Web Application Deployment with Docker 
 
Scalability in web application deployment[10] is 
critical for handling varying loads and ensuring 
application availability and performance under 
increasing demands. Docker, with its containerisation 
technology, plays a pivotal role in enabling this 
scalability, offering solutions through various tools and 
methods such as Kubernetes and Docker Compose. 
This section delves into the core concepts of scalability, 
Docker's utilities in scalable deployments, the 
principles of load balancing, and a practical case study 
involving Docker and Kubernetes[24][25]. 
 
Understanding Scalability in Web Applications 
 
Scalability in web applications means the ability of an 
application to handle growing loads proportional to the 
capacities [25]. This can be achieved through two main 
strategies: 
Horizontal Scaling: By the term “scaling out” we mean 
making more computers or instances available. This 
method improves the flexibility of the application for 
request handling as the load is distributed in different 
hardware components. Horizontal scaling, also called 
scaling out, is more appropriate for stateless 
applications, where every server can handle requests 
separately [26]. 
Vertical Scaling: It is called scaling up when an 
increase in the processing power of a machine such as 
the CPU or RAM is done. Though this approach is easier 
to implement especially for additional capacity that is 
small, it sometimes has the limitation of capacity of one 
machine and is less scalable than the horizontal scaling 
[27]. 

 
Docker’s Role in Scalable Deployments 
 
Docker simplifies both horizontal and vertical scaling 
through containerisation [28]: 
Container Orchestration with Kubernetes: 
Kubernetes is a framework for orchestration that 
handles large-scale Docker container management. It 
automatically handles the scheduling and running of 
containers on a cluster of machines, with facilities for 

maintenance, scaling, and deployment patterns such as 
rolling updates and rollbacks. Kubernetes excels in 
horizontal scaling, offering robust, production-ready 
environments that integrate well with cloud services. 
Docker Compose for Managing Multi-container 
Environments: Developers may create and manage 
Docker applications with many containers using 
Docker Compose. While it is traditionally used in 
development environments, Docker Compose can also 
simplify the management of multi-container setups in 
smaller production environments, facilitating easy 
scaling and integration of services. 
 
Load Balancing and Scaling Containers 
 
Load balancing is crucial for effectively distributing 
incoming network traffic across multiple backend 
containers to ensure reliable and consistent response 
times, maximise throughput, minimise response time, 
and avoid overload of any single resource. Docker, 
especially when integrated with orchestration tools 
like Kubernetes, provides built-in load balancing to 
handle the distribution of user requests efficiently[28]. 
This can be enhanced by using additional tools or 
plugins that manage more sophisticated load-balancing 
strategies, such as application-layer load balancers. 
 
Case Study: Scalable Deployment Architecture with 
Docker and Kubernetes 
 
Consider a case study involving a microservices-based 
application deployed using Docker and orchestrated 
with Kubernetes. This setup typically involves dividing 
an application into smaller, independent services that 
communicate over well-defined APIs[29]. These 
services are containerised, each running in its Docker 
container. Containers are managed over a cluster of 
computers by Kubernetes, which transparently 
handles deployment, scaling, and networking. 
Example Deployment: Web application back end, 

which includes inter alia a users’ authentication 

service, data service, payment service and others, all of 

which are hosted in different containers. These 

services are deployed scalable using Kubernetes so 

that the resources can be adjusted to those services 

that are most required based on load[29]. 

Benefits Realized: This architectural model achieves 

excellent modularity, distributivity, and service 

independence, thereby enhancing the total quality of 

the system service [30]. 

 
Tools And Techniques for Docker Deployments 
 
Docker has fostered simplification of complexities that 
surround the creation, distribution and execution of 
applications. This section discusses several important 
technologies that improve Docker distribution, with 
special attention to the orchestration, automation and 
integration concepts [13]. 



Vasudhar Sai Thokala                    Utilizing Docker Containers for Reproducible Builds and Scalable Web Application Deployments 

 

665| International Journal of Current Engineering and Technology, Vol.11, No.4 (Nov/Dec 2021) 

 

Docker Compose 
 
Docker compose is a tool for defining and running 
Docker applications using many containers. The 
services, networks, and volumes of your application 
are configured using a YAML file when using Compose. 
After that, you may build and launch every service 
from your configuration with only one command. 
Ease of Use: Docker Compose simplifies the 
deployment of multi-container applications by 
allowing developers to define their complex stack in a 
single file and then managing it all with simple 
commands. 
Configuration: The YAML file used by Docker 
Compose provides detail and demonstrates the 
reproducibility of configuration, which is especially 
important during development, testing, and 
production. 
Integration: It works well with Docker environments 
providing simple configurations for the local 
development and testing hence guaranteeing that the 
application operates the same way in different 
surroundings. 
 
Docker Swarm vs. Kubernetes 
 
Docker Swarm and Kubernetes are both the most 
popular orchestration platforms for Docker containers. 
While both tools claim to ease the construction and 
upkeep of containerised applications, they do so to 
somewhat different degrees [31][32]. 
 
Docker Swarm 
 
Simplicity and Integration: Docker Swarm has been 
built on the Docker API and, therefore, is less 
complicated and easier to begin with as compared to 
Kubernetes. This makes it suitable for applications that 
are not very large, or even if you’re just getting started 
with container orchestration. 
Deployment: Setting up a Swarm is straightforward, 
where you turn a group of Docker engines into a 
Swarm cluster with a few Docker commands. 
Kubernetes: 
Scalability and Flexibility: Kubernetes is more 
capable and versatile, providing scalability, rollbacks 
and much more volume control in comparison to 
Docker. Herein It is best suitable for large scale 
enterprises. 
Features: It has a number of features which can meet 
high demand of utilising it for large-scale applications, 
including load balancing, storage management, and 
automated deployment and undeployment. 

 
CI/CD Integration with Docker 
 
Modern development techniques cannot be 
accomplished without CI/CD pipelines, which stand for 
Continuous Integration and Continuous Deployment. 
Documentation can be simplified in the development 

process through automations of the building, testing, 
and running of Docker containers with help of 
continuous integration and delivery tools including 
Jenkins or GitLab CI [33]. 
Jenkins: An extensible open source CI/CD system that 
can be utilised to run any of the stages of your pipeline. 
Jenkins in a strategy of creating Docker images from 
Docker files, copying to registry as well as deployment 
to a Docker environment[34]. 
GitLab CI: Built into GitLab, it offers a Docker-first 
approach whereby each part of your CI/CD pipeline 
can be defined in gitlab-ci.yml, using Docker images as 
the environment for each stage of the pipeline[34]. 
 
Literature Work 
 
Previous research in this area primarily utilises 
statistical methods and basic models to address issues 
related to Docker containers. 

In, Naik (2017) This study explores an additional 
potential use case for Docker in big data analysis and 
proposes a solution based on Docker containers for 
processing massive amounts of data across many 
clouds. This Docker container-based system provides a 
low-cost and easy-to-use platform for anybody with a 
basic understanding of IT. Also, it's easy to create on 
one computer, many machines, or even several clouds. 
This article showcases the architecture and virtual 
development of the suggested large data processing 
system that uses Docker containers across several 
clouds. The next step is to illustrate the use of Hadoop's 
web-based GUI Hue to automate the setup of big data 
clusters using two popular big data analytics 
frameworks: Hadoop and Pachyderm (without 
Hadoop)[35]. 

In, Chelladhurai, Chelliah and Kumar (2016) 
Important security concerns with Docker containers 
have been covered in this paper, along with the 
associated research being done in this field. 
Additionally, we have suggested security algorithms 
and techniques to deal with Docker container 
technology problems linked to DoS attacks. The 
security techniques' first testing and trials show 
promise[36]. 

In, Mohallel, Bass and Dehghantaha (2017) The 
focus of this study was the relative security of running 
services on host-based operating systems vs inside 
Linux containers. Our paper's base operating system, 
Debian Jessie, and hosts executing services inside 
Docker containers were subjected to a battery of tests 
using Docker v1.10 to compare their attack surfaces. 
Using Docker containers actually increases a host's 
attack surface, according to our vulnerability 
evaluation [37]. 

In, Abdelbaky et al. (2015) Considering the needs 
and constraints of both users and resource providers, 
the paper proposes the C-Ports prototype architecture 
for managing and deploying Docker containers across 
various hybrid clouds and traditional clusters. In order 
to install containers on top of resources, the 



Vasudhar Sai Thokala                    Utilizing Docker Containers for Reproducible Builds and Scalable Web Application Deployments 

 

666| International Journal of Current Engineering and Technology, Vol.11, No.4 (Nov/Dec 2021) 

 

framework makes use of Comet Cloud. It selects 
resources for allocation and dealslocation using a 
constraint-programming technique. A five-cloud and 
two-cluster dynamic federation has successfully 
deployed and managed containers using our 
prototype[38]. 

In, Molto et al. (2017) The paper describes a 
procedure for implementing open-source tool and 
standard-based coherent application delivery on 
HDCIs, where programs need to be delivered on both 
virtual machines and Docker containers. Application 
needs were described coherently by using and 
expanding the TOSCA standard and by implementing 
DevOps principles. This made it possible for the apps to 
run on a variety of systems. This method was used in 
the INDIGO-Data Cloud project, which is detailed in the 
article[39].  

In, Chen et al. (2020) This article describes how to 
build a Docker container log collecting and analysis 
system utilising the widely used open source log 
collection system ELK, distributed message queue 
Kafka, and lightweight log collector Filebeat. Fast 
deployment made possible by the system's use of 
Docker container technology allows for real-time log 

collecting, data filtering and forwarding, presentation 
and analysis, and a significant improvement in the 
efficiency of operation and maintenance staff. 
Experiments validate the system's excellent 
availability, stability, extensibility, and real-time 
performance[40]. 

In, Long et al. (2020) the authors of this research 
suggest using Docker and Kubernetes in tandem to 
virtualise and deploy FPGA resources as lightweight 
containers. Docker containers encapsulate each 
application's execution environment and abstract 
FPGA resources. Virtualised FPGA containers are 
scaled and scheduled automatically by Kubernetes. 
This allows for the secure and efficient sharing of FPGA 
resources across several local and distant applications. 
Results from the experiments demonstrate an 
improvement in the utilisation of FPGA resources[41]. 

Below is Table I summarising the related work for 
utilising Docker containers for reproducible builds and 
scalable web application deployments. This table 
captures the varied applications and innovations in 
utilising Docker containers for reproducible builds, 
scalable deployments, and security enhancements. 

 
Table 1 Summarizing the related work for utilising Docker containers for web application deployments 

 
Paper 

Reference 
Focus Area 

Proposed 
Solution/Framework 

Technologies 
Used 

Key Features Results/Findings 

[35] 
Big data processing 
in multiple clouds 

Docker container-
based big data 

processing system 

Docker, Hadoop, 
Pachyderm, Hue 

GUI 

Inexpensive, user-
friendly, deployable on 

single/multiple 
machines or clouds 

Demonstrates architecture 
and automated 

provisioning of Hadoop and 
Pachyderm for big data 

clusters. 

[36] 
Security of Docker 

containers 
Security algorithms to 

address DoS attacks 

Docker, custom 
security 

algorithms 

Focus on improving 
container security and 
mitigating DoS attacks 

Promising preliminary 
experiments for improving 

Docker security. 

[37] 
Container security 

versus host OS 
security 

Vulnerability 
assessment of Docker 

v1.10 compared to 
host OS 

Docker v1.10, 
Debian Jessie 

Assessing the attack 
surface of Docker 

containers versus base 
OS 

Containers increase the 
attack surface compared to 
running services directly on 

host OS. 

[38] 

Multi-cloud Docker 
container 

deployment and 
management 

C-Ports: A prototype 
framework for multi-

cloud container 
deployment 

Docker, Comet 
Cloud, 

constraint-
programming 

model 

Dynamic resource 
allocation, hybrid cloud 
support, user-objective-

driven constraints 

Effective deployment and 
management across five 
clouds and two clusters. 

[39] 

Coherent 
application delivery 

across VMs and 
Docker containers 

Workflow using TOSCA 
standard and DevOps 

practices 

TOSCA standard, 
DevOps tools 

Coherent creation of 
application artifacts, 

hybrid delivery support 

Successful implementation 
in the INDIGO-Data Cloud 

project. 

[40] 
Real-time Docker 
log collection and 

analysis 

ELK-based log 
collection and analysis 

system 

Docker, ELK 
(Elasticsearch, 

Logstash, 
Kibana), 

Filebeat, Kafka 

Real-time log collection, 
filtering, forwarding, 
and analysis; rapid 

deployment 

Improved work efficiency, 
good real-time 

performance, extensibility, 
and high availability. 

[41] 

Virtualisation and 
deployment of FPGA 

resources using 
Docker and 
Kubernetes 

FPGA virtualisation as 
lightweight Docker 

containers with 
Kubernetes 

orchestration 

Docker, 
Kubernetes, 

FPGA 

Isolated runtime for 
applications, automated 
scaling, and scheduling 

of FPGA containers 

Enhanced utilisation of 
FPGA resources with better 

scalability and resource 
sharing. 

 

Conclusion and Future Work 
 
Docker has revolutionised Software Development and 
Deployment by offering a light and efficient approach 
to containerisation while providing a measure of 
portability for applications deployed in different 

surroundings. These are its principal components: 
Docker Engine, Client-Server, Images, and Containers; 
it is an efficient approach to building, testing and 
moving an app, managing it across various 
infrastructures. Compatibility with orchestration tools 
such as kubernetes and Docker swarm is also provided 



Vasudhar Sai Thokala                    Utilizing Docker Containers for Reproducible Builds and Scalable Web Application Deployments 

 

667| International Journal of Current Engineering and Technology, Vol.11, No.4 (Nov/Dec 2021) 

 

for scalable deployments; the web applications and 
microservices are especially significant on Docker. 
Additionally, Docker integration with CI/CD pipeline 
enhances its development acceleration and allows for 
the reduction of deployment complications since the 
environments provided are closely similar to 
production ones. However, the literature review also 
shows that more of it is needed not only to enhance 
Docker’s scalability and security but to tackle specific 
issues it encounters in multi-cloud and hybrid cloud 
environments too. 

The subsequent research should pay more 
attention on improving Docker security, such as 
developing signed images’ further security or 
perfecting the methodical check of vulnerabilities for 
containers on all the platforms. Another specialising 
consideration while operating Docker is that the use of 
a hybrid cloud setting that may possibly earn for elastic 
resources. There should also be studies for deeper 
management in the implementation of more complex 
origins such as Kubernetes and Docker Swarm. Making 
Docker compatible with older or lower-end systems 
would be a good thing if Docker wanted to be more 
widely adopted across different infrastructures. 
Moreover, evaluating Docker’s contribution to new 
technologies, such as deploying AI models and edge 
computing, provides potential for using Docker's 
virtualisation to manage cost-effective hardware 
resources in these areas. 
 

References 
 

[1] S. Kwon and J. H. Lee, “DIVDS: Docker Image Vulnerability 
Diagnostic System,” IEEE Access, 2020, doi: 
10.1109/ACCESS.2020.2976874. 
[2] R. Goyal, “The Role Of Business Analysts In Information 
Management Projects,” Int. J. Core Eng. Manag., vol. 6, no. 9, 
pp. 76–86, 2020. 
[3] C. Boettiger, “An introduction to Docker for reproducible 
research,” 2015. doi: 10.1145/2723872.2723882. 
[4] C. Pahl and P. Jamshidi, “Microservices: A systematic 
mapping study,” 2016. doi: 10.5220/0005785501370146. 
[5] V. V Kumar, “An interactive product development model 
in remanufacturing environment : a chaos-based artificial bee 
colony approach,” MASTER Sci. Manuf. Eng., 2014. 
[6] V. V Kumar, M. Tripathi, S. K. Tyagi, S. K. Shukla, and M. K. 
Tiwari, “An integrated real time optimization approach 
(IRTO) for physical programming based redundancy 
allocation problem,” Proc. 3rd Int. Conf. Reliab. Saf. …, no. 
November 2014, 2007. 
[7] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous 
Integration, Delivery and Deployment: A Systematic Review 
on Approaches, Tools, Challenges and Practices,” IEEE Access. 
2017. doi: 10.1109/ACCESS.2017.2685629. 
[8] V. V. Kumar, A. Sahoo, and F. W. Liou, “Cyber-enabled 
product lifecycle management: A multi-agent framework,” 
2019. doi: 10.1016/j.promfg.2020.01.247. 
[9] K. K. SKR Anumandla, VK Yarlagadda, SCR Vennapusa, 
“Unveiling the Influence of Artificial Intelligence on Resource 
Management and Sustainable Development: A 
Comprehensive Investigation,” Int. J. Creat. Res. Thoughts, 
vol. 9, no. 12, pp. f573–f578, 2020. 
[10] V. S. Thokala, “A Comparative Study of Data Integrity 
and Redundancy in Distributed Databases for Web 
Applications,” IJRAR, vol. 8, no. 4, pp. 383–389, 2021. 

[11] N. Richardson, R. Pydipalli, S. S. Maddula, S. K. R. 
Anumandla, and V. K. Yarlagadda, “Role-Based Access Control 
in SAS Programming: Enhancing Security and Authorization,” 
Int. J. Reciprocal Symmetry Theor. Phys., 2019. 
[12] M. Z. Hasan, R. Fink, M. R. Suyambu, M. K. Baskaran, D. 
James, and J. Gamboa, “Performance evaluation of energy 
efficient intelligent elevator controllers,” 2015. doi: 
10.1109/EIT.2015.7293320. 
[13] A. M. Potdar, D. G. Narayan, S. Kengond, and M. M. 
Mulla, “Performance Evaluation of Docker Container and 
Virtual Machine,” Procedia Comput. Sci., vol. 171, no. 2019, 
pp. 1419–1428, 2020, doi: 10.1016/j.procs.2020.04.152. 
[14] V. K. Yarlagadda and R. Pydipalli, “Secure 
Programming with SAS: Mitigating Risks and Protecting Data 
Integrity,” Eng. Int., vol. 6, no. 2, pp. 211–222, Dec. 2018, doi: 
10.18034/ei.v6i2.709. 
[15] V. K. Yarlagadda, S. S. Maddula, D. K. Sachani, K. 
Mullangi, S. K. R. Anumandla, and B. Patel, “Unlocking 
Business Insights with XBRL: Leveraging Digital Tools for 
Financial Transparency and Efficiency,” Asian Account. Audit. 
Adv., vol. 11, no. 1, pp. 101–116, 2020. 
[16] M. Z. Hasan, R. Fink, M. R. Suyambu, and M. K. 
Baskaran, “Assessment and improvement of elevator 
controllers for energy efficiency,” 2012. doi: 
10.1109/ISCE.2012.6241747. 
[17] B. B. Rad, H. J. Bhatti, and M. Ahmadi, “An Introduction 
to Docker and Analysis of its Performance,” IJCSNS Int. J. 
Comput. Sci. Netw. Secur., 2017. 
[18] M. Z. Hasan, R. Fink, M. R. Suyambu, and M. K. 
Baskaran, “Assessment and improvement of intelligent 
controllers for elevator energy efficiency,” 2012. doi: 
10.1109/EIT.2012.6220727. 
[19] A. A. Folarin, R. J. Dobson, and S. J. Newhouse, 
“NGSeasy: a next generation sequencing pipeline in Docker 
containers,” F1000Research, 2015, doi: 
10.12688/f1000research.7104.1. 
[20] A. M. Joy, “Performance comparison between Linux 
containers and virtual machines,” 2015. doi: 
10.1109/ICACEA.2015.7164727. 
[21] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An 
updated performance comparison of virtual machines and 
Linux containers,” 2015. doi: 10.1109/ISPASS.2015.7095802. 
[22] A. S. Harji, P. A. Buhr, and T. Brecht, “Our troubles 
with Linux Kernel upgrades and why you should care,” ACM 
SIGOPS Oper. Syst. Rev., 2013, doi: 
10.1145/2506164.2506175. 
[23] M. Brouwers, “Security considerations in Docker 
Swarm networking,” System and Network Engineering, 
University of …. 2017. 
[24] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud 
container technologies: A state-of-the-art review,” IEEE 
Trans. Cloud Comput., 2019, doi: 
10.1109/TCC.2017.2702586. 
[25] M. List, “Using Docker Compose for the Simple 
Deployment of an Integrated Drug Target Screening 
Platform,” J. Integr. Bioinform., 2017, doi: 10.1515/jib-2017-
0016. 
[26] H. Rajavaram, V. Rajula, and B. Thangaraju, 
“Automation of Microservices Application Deployment Made 
Easy By Rundeck and Kubernetes,” 2019. doi: 
10.1109/CONECCT47791.2019.9012811. 
[27] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, 
Motivations, and Issues for Migrating to Microservices 
Architectures: An Empirical Investigation,” IEEE Cloud 
Comput., 2017, doi: 10.1109/MCC.2017.4250931. 
[28] A. Balalaie, A. Heydarnoori, and P. Jamshidi, 
“Microservices Architecture Enables DevOps: Migration to a 



Vasudhar Sai Thokala                    Utilizing Docker Containers for Reproducible Builds and Scalable Web Application Deployments 

 

668| International Journal of Current Engineering and Technology, Vol.11, No.4 (Nov/Dec 2021) 

 

Cloud-Native Architecture,” IEEE Software. 2016. doi: 
10.1109/MS.2016.64. 
[29] M. H. Fourati, S. Marzouk, M. Jmaiel, and T. Guérout, 
“Docker-C2A: Cost-aware autoscaler of docker containers for 
microservices-based applications,” Adv. Sci. Technol. Eng. 
Syst., 2020, doi: 10.25046/aj0506116. 
[30] D. Kim, H. Muhammad, E. Kim, S. Helal, and C. Lee, 
“TOSCA-based and federation-aware cloud orchestration for 
Kubernetes container platform,” Appl. Sci., 2019, doi: 
10.3390/app9010191. 
[31] N. Marathe, A. Gandhi, and J. M. Shah, “Docker swarm 
and kubernetes in cloud computing environment,” 2019. doi: 
10.1109/icoei.2019.8862654. 
[32] A. Modak, S. D. Chaudhary, P. S. Paygude, and S. R. 
Ldate, “Techniques to Secure Data on Cloud: Docker Swarm 
or Kubernetes?,” 2018. doi: 10.1109/ICICCT.2018.8473104. 
[33] K. Brady, S. Moon, T. Nguyen, and J. Coffman, “Docker 
Container Security in Cloud Computing,” 2020. doi: 
10.1109/CCWC47524.2020.9031195. 
[34] Malathi. S | Ganeshan. M, “Building and Deploying a 
Static Application using Jenkins and Docker in AWS,” Int. J. 
Trend Sci. Res. Dev., 2020, doi: 10.1007/978-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[35] N. Naik, “Docker container-based big data processing 
system in multiple clouds for everyone,” 2017. doi: 
10.1109/SysEng.2017.8088294. 
[36] J. Chelladhurai, P. R. Chelliah, and S. A. Kumar, 
“Securing docker containers from Denial of Service (DoS) 
attacks,” 2016. doi: 10.1109/SCC.2016.123. 
[37] A. A. Mohallel, J. M. Bass, and A. Dehghantaha, 
“Experimenting with docker: Linux container and baseos 
attack surfaces,” 2017. doi: 10.1109/i-Society.2016.7854163. 
[38] M. Abdelbaky, J. Diaz-Montes, M. Parashar, M. Unuvar, 
and M. Steinder, “Docker Containers across Multiple Clouds 
and Data Centers,” 2015. doi: 10.1109/UCC.2015.58. 
[39] G. Molto, M. Caballer, A. Perez, C. De Alfonso, and I. 
Blanquer, “Coherent Application Delivery on Hybrid 
Distributed Computing Infrastructures of Virtual Machines 
and Docker Containers,” 2017. doi: 10.1109/PDP.2017.29. 
[40] L. Chen, J. Liu, M. Xian, and H. Wang, “Docker 
container log collection and analysis system based on ELK,” 
2020. doi: 10.1109/CIBDA50819.2020.00078. 
[41] X. Long, B. Liu, F. Jiang, Q. Zhang, and X. Zhi, “FPGA 
virtualization deployment based on Docker container 
technology,” 2020. doi: 10.1109/ICMCCE51767.2020.00109. 
 

  
 


