
 

 

    3990 | International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014) 

 

Research Article 

International Journal of Current Engineering and Technology    
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161  

 ©2014 INPRESSCO
®

, All Rights Reserved 

Available at http://inpressco.com/category/ijcet  

Numerical Method for Optimum Performances of Fin Profiles 
 

Beghdadi Lotfi
Ȧ*

 and Belkacem Abdellah
Ȧ
 

 
ȦLaboratory of ENERGARID, Department of Mechanical Engineering, University of Bechar, Algeria 

 

Accepted 15 Nov 2014, Available online 01 Dec 2014, Vol.4, No.6 (Dec 2014) 

 

 

Abstract 

  

In the present work, we present a numerical method able to capture the optimum thermal performances of finned 

surfaces of high and low conductivity. The bidimensional temperature distribution on the longitudinal section of the fin is 

calculated by restoring to the finite volumes method.  The heat flux dissipated by a generic profile fin is compared with 

the heat flux removed by the rectangular profile fin with the same length and volume. In this study it is shown that a finite 

volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of 

conduction equation, in order to determine the sinusoidal parameter values which optimize the fin effectiveness. In this 

scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be 

converted into closed line integrals using same formulation of the ‘Stokes theorem’. The heat flux dissipated by generic 

profile fin is compared with the heat flux removed by rectangular profile with the same length and volume. The 

numerical method is then applied to the case of sinusoidal profiles fin that represent problems with complex geometries, 

which make the heat transfer fluxes as high as possible under different conditions. The optimum profile is finally shown 

for different sinusoidal profiles. 
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1. Introduction 

 
1
 In many engineering sectors, where high thermal fluxes 

must be transferred, the finned surface power removers are 

today an usual tool. Since finned surfaces allow evident 

improvements in heat transfer effectiveness, the heat 

exchangers field is one of the most interested in their 

applications. 

 Moreover new industrial sectors present an increasing 

interest in the introduction of extended surfaces for heat 

flux removal. In particular, the electronics industry has 

promoted a new interest in developing heat removers, 

aimed at transferring heat from electronic components to 

the environment, in order to reduce the working 

temperature and to improve the characteristics and the 

reliability (A.  Bar-Cohen and A. D. Kraus 1990, C. W. 

Leung, S. D. Probert 1989, A. D. Sinder and A. D. Kraus 

1987). 

 The optimization of heat remover longitudinal profile, 

in order to transfer the highest power with the smallest 

volume, is a problem that is not yet completely solved. 

Such a problem was talked for the first time in the 1920s 

(Y. Tsukaoto and Y. Seguchi). 

 The ratio of the actual heat transfer from the fin 

surface to that, that would transfer if the whole fin surface 

were at the same temperature as the base is commonly 

called as the fin efficiency. (D.R. Harper, W.B. Brown 

1922), in connection with air-cooled aircraft engines, 
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investigated straight fins of constant thickness, wedge-

shaped straight fins and annular fins of constant thickness; 

equations for the fin efficiency of each type were 

presented and the errors involved in certain of the 

assumptions were evaluated. 

 (E.Schmidt 1926) studied the three types of fins that 

are: rectangular, triangular and concave parabolic from the 

material economy point of view. He stated that the least 

metal is required for given conditions if the temperature 

gradient is linear, and showed how the thickness of each 

type of fin must be varied to produce this result. The 

temperature gradient in conical and cylindrical spines was 

determined by (Focke et al 1942). In this work, Focke, like 

Schmidt, showed how the spine thickness must be varied 

in order to keep the material requirement to a minimum; 

he, too, found that the result is impractical and went to 

determine the optimum cylindrical- and conical-spine 

dimensions. (Avrami Melvin, J.B. Little 1942) derived 

equations for the temperature gradient in thick-bar fins and 

showed under what conditions fins might act as insulators 

on the basic surface. Approximate equations were also 

given including, as a special case, that of (D.R. Harper, 

W.B. Brown 1922). (K.A. Gardner 1942) derived general 

equations for the temperature gradient and fin efficiency in 

any extended surface to which a set of idealized 

assumptions are applicable. 

 (W.H. Carrier, S.W. Anderson 1944) discussed straight 

fins of constant thickness, annular fins of constant 

thickness and annular fins of constant cross-sectional area, 

presenting equations for fin efficiency of each. In the latter 
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two cases the solutions were given in the form of infinite 

series. 

 A rather unusual application of Harper and Brown’s 

equation was made by (K.A. Gardner 1942), in 

considering the ligaments between holes in heat-exchanger 

tube sheets as fins and thereby estimating the temperature 

distribution in tube sheets. (Duffin, R. J. 1959) presented a 

variational problem relating to cooling fins where (Maday, 

C.J. 1974) studied the problems of have a minimum 

weight of straight fin. In this work, (P. Razelos, K. Imre 

1980) considered the linear variation of the thermal 

conductivity with temperature and assumed that the heat 

transfer coefficients vary according to a power law with 

distance from the bore. (Tsukamoto, Y., Seguchi, Y., 

1984) proposed shape optimization problem for minimum 

volume fin. A correlation for the optimal dimensions of a 

constant and variable profile fins was presented in terms of 

a reduced heat transfer rate. Assuming that the heat 

transfer coefficient is a power function of the temperature 

difference of a straight fin of a rectangular profile and that 

of the ambient, (H.C. Unal 1985) obtained a closed form 

solution for the one-dimensional temperature distribution 

for different values of the exponent in the power function. 

An exact solution for the rate of heat transfer from a 

rectangular fin governed by a power law-type temperature 

dependence heat transfer coefficient has been obtained by 

(A.K. Sen, S. Trinh 1986). (Snider, A.D., Kraus, A.D. 

1987) effectuated a quest for the optimum longitudinal fin 

profile.  

 The effect of fin parameters on the radiation and free 

convection heat transfer from a finned horizontal 

cylindrical heater has been studied experimentally by (R. 

Karaback 1992). The fins used were circular fins. The 

experimental setup was capable of analyzing the effect of 

fin diameter and spacing on heat transfer. A correlation 

equation for the tip temperature of uniform annular fins as 

a function of thermo geometric parameters and radii ratio 

has been obtained by (A. Campo, L. Harrison 1994). 

 In this study, Campo and Harrison considered constant 

heat transfer coefficient along the fin. The optimum 

dimensions of circular fins of trapezoidal profile with 

variable thermal conductivity and heat transfer coefficients 

have been obtained by P. Razelos, K. Imre. Performance 

and optimum dimensions of different cooling fins with a 

temperature dependent heat transfer coefficient have been 

presented by (K. Laor, H. Kalman 1996). In this work, 

Laor and Kalman considered the heat transfer coefficient 

as a power function of temperature and used exponent 

values in the power function that represent different heat 

transfer mechanisms such as free convection, fully 

developed boiling and radiation. The optimum dimensions 

of circular fins with variable profile and temperature 

dependent thermal conductivity have been obtained by 

(S.M. Zubair et al 1996). With the help of symbolic 

computational mathematics, (A. Campo, R.E. Stuffle 

1996) presented a simple and compact form correlation 

that facilitates a rapid determination of fin efficiency and 

tip temperature in terms of fin controlling parameters for 

annular fins of constant thickness. (Giampierto Fabbri 

1997) considered polynomial profile heat removers and he 

propose a genetic algorithm in order to determine the 

polynomial parameter values. Nevertheless, for many 

situations, an ultimate solution has not yet been found the 

problem of optimizing the profiles of the fins. 

 (Lien-Tsaiyu, Cha’o-Kuang Chen 1999) presented the 

transient temperature response of a convective–radiative 

rectangular profile annular fin under a step temperature 

change occurring in its base. They have assumed constant 

heat transfer coefficient along the fin and used a hybrid 

method of Taylor transformation and finite difference 

approximation. The temperature distribution was 

implemented by employing natural cubic spline fitting. 

(Esmail M. A. Mokeimer 2002) studied the performance 

of annular fins of different profiles subjects to locally 

variable heat transfer coefficient. (Florin Bobaru and 

Srinivas Rachakouda 2004) presented a numerical 

approach able to determine the dependence of optimal 

shapes profiles of thermal fins on the conductivity 

parameters. (R. Karvenin and T. Karvenin 2010) presented 

a method for finding the plate fin for maximizing total 

heat transfer when cooled by forced or natural convection. 

   In this work, we consider sinusoidal profile heat 

removers and we propose a numerical method in order to 

determine the temperature distribution that can find the 

optimum geometries for maximum heat transfer. 
 

2. Mathematical model and assumptions 
 

The mathematical analysis, in the above cited articles, for 

the heat transfer from fins, was based on some or all of the 

following assumptions: 

1. Steady heat flow. 

2. The fin material is homogeneous and isotropic. 

3. There are no heat sources in the fin itself. 

4. The heat flow to or from the fin surface at any point is 

directly proportional to the temperature difference 

between the surface at that point and the surrounding fluid. 

5. The thermal conductivity of the fin is constant. 

6. The heat transfer coefficient is the same over all the fin 

surface. 

7. The temperature of the surrounding fluid is constant. 

8. The temperature of the base of the fin is uniform. 

9. The fin thickness is so small compared to its length and 

width that temperature gradient normal to the surface may 

be neglected. 

 In the orthogonal coordinate system we will refer to a 

heat remover with longitudinal section symmetrical with 

respect to the x axis and with a rectangular profile, as 

shown in Fig. 1, then with the proposed model  that 

described by the sinusoidal function y(x), as shown in Fig. 

2. The fin width and length L, is immersed in a fluid with a 

constant bulk temperature   . Moreover, the fin base 

temperature    is known.  

 In order to calculate the heat flux removed by such a 

fin it is necessary to determine the temperature distribution 

in the longitudinal section (plane xy). This distribution 

must satisfy the Laplace’s equation: 
 

(
   

    
   

   )                                                                  (1) 

 

With the boundary conditions: 

 

 (   )                        (2) 
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  and    being the convective heat transfer coefficients for 

the longitudinal fin surface and for the final surface and 

for the final transversal one, respectively,   being the 

thermal conductivity of the fin. Due to the complexity of 

the problem it is convenient to determine the temperature 

distribution numerically using for example our method. 

 

 
Fig.1 Longitudinal section of a symmetrical profile for an 

rectangular profile 

 

3. Effectiveness of the fin   

 

The fin performance can be evaluated on the basis of the 

compared effectiveness, i.e. the ratio between the heat flux 

(  ) dissipated by the heat remover with a generic profile 

and the heat flux (  ) removed by a fin of the same 

volume and length and with rectangular profile: 

 

  
  

  
                                                                              (6) 

 

Let us then consider a rectangular fin of width 2 ,̅  ̅being 

the average value of f(x): 

 

 ̅  
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                                                               (7) 

 

The temperature distribution on the longitudinal section of 

such a fin must satisfy equation (1), the boundary 

conditions (2)-(4) and the following: 

 

*
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   ( )

  
  

 
  (   ( ))                                       (8) 

 
Since both longitudinal and final transversal surfaces are 

plane we can assume   equal to  . By integrating equation 

(1) with the above boundary conditions the following 

solutions is obtained (H. S. Carslaw and J. C. Jaeger 1947) 
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being    the solution of the equation: 
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                                                               (10) 

 

The heat flux dissipated for unit of length is then: 
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                (11) 

We can calculate the heat flux dissipated by the remover 

for unit of width in the following way: 

 

     (∑    (      )     (     ))                    (12) 

 

   being the thermal conductance between the fin base 

and the ith element, where it is zero for all the elements 

which are not adjacent to the  fin base. While     being 

the thermal conductance between the fin base and the 

coolant fluid. 

 

4. Numerical procedure 

 

We now propose the numerical method which is able to 

determine the values of the fin profile describing 

parameters which allow the highest compared 

effectiveness. We will consider heat removers for which 

the profile function  ( ) has a sinusoidal form and we 

have 2 cases: 

 

  ( )           (
   

  
)                                      (13) 

 

  ( )          (
   

  
)                                                (14) 

 

      being the amplitude and length of the sinusoid 

respectively.  

   At the beginning we have to fix the fin profile on one 

undulation to compare the performance of the two 

geometries and changing the amplitudes from 0.01to 0.035 

cm. in this way the fin profile which have best 

performance is then selected and reproduced in all the 

study. 
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Fig. 2 Longitudinal section of the two cases   ( ) and 

  ( ). 

     

The Laplace’s equation is integrated in space using a finite 

volume method that is developed for an unstructured grid 

made up of quadrilaterals (G.K. Despotis, and S. Tsangaris 

1995, G. K. Despotis, and S. Tsangaris 1996, S. Boivin, F. 

Cayré, and J. M. Hérard 2000, N. Piskounov 1987). 

 For the integration around finite volume, the 

derivations of the flow equation must be converted into 

closed line integrals using same formulation of the Stokes 

theorem, which is described by the following equation:  

 

∮  ⃗ 
 

 
    ⃗⃗⃗⃗  ∬   

 

 
 ⃗    ⃗                                                 (15) 

 

Where   ⃗⃗⃗⃗  is the elementary arc,    is the elemntary 

surface and is the normal vector to this surface. The 

computational domain is discretized on a quadrilateral 

unstructured grid where each node is the centre of 

polygonal cell constituted of four elements; all computed 

variables are stored at the centers of the polygonal as: 

 

Approximation of the first derives 

 

The convective terms are calculated at the node P (fig.2). 

The nodal finite volume descritization scheme is used for 

the discretization of the convective terms that appear in the 

governing equation. The first differences are calculated as: 
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Where   is the area of the polygonal control volume 

(1,2,3,…NE), T the temperature and x,yare the coordinate 

of the polygonal vertices, and I refers to the vertices 

number of external polygonal control volume. 

 

Approximation of the second derives 

 

This terms must be calculated at the node P and this 

achieved by computing the second order derivatives at the 

same point. The required second differences may be 

computed as: 
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   is the area of polygonal control volume (2,4,…NE) 

(fig.2) and I refer to the vertices number of internal 

polygonal control volume. Where, the first differences at 

the middle of the edge are defined as: 
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  is the area of the quadrilateral control volume 

((1),(2),(3),(4))(Fig.2.) and the four vertices of 

quadrilateral control volume. 

 

 

 
Fig. 3 The computational control volume structure 

 

5. Results   
 

In this study, the numerical method has been utilized in 

order to optimize the sinusoidal profiles, and we select two 

types of materials: for the thermal fin high conductivity 

materials (aluminum of 200/m.°k) and for the low 

conductivity (titanium of 20/m.°k). 

 

Examination of errors and accuracy 

 

The numerical errors are calculated to show how the errors 

are improved by refining meshes of (60,120,240 and 480 

nodes) and the order of accuracy is achieved. The 

maximum (    ) and root – min – square (RMS) errors 

were calculated to compare with the analytical solution of 

the rectangular fin for the aluminum metal. These errors 

are defined by: 
 

     |(                  |                                        (22) 

 

    √
∑ (                  

 
    )  

 
                                 (23) 

 

To examine the accuracy quantitatively, the maximum and 

RMS errors depending on grid sizes (nodal number) are 

presented in Fig 5. the results are obtained when the 
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thermal  conductivity diffusion is equal to 200 w/m °k and 

the coefficient of heat transfer  is equal to 100w/m² °k . 

Therefore, the error decreases at the same rate of root grid 

size. The solid lines in (fig.3.) shows how the root grid 

size decrease as the grid number increase (grid size 

decreases). The maximum and RMS errors decrease at the 

same rate this verifies that the order accuracy of the 

method is achieved. The numerical solution and the 

analytical solution for the aforesaid cases were almost 

typical. Such a comparison was a validation for our 

numerical method. 

 A FORTRAN program has been used to solve the heat 

transfer governing equations the rectangular fin profiles 

and show the local temperature along the fin surface. 

 The program is used to solve the equations of Stokes’s 

theorem for all cases under study to get the temperature 

distribution along the fin (Fig 4). 

 This temperature distribution is then used to calculate 

the local heat transfer rate along the fin.  

 

 
60 nodes 

 
120 nodes 

 
 

240 nodes 

 
 

480 nodes 

 

Fig. 4 Temperature distribution in different grid size 

 

 
 

Fig. 5 The maximum and RMS error according to the grid 

size 

 

The difference between the fin effectiveness that is 

obtained numerically via 480 nodes with respect that is 

obtained analytically was negligible. So, that nodes 

number has been adopted throughout the work. 

 

   
 

Fig. 6 The compare effectiveness 
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The compare effectiveness of the two cases that are given 

by the equations (13,14) , in fact, always grows with the 

number of undulation, but the oscillation that sublimate 

than down gives best performances than the opposite case 

Fig 6. 

 The proposed numerical method has been utilized in 

order to optimize the sinusoidal profiles of aluminum 

(k=200 w/m.°k) and the titanium (k=20 w/m.°k) fins with 

coefficient of heat transfer equal to 100 w/m².°k.  

   The method was utilized by choosing the number of 

undulation which describes the fin profile equal to a value 

from 1 to 3 undulations. We imposed the half-high of the 

reproduced fin samples and varying the amplitude from 

0.01 cm to 0.035 cm. 

 The temperature distributions of the sinusoidal profiles 

that gives best performance while   = 0.035 are reported 

in Fig 7. 

 

 Temperature Distribution 

 

1. Conductivity k=200 w/m.°k 

 

 

 

 

 

 

 
 

Fig. 7 Temperature distribution in different undulations  

with   = 0.035 cm   and  k =200 w/m.°k. 
 

2. Conductivity k=20 w/m.°k 
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Fig. 8 Temperature distribution in different undulations 

with   = 0.035 cm  and  k =200 w/m.°k. 

 

In order to better understand the compromise between the 

requirement of extending the heat transfer surface as much 

as possible and that of making the longitudinal thermal 

conduction easier. The heat flux on the longitudinal 

section of the fins with an optimum performance on the 

third undulation in sinusoidal profiles as shown in Fig 9 

and Fig 10.   

 

 
 

Fig. 9 The heat flux in different sinusoidal profiles with k 

=200 w/m.°k and h =100 w/m².°k 

 

 
 

Fig. 10 The heat flux in different sinusoidal profiles with k 

=20 w/m.°k   and h =100 w/m².°k 
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In Fig 9 and Fig 10 the highest values obtained for the 

compared heat dissipaters are shown vs the order of the 

sinusoidal profile both materials in different amplitudes. In 

both cases an increasing trend is evident.  

   Thermal cooling fins are normally made from high 

conductivity materials to increase their effectiveness, but 

in high temperature conditions, if cooling fins are 

required, a highly conductive material might not be usable 

due to low melting temperature point. The alternative is to 

use a material that has a high melting point and, in general, 

these materials have lower conductivity parameters. 

   The unit conductivity material presents a noticeable 

difference between the temperature at the base of the fin 

and the temperature at the tip of the fin.  
 

Conclusion 
 

The numerical method seems able to solve the problem of 

optimizing the longitudinal profile of fin, in order to 

improve its performances compared with those of a 

rectangular longitudinal section fin. 

The optimization examples shown in the article 

demonstrate that it is possible to noticeably increase the 

compared heat dissipaters of fin by introducing 

undulations in its profile. 

 A more correct solution for the problem of optimizing 

heat removers will be obtained with our numerical method 

proposed under different conditions from the deformation 

of the geometries and by varying the conductivity 

parameters. So, it will be interesting to take the changes in 

the type of materials that which represents the thermal 

conductivity by the variation of the profile into account. In 

the case of the third order of sinusoidal profile, for 

example, a very narrow channel is created in the base of 

the fin. 

 And for the efficiency of the method of the 

discretization error can be reduced by way of the mesh 

grid is refined and the order of convergence is defined by 

the mesh refinement that these errors may improve. 

In the numerical method optimization examples presented 

we did not consider undulation number of fin profiles 

greater than the third, that it is not yet too difficult to build 

for the producer. 

 Finally, it must be noticed that in the numerical 

solution for the optimum performance of fin profile 

examples presented a constant temperature has been 

assigned to the base of the fin for each value of y 

coordinate. In practical applications the base temperature 

of the fin cannot always assumed to be constant. In many 

problems, in fact, the entity assigned is the heat flux, 

which is to be removed from a wall surface with the help 

of fins. In such a condition, if the fins are thin and largely 

spaced, noticeable temperature variations occur on the 

surface to be cooled and, in particular, at the fin base. 

Neglecting this variation can result in errors of more than 

20% in calculating the heat flux removed by the fin (E. M. 

Sparrow and L. Lee 1975, N. V. Suryanarayana 1977). In 

order to obtain a more correct solution for the optimizing 

the profile of fins under the above quoted conditions, it is 

then convenient to utilize our numerical method proposed 

which reproduced also portion of the wall with heat 

assigned to the side opposite to the fins.  
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