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Abstract 
  
Thermosolutal instability in a heterogeneous fluid layer with free boundaries has been, studied in porous medium. 
Employing the normal mode technique, the solution has been obtained. For the case of conducting viscous, in 
compressible and heterogeneous fluids, the dispersion relation has been derived and solved numerically. It has been 
found that magnetic field shows stabilizing influence and porosity shows destabilizing effects on the thermosolutal 
instability. 
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1. Introduction 
 

1 The study of onset of convection in a porous medium 
has attracted considerable interest because of its 
natural occurrence and intrinsic importance in many 
industrial problems, in petroleum exploration, 
chemical and nuclear industries, in geophysics, ground 
water hydrology, soil sciences. The effect of a magnetic 
field on the stability of such a flow if of interest in 
geophysics, particularly in the study of Earth’s core 
where the earth’s mantle, which consists of 
conductivity fluid behaves like a porous medium which 
can become convectively unstable as a result of 
differential diffusion. 
 The understanding of the flow phenomenon in 
packed beds is of considerable practical importance in 
the interpretation of chemical reactor performance 
where hydrodynamic dispersion and molecular 
diffusion play important roles in mixing process. The 
investigation of thermosolutal convection is motivated 
by its interesting complexities as a double diffusion 
phenomenon. The forces in thermal convection 
buoyancy arise from density differences due to 
variations in temperatures and also from those due to 
variation in solute concentration. The problem of the 
setting up of convection currents in non-porous 
medium in a layer of viscous fluid was first solved by 
Rayleigh (Rayleigh and Lord, 1964) and Jeffreys 
(Jeffreys, 1926) and further elaborated by Low (Low A. 
R., 1929), Hales (Hales, A. L. 1936), Pellew and 
Southwell (Pellew et al, 1930) and in more details 
under varying assumptions was studied by 
Chandrasekhar (Chandrasekhar S., 1961) in his 
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monograph. The first pioneering work concerning the 
buoyancy induced transport in a horizontal porous 
layer heated uniformly from below began with the 
work of Horton and Rogers (Horton et al, 1945). In 
recent past, many workers such as Prabhamani and 
Rudraigh (Prabhamani et al, 1973). Rohini (Rohini G., 
1979) and Rudraian and Masuoka (Rudraiah et al, 
1982) are used Brinkman equation as a first 
approximation to investigate the onset of convection in 
a horizontal porous layer heated from below with 
different physical configurations, Dandapat and Gupta 
(Dandapat et al, 1982) studied the onset of thermal 
convection in a layer of saturated porous medium 
which is subjected to random vibrations. The problem 
of thermosolutal instability in a horizontal layer of 
saturated porous medium was treated by Nield (Nield 
D. A., 1967) within the framework of linear 
perturbation theory. Sharma (Sharma R. C., 1990) 
studied the thermosolutal convection in compressible 
fluids in porous medium in the absence, separately of 
rotation and magnetic field. It is interesting, therefore, 
the study of the thermololutal instability in a 
heterogeneous fluid layer with free boundaries in 
porous medium. 
 

1.1 Formulation of the Problem and Linearized 
Perturbation Equation 
 

Here we study the thermosolutal instability in a 
heterogeneous fluid layer with free boundaries in 
porous medium. Consider a horizontal layer of fluid in 
porous medium of thickness d between two free 
boundaries at Z=0 and Z=d. Let the fluid in pores be 
conducting viscous, incompressible and 
heterogeneous. The density of the fluid be of the form 
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ρ0f(Z) , where ρ0 is the density at Z=0. The layer is 
infinite in the horizontal direction and is heated and 
soluted from below. The temperature gradients  
 

 0 1T T

d





  
and  
 

 0 1
'

C C

d





  
 
where  
 

0T , 1T
   0 1T T

  
and  
 

0C , 1C    0 1C C
 

are the constant temperatures and concentrations of 
the lower and upper surfaces. 
 
Let a uniform magnetic field 
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be prevalent in the system and linearized equations are 
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2. Normal Mode Analysis  
 
Analyzing the disturbances in terms of normal modes, 
find that the linearized perturbation equations and 
appropriate boundary conditions are satisfied if the 
dependence of physical quantities on is of the form. 
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Where Kx and Ky and are horizontal wave numbers such 
that the wave numbers of the disturbance is 
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Also n=n1+n2 where n1 denotes the growth rate and 
n2the frequency of the disturbances. 

Further we have written 
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Where ζ ξ  and  denote the z components of vortocity 
and current density, respectively, of puerturbation. 
 
Using the dimension varaiables 
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Taking the rectilinear components from the equations 
(1) to (7), analysing in normal modes and eliminating 
some of the variable, we get following equation in view 
of non-dimensional quantities. 
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3. Diespersion Relation 
 
By variational method, supposing 
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are constants. We get following dispersion relation 
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Fig 1: Variation of the growth rate with respect to 

wave number 
 

 
 

Fig 2: Variation of the growth rate with respect to 
wave number 

 
4. Numerical Analysis and Conclusion 
 
It has been carried out positive real part of smallest 
root of the dispersion relation for different values of 
physical parameters and represented the stabilizing / 
destabilizing influence by plotting the graph in wave 
number against growth rate of disturbance keeping 
other parameters fixed. It is found that magnetic field 
shows stabilizing (Fig. 1) and porosity shows dest. (Fig. 
2) effects on the thermosolutal instability. 
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