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Abstract 
  
In this paper, an effective energy based control technique for an overhead crane system with a flexible cable with 
large swing angle is developed. The studied crane system is categorized as a multi-degree underactuated system 
whose characteristics can initiate challenges in control design. Thus, simultaneously moving the trolley/payload and 
suppressing the payload swing and cable vibration is difficult. Due to such a difficulty, to overcome the complexities of 
the control problem, a corresponding energy-based control strategy will be proposed using linearized model and 
controlled Lagrangian method. The control objective is moving the payload to the desired position and at the same 
time, reducing the payload swing and suppressing the cable transverse vibrations. The controller guarantees both 
tracking of the desired payload position and active damping of payload swing and cable vibration. The simulation 
results are presented to demonstrate the dynamic behavior and effectiveness of the control system for an illustrative 
example of the crane systems with flexible cable moving a lightweight payload. 

 
Keywords: Overhead crane system, Flexible cable, Swing and vibration suppression, Controlled Lagrangian, 
Underactuated mechanical system. 
 
 
1. Introduction 
 

1 The crane systems are extensively employed in a 
variety of applications in industries such as land and 
onshore/offshore construction sites, transportation 
industry, etc. The most common operation of a crane is 
point-to-point carrying of a suspended load 
horizontally, by means of cables and a support 
mechanism. The cables possess an inherent flexibility 
and can only develop tension; they do not offer 
resistance to bending moments or compressive forces. 
Such natural characteristics certainly cause deflection 
in transversal direction of the cable and payload swing 
in crane systems. The suspended load in crane systems 
is always subject to swings happen by unskilled 
operators or by disturbances typically induced by 
motor drive transients, wind, and collision with objects 
so that it can cause lengthy transportation activities; 
even the swings may possibly become large and reduce 
the safety of crane systems. 
     Abdel-Rahman and Nayfeh presented a detailed 
review of the challenges in modeling and control of the 
crane systems (Abdel-Rahman et al., 2003). In most 
dynamical models, the effects of flexibility and weight 
of the suspended cable have been ignored and the 
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cable has been considered as a mass-less rigid-link or 
as a rigid-link including a point-mass (Collado et al., 
2000), (Fang et al., 2003), (Fang et al., 2012), (Lee, 
1998), (Ma et al., 2008), (Ma et al., 2010), (Park et al., 
2008), (Sun and Fang, 2012, 2014), (Sun et al., 2010), 
(Sun et al., 2011), (Sun et al., 2012), (Yesildirek, 2011).  
 In these studies, the load swing has been assumed 
as the major dynamic motion in a crane system. 
Although such assumptions are usual, they are not 
genuine for many applications. In certain cases, 
especially when payload is lightweight and more 
importantly when cable is long, the effect of flexibility 
has to be taken into account. In these cases, the tension 
force is more dependent on the cable weight and also it 
will be varying along the cable. Under such conditions, 
the tension force, especially at the end of the cable is 
low so that the cable weight may have more dynamical 
effects and transverse vibrations of the cable can take 
over the behavior of the crane (Starossek, 1994). Thus, 
to utilize the crane systems in a particular application, 
in addition to the payload swing, the cable vibration 
should be suppressed within a given period of time for 
safety issues; therefore, development of an effective 
suppression control system is indispensable. In order 
to achieve these objectives, a more accurate model 
with more details including the dynamic 
interconnection of the cable and the payload is a 
requisite.  
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A few studies have addressed the effects of cable 
flexibility and weight in crane systems with flexible 
cables (Alli and Singh, 1999), (D'Andréa-Novel et al., 
1992), (D'Andréa-Novel et al., 1994), (D’Andréa-Novel 
and Coron, 2000, 2002), (Formal'sky, 1999), (Joshi and 
Rahn, 1995), (Moustafa et al., 2005), (Moustafa et al., 
2009), (Rahn et al., 1999), (Thull et al., 2006). They 
have presented planar models for overhead cranes and 
assumed that the cable is perfectly flexible and 

inextensible. Also, they have assumed that the cable 
slop is small along the cable and also disregarded the 
swing angle; in other words, in these studies, in a crane 
system, the major dynamic motion of cable has been 
assumed to be the cable vibrations. However, this is 
valid only for slow movements of the trolley or support 
mechanism and near the end of the traveling. These 
models might not be accurate when considering 
certain unavoidable physical and environmental 
conditions. The angular rotation of cable swing in most 
applications especially when the high traveling speed 
is required becomes large. This issue has been 
disregarded in nearly all of the previous studies on the 
crane system with a flexible cable (Alli and Singh, 
1999), (D'Andréa-Novel et al., 1994), (D’Andréa-Novel 
and Coron, 2000, 2002), (Formal'sky, 1999), (Joshi and 
Rahn, 1995), (Moustafa et al., 2005), (Moustafa et al., 
2009), (Rahn et al., 1999), (Thull et al., 2006). In an 
infrequent study, an approximated model was found by 
introducing the effect of small swing angle just in the 
trolley dynamics in a crane system with flexible cable 
(D'Andréa-Novel et al., 1992). In a recent study by the 
authors, a more accurate dynamical model for an 
overhead crane system with flexible cable was 
developed where the swing rotation of the payload and 
cable was not restricted to small angles and large 
swing rotations were considered and then a simple 
linear controller was applied to move trolley/payload 
and suppress both cable vibrations and payload/cable 
swing (Fatehi et al., 2014). This system is categorized 
as a multi-degree underactuated system whose 
characteristics can impose serious challenges when 
applying control methods.  
     An underactuated system is a system that has fewer 
independent control actuators than the number of 
degrees of freedom to be controlled. In recent years, a 
great attempt has been made in applying the energy-
based techniques to the control of underactuated 
systems (Bloch et al., 2001), (Bloch et al., 2006), (Bo 
and Hayakawa, 2004), (Chang, 2012), (Dong et al., 
2008), (Gao et al., 2009), (Hu et al., 2007), (Liu and Yu, 
2013), (Ng et al., 2013), (Ortega et al., 2001), (Sun and 
Fang, 2012). The main advantage of these methods is 
that the highly coupled underactuated system 
dynamics can be analyzed via the system energy with 
reasonable control performance. Chung and Hauser 
proposed a nonlinear controller to regulate the 
swinging energy of the pendulum for a cart and 
pendulum system (Chung and Hauser, 1995). In some 
other studies, it has been tried to use the passivity and 
energy shaping methods to control overhead cranes 

(Chang, 2012), (Collado et al., 2000), (Fang et al., 
2003), (Sun and Fang, 2012). The well-known and 
extensively studied underactuated systems have one or 
more actuated variables and only one un-actuated 
variable such as the following benchmarks: inverted 
pendulum system, TORA, Pendubot, Acrobot (Fantoni 
et al., 2000), (Gao et al., 2009), (Lozano et al., 2000), 
(Tadmor, 2001). These studies reveal that controlling a 
one-degree underactuated system is very complicated 
and control design for multi-degrees underactuated 
system is much more difficult.  
    The purpose of this study is to present a control 
design for a crane system with a flexible cable which it 
is categorized as a multi-degree underactuated. The 
energy-based techniques are useful to deal with the 
difficulty of underactuated problem. In the current 
study, an energy-based method is used to design a 
controller for the flexible cable crane system applying 
the controlled Lagrangian procedure and passivity 
characteristic. The control objective is to generate a 
driving force for moving the trolley and the payload to 
the desired final position and at the same time to 
reduce the payload swing and to suppress the cable 
transverse vibrations. To achieve two control 
objectives, swing angle regulation and payload and 
trolley tracking simultaneously, a potential and kinetic 
energy shaping based on controlled Lagrangian 
method will be used. To overcome the complexities of 
the control problem in using controlled Lagrangian 
method for the studied multi-degrees underactuated 
system, system is linearized at its equilibrium point. 
Then the controlled Lagrangian method is applied for 
the linearized system to design its controller. First, the 
matching conditions for the crane system are derived. 
The matching conditions are solved and associate 
controllers are obtained. The controller guarantees 
both moving of payload to desired point and active 
damping of payload swing and cable vibration. To 
demonstrate the effectiveness of the proposed control 
system, the numerical simulations are performed using 
commercial software. 
     This paper is organized as follows: The system 
description is presented in Section 2  which contains 
the enhanced dynamic equations of motion developed 
by the authors according to (Fatehi et al., 2014). In 
Section 3, an energy-based controller is design for 
crane system using controlled Lagrangian method and 
in Section 4, the stability analysis of overall control 
system is presented. To demonstrate the dynamic 
behavior and effectiveness of the control system for an 
illustrative example of the crane systems with flexible 
cable moving a lightweight payload, the simulations 
are performed in Section 5. Finally, in Section 6, the 
conclusions are drawn. 
 

2. System Description and Dynamic Equations 
 

An overhead crane system is composed of a support 
mechanism as a trolley and a flexible cable tied to the 
suspended payload. The swing motion of the payload 
and transverse vibrations of cable in this kind of crane 
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system, can be described in plane using two coordinate 
frames i.e.,    and  ̂ ̂, see Fig.1. As shown, three kinds 
of motion are considered, i.e. crane traveling, swing 
angle and transverse vibrations which are described as 
   , and        , respectively. It is assumed that every 
point on the cable has two degrees of freedom; one is 
the transverse deflection         around the  ̂-axis and 
the other is the swing angle,  , which is not assumed to 
be small in this study. Let   and    be the trolley 
position and trolley driving force, respectively.  
     The parameters            and   are the total mass 

of the trolley, payload mass, mass per unit length of 
cable, cable length and gravitational acceleration, 
respectively. The payload is considered as a point mass 
and the motion of the trolley on the rail is assumed to 
be frictionless. The cable is assumed to be inextensible 
and the transverse deflection is small. To achieve an 
ODE model describing the transverse deflection of a 
cable with finite degrees of freedom (modes), the 
Rayleigh-Ritz discretization method (Meirovitch, 2001) 
can be used in which the spatial function         is 
approximated as the finite sum of shape functions 
       multiplied by the time-dependent generalized 

coordinates      : 

        ∑           

 

   

            (1) 

where,        and      are: 

      [                   ]     

      [                ]  
(2) 

To choose the shape functions       , the boundary 

conditions must be satisfied. A useful choice for shape 
functions to achieve high precision is comparison 
functions which can satisfy both the geometric and 
natural boundary conditions, but the comparison 
functions are often unavailable, as in the studied 
system. One appropriate way is to use a different class 
of shape functions, so-called quasi-comparison 
functions as a linear combination of admissible 
functions. In order to form the quasi-comparison 
functions, two admissible functions are used, one 
satisfying the boundary conditions,               
  and the other satisfying                   . 
However neither of the conditions are consistent with 
the actual situation; rather the following quasi-
comparison function can be used: 

           (
   

  
  )          (

       

  
  )  (3) 

Where           and       can be assumed as an 
arbitrary constant weight. The dynamic equations of 
motion of the studied crane system are derived in a 
matrix form as, (Fatehi et al., 2014): 

     ̈       ̇  ̇           (4) 

where,   [  
    ]  and   

  [  ],      
is trolley driving force and                in which 

  and   are crane traveling and swing angle, and 
                   is the vector of the generalized 
coordinates of cable, and      .       is the total 
inertial matrix, the second term represents the Coriolis 
and centripetal forces and      is the potential force 
due to stiffness and gravitation effects in the system. 
The symmetric inertia matrix,     , can be assembled 
and simplified as: 

     *

                             

           

    

+ (5) 

Also, matrix      ̇  and vector      can be assembled 
as: 

     ̇  *

               ̇

      ̇  ̇    

   ̇    

+ (6) 

     (

 
                              

              
       

) (7) 

 
 

Fig.1 Coordinate frames and the schematic of the 
overhead crane system and, an infinitesimal element 

   at general point  . 
 

where,              ̇            ̇           ̇. 
The vector      can be rewritten as            
where, 

     

[

   

 
      

  
           

 

 
                   

 
      

 
  

           

]    (8) 
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and the respective parameters are: 
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             ∫      
 

 

 
 

(9) 

These nonlinear coupled ordinary differential 
equations describe the dynamic motions of the whole 
crane system with flexible cable. It is clear that   is the 
configuration variable vector of the system with      
is the actuated variable and            is the  
un-actuated variable vector of the system. Since there 
are three configuration variables to be controlled with 
only one actuated configuration variable, the flexible 
cable crane system is an underactuated system. There 
are some general properties of inertia matrix     , 
note that this matrix is symmetric, and positive definite 
for all  . Calculating  ̇     is a skew-symmetric 
matrix which has an important property  
 

  [ ̇          ̇ ]           (10) 

 

3. Energy-Based Control Design 
 

The obtained crane model is a complex matrix 
equation with strong coupled dynamics. The crane 
degrees of freedom are trolley motion, cable deflection 
and payload/cable swing where the second and third 
kinds of degrees are underactuated. Control design for 
an underactuated system is challenging and attracts 
many researchers. The well-known and extensively 
studied one-degree underactuated systems such as the 
following benchmarks: inverted pendulum system, 
TORA, Pendubot, Acrobot. The number of actuated 
degrees is no less than the number of un-actuated 
degrees in most underactuated systems we deal with. 
The purpose of this section is to present a control 
design based on controlled Lagrangian procedure for 
the flexible cable crane system which it is a multi-
underactuated system. The control objective is to move 
the payload to the desired position and at the same 
time, to reduce the payload swing and to suppress the 
cable transverse vibrations. The controller should 
guarantee both moving of payload to desired point and 
active damping of payload swing and cable vibration. 
First the System (4) is linearized at its equilibrium, 
then the controlled Lagrangian method is used for the 
linearized system. Suppose that the origin point 
    ̇        is an equilibrium point of system (4). By 
linearizing the system (4) at the equilibrium point, a 

linear underactuated system as following can be 
obtained: 

 ̅ ̈   ̅        (11) 

where  ̅ and  ̅ are     positive constant matrices 
and   [    ] . The generalized degrees of 
freedom are              in which         
and                 where,               . It 
is worthwhile noting that the control bundle   with 
          shows that the system is underactuated. 
Given a desired set-point as              in which  
     ,        where    is fixed desired point of 
payload. Defining errors as  ̃       and applying 
the following control signal as: 

     ̅         (12) 

in which,             , then, the dynamical 
model is given by 

 ̅ ̈̃   ̅  ̃         (13) 

The point of interest is  ̃   , which corresponds to 
zero tracking error for payload motion null cable 
vibration and payload swing. The controlled 
Lagrangian method as explained in (Chang et al., 2002) 
is a control strategy to find a Lagrangian with center 
equilibrium point by shaping kinetic and potential 
energies through solving a matching equation 
presented as follows and injecting a dissipative force to 
obtain the stable-focus equilibrium point. 

  
 [(      ̂

   ̂) ̇    
     ̂

   ̂ ]    (14) 

  
 [      ̂

   ̂    
 
    ̂

   ̂ ]    (15) 

 ̂   ̂  
     (16) 

where, the subscript     and the symbols with     
denote the original and the new Lagrangian systems, 
respectively. The matrix   

  is the orthogonal 
complement of the control bundle matrix     , and 

  and   
  

   
 are inertia matrix and nonlinear 

generalized force vector resulting from the potential 
energy      , respectively. The matrix   represents 
the Coriolis and centripetal forces. The forces 
        

      ̇   are the velocity independent and 
velocity dependent parts of the resultant external force 
as        . In our case of a crane system, 
fortunately there are not external forces so,   

 
   and 

  
    and there is no need to consider the external 

forces acting at the second Lagrangian system so, 
 ̂   ̂   . In addition to kinetic and potential 
shaping equations (14) and (15), another equation 
(16) describing the control bundle of the new 
Lagrangian system. Using Eq. (14) for system (13), the 
following equation will be obtained as: 

  [(   ̅ ̂   ̂) ̇̃]       (17) 

Where, matrix  ̂ is the mass matrix of the second 
Lagrangian system and matrix    is left annihilator of 
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matrix   where      . Since the inertia matrix,  ̅ 
which characterizes the system, is independent of  , 
the simplest form of solution of Eq. (17) is considering 
an arbitrary constant symmetric matrix for  ̂ where 
 ̂   . Assuming matrix  ̂, the potential shaping 
equation (15) is then obtained as follows 

  [ ̅ ̃   ̅ ̂   ̂]       (18) 

Let    ̅ ̂   where that is a positive definite matrix 
by choosing  ̂   , A general solution of this equation 
can be obtained as: 

 ̂       ̅ ̃   ̂   ̂ ̃   ̂     (19) 

where,  ̂       ̅ in which    ̅ ̂   and vector 

 ̂  [ ̂    ̂ ]
  where  ̂     and  ̂       can be 

obtained solving following equation. 

     ̂       (20) 

 ̂  is in the null space of matrix    . Let       is a 
vector where     , thus  ̂  and    are orthogonal.  ̂  
can obtained as following where  ̂  is arbitrary.  

 ̂  (
 ̂ 

    
      ̂ 

)    (21) 

In order to obtain the control bundle of the matching 
system, the third matching equation (16) resulting in 

 ̂   ̂ ̅          (22) 

The energy shaping control     is given by: 

      (      ̂ ̂) 

          ( ̅ ̃   ̅ ̂   ̂)       ̂  
(23) 

Where,             ,  ̂ and  ̂  are obtained 
using Eq. (19) and Eq. (21). The controller design is 
completed with using another control signal 
corresponding to the damping injection. To deal with 
the situation in the presence of Rayleigh dissipative 
Forces the dissipative force chosen as: 
 

         ̂  ̇̃            ̇̃    (24) 

In which,   is a positive scalar and  ̂ is obtained using 
Eq. (22). Eventually, the stabilizing control law for the 
conservative system as presented in Ortega et al. 
(Ortega et al., 2002) can be used as following in which 
   ̅ ̂  ,              and  ̂  and  ̂ are 
obtained using Eq. (21) and Eq. (22). 

             

            ̂     ̂  ̇̃      ̂     ̂  ̇̃   
(25) 

where,              
     . Using Eq. (12), the 

overall control is determine as 

     ̅      ̂     ̂  ̇̃   (26) 

 
 

4. Stability Analysis 
 
The controlled Lagrangian system using control signal 
(26) is 

   ̃  ̈̃   ( ̃  ̇̃) ̇̃     ̃         

       ̂     ̂  ̇̃   
(27) 

The closed form of above equation can be written as: 

   ̃  ̈̃   ( ̃  ̇̃) ̇̃     ̃      ̂     ̇̃       (28) 

In which, matrix          and        
      

      are positive definite by choosing  ̂   . 

The last term,    ̇̃ is a Rayleigh dissipative Forces. To 
analyze the stability of the closed-loop system, the 
controlled energy of the new Lagrangian system can be 
considered as a Lyapunov function candidate: 

 ( ̃  ̇̃)   ( ̃  ̇̃)   ( ̃  ̇̃)     ̃  (29) 

In which,  ( ̃  ̇̃)   

 
 ̇̃    ̃  ̇̃ and 

 

  ̃
   ̃     ̃  

    ̂ . In order to achieve stability, the positive 
condition should be imposed on the controlled energy 
of the system. Hessian matrix of should be positive 
definite to hold positive definite conditions of 
controlled energy. The Hessian Matrix around 
equilibrium point   ̃  ̇̃        is defined as follows: 

   |      [

  

  ̃ 
   ̃ |

 ̃  

 

    ̃ | ̃  

]    (30) 

So, the controlled energy function remains positive 
near its minimum equilibrium point and it can be used 
as the Lyapunov candidate. Thus, the time derivative of 
the controlled energy is negative for     and this will 
guarantee the stability of the closed-loop system from 
LaSalle’s lemma. Matrix    ̃  is positive definite and 
must 

  

  ̃ 
   ̃ |

 ̃  

 
 

  ̃
    ̃      ̂  |

 ̃  

   (31) 

A chosen function for  ̂  can be  ̂     ̃ in which    is 
arbitrary matrix where         and          . 

The derivative of  ( ̃  ̇̃) with respect to time is 

following by taking (10). 

 ̇   ̇̃    ̃  ̈  
 

 
 ̇̃  ̇  ̃  ̇̃   ̇̃ (

 

  ̃
   ̃ ) 

      ̇̃ (  ( ̃  ̇̃) ̇̃     ̃      ̂     ̇̃) 

         
 

 
 ̇̃  ̇  ̃  ̇̃   ̇̃     ̃      ̂   

      
 

 
 ̇̃ ( ̇    ) ̇̃    ̇̃   ̇̃     ̇̃   ̇̃    

(32) 

Therefore, the closed-loop control system is stable with 
the stability criteria of Lyapunov. 
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5. Simulation Results 
 
In this section, a simulation is performed to 
demonstrate the dynamic behavior and effectiveness of 
the control system for an illustrative example of the 
crane systems with flexible cable moving a lightweight 
payload. Since the crane system’s degrees of freedom 
are cable deflection, payload/cable swing angle and 
trolley movement, time histories of these motions will 
be plotted to illustrate the behavior of the sample 
crane system. The sample flexible cable crane system 
with a lightweight payload is considered with a trolley 
mass of 10 (kg), cable length of 5 (m) and cable mass 
per unit length of 0.62 (kg/m), and payload mass of  
2 (kg). It is assumed that the crane system is initially at 
rest. The simulation results are presented when the 
proposed controller is applied to move the payload to 
the desired final position and to reduce the 
payload/cable swing angle and to suppress the cable 
vibration. Suppose the crane assignment is to move a  
2 (kg) payload mass to a final position such that the 
travel distance is 5 (m), thus, a reference trajectory as  
Fig.3 is planned for the trolley motion. To determine 
the transverse deflection of the cable, the first four 
modes of vibrations are considered. The trolley control 
force is applied as control law as Eq. (29) to control the 

crane system. The proper values for the control 
parameters are chosen as: 

 ̂                            [            ]       

The generated control force is shown in Fig.2. To 
investigate the effectiveness of the proposed controller, 
time histories of the trolley and the payload motions, 
the swing angle, the amplitudes of the first four 
vibration modes and transverse deflections of the cable 
are shown in Fig.3 and Fig.5 to Fig.7, respectively. The 
transverse deflections of cable are demonstrated 
considering four distinct points along the cable with 
the same distances. The transverse deflections of these 
distinct points are shown in Fig.7. In Fig.5 the payload 
swing angle is displayed and Fig.3 and Fig.4 present the 
horizontal displacements and velocity of the trolley 
and the payload along  -axis. It can be seen that the 
closed loop control system reasonably reduces the 
payload/cable swing angle and suppresses the cable 
vibrations. The maximum magnitude of the payload 
swing angle has been reduced to about ±6 degrees. 
Moreover, the horizontal travelling motions of the 
trolley and the payload to their desired positions have 
much smoother behavior; moreover, they are with zero 
steady state error and a settling time of about 8 
Seconds with a minimal overshoot. 

 

 
 

Fig.2 Time history of the applied trolley control force for moving the trolley and payload 

 

Fig.3 Time histories of reference trajectory and the trolley and payload horizontal travelling 
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Fig.4 Time histories of the trolley and payload velocity 

 

Fig.5 Time history of the swing angle during the traveling of the trolley and payload 

 

Fig.6 Time histories of the amplitudes of the first four vibration modes of the cable 

 

Fig7 Time histories of transverse deflections of the four selected points along the cable 
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5. Discussion and Conclusion 
 
In this study, an energy-based control design using 
controlled Lagrangian method was presented for a 
crane system with a flexible cable which it is 
categorized as a multi-degree underactuated system. 
The control objectives was simultaneously moving the 
trolley/payload and suppressing the payload swing 
and cable vibration. The underactuated characteristics 
can put challenges in control design procedure because 
the number of control inputs of the system is smaller 
than the system’s degrees of freedom and so, it is 
difficult to directly apply traditional nonlinear control 
methods to design a suitable controller. Due to such a 
difficulty, to overcome the complexities of the control 
problem, a corresponding energy-based control 
strategy was proposed using linearized model and 
controlled Lagrangian method. The controller 
guarantees both tracking of the desired payload 
position and active damping of payload swing and 
cable vibration. The simulation was performed to 
demonstrate the dynamic behavior and effectiveness of 
the control system for an illustrative example of the 
crane systems with flexible cable moving a lightweight 
payload. The simulation results demonstrated that the 
proposed control system was able to yield smooth 
trolley/payload motions with zero steady state error, a 
small settling time and a minimal overshoot. 
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