

 3934 | International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014)

Research Article

International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161

 ©2014 INPRESSCO
®

, All Rights Reserved

Available at http://inpressco.com/category/ijcet

Generating and Analyzing Test cases from Software Requirements using NLP

and Hadoop

Priyanka Kulkarni
Ȧ*

 and Yashada Joglekar
Ȧ

ȦDepartment of Information Technology, Dwarkadas J Sanghvi College of Engineering, Vile Parle(W), Mumbai, India

Accepted 10 Nov 2014, Available online 01 Dec 2014, Vol.4, No.6 (Dec 2014)

Abstract

Software testing is the most critical step of software development since it ensures that the system under developments free

of errors and unprecedented faults and matches the expectation and requirements elicited from users and stakeholders.

However, the process of testing is currently a manual process and is thus prone to mistakes by human testers and time-

consuming and arduous. This paper proposes the automation of the task of generating test cases from software

requirements written in natural language. This solves the problems of human errors and requirement of manual effort in

ensuring coverage of requirements specified during requirements elicitation. It also enables test cases to be generated

early on in the software development lifecycle based on requirements documents. The method we propose involves

taking software requirements expressed in natural language as input and processing them using natural language

processing techniques such as POS tagging and parsing. These NLP constructs are used to represent the requirements in

the form of tree structures, which are used to generate knowledge graphs that depict the essential flow of the system.

These paths can be traversed using methods such as boundary value analysis, etc. to obtain a suite of test cases.

Keywords: Natural Language Processing, Knowledge representation, Hadoop, Software testing, Software engineering,

Test cases.

1. Introduction

1
 Testing is a salient step of software development, which is
crucial to ensuring the programmed unit works under
normal circumstances and to weed out faults prior to
deployment. It is the cornerstone of verifying and
validating that the expectations and requirements of the
users and stakeholders have been met in the system under
development. The costs associated with testing involve
cost of creating, designing, maintaining and executing and
documenting test cases. Minimizing these costs is an
important goal for developers. 40% - 70% of the total
effort expended is consumed by test case generation.
Furthermore, if corrections are needed, the cost incurred
increases further (B. Beizer, 1990). Traditional methods of
test case generation have moved from manual to
automated versions utilizing several models such as
sequence diagrams, use case diagrams, activity diagrams,
etc. However, these diagrams do not comprehensively and
explicitly express all the requirements and also require
manual effort themselves. Moreover, they may not best
express the vital non-functional requirements of
stakeholders. The software requirements specification is
the best source for understanding stakeholders'
expectations and generating the tests corresponding to the
same. However, 79% of level of terminology used in
requirements documents is common natural language (L.

*Corresponding author: Priyanka Kulkarni

Mich, M. Franch and P. Novi Inverardi, 2003). So there is
a need to transform these requirements into computer-
readable format in order to automate the process generate
test cases. Natural language processing techniques enable
us to morph sentences expressed in natural language into
statements that can be understood syntactically and
semantically and processed accordingly by a machine.
 The system proposed for automating the generation of
test cases from software requirements specification using
natural language processing outlines the basic process to
obtain the test cases, but it is apt for simple or basic
requirements (Ravi Prakash Verma, Dr. (Prof.) Md.
Rizwan Beg, 2013). The system falters when the
requirements become larger and more complex since the
knowledge graphs grow into a convoluted network and
require too much space and is not efficient enough for
testing large systems. It also leads to more computation
time and wastage of resources as the complexity grows.
We propose an extended approach in this appear which
expands on a system proposed to generate test cases from
software requirements by augmenting that method with the
utilization of Hadoop for storing the knowledge graphs
generated and querying the same for subsequent analysis
(Lam, Chuck, 2010).

2. Existing Systems

Currently varied approaches are used to generate test

cases. Model-based testing (MBT) produces models of a

system under test in order to derive test cases. This test

Priyanka Kulkarni et al Generating and Analyzing Test cases from Software Requirements Using NLP and Hadoop

3935 | International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014)

model depicts the expected behavior or functional aspect

of the system. The model is usually manually designed

from formal specifications or semiformal design

descriptions. The generation of test cases can be from an

environmental or behavioral model. This method involves

generating abstract tests from the model, concretizing

them for execution, executing the tests on the system

under test and analyzing the results. However, Model-

based testing is insufficient as a solution if used in

isolation (Annamariale Chandran, 2011). UML diagrams

are commonly used in Model-based testing. A popular

approach involves a UML sequence diagram describing

the interaction of the components of the system. The

sequence diagram forms the basis of the construction of a

sequence dependency table, which is further transformed

into a graph called the sequence diagram graph. This

graph is then traversed using Depth-First Search to derive

the test paths (S. Shanmuga Priya, P. D. Sheba Kezia

Malarchelvi, 2013).

 Other approaches utilize use case diagram, class

diagram and sequence diagram in conjunction with

constrained language expressions that describe use case

templates to generate a sequence diagram graph.

 The input and expected output of various scenarios are

determined by using the information stored in the nodes of

the graph and the OCL expressions to generate the test

cases (Vinaya Sawant, Ketan Shah, 2011). Activity

diagrams can also similarly be used for test case

generation. They can also be used for gray-box testing to

generate test cases from high-level design models and

considering path coverage criteria such as basic path (W.

Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong,

and Z. Guoliang, 2004), and simple path (C. Mingsong, Q.

Xiaokang, and L. Xuandong, 2006). Other proposed

solutions are based on a criterion called activity path

coverage criterion, which also ensures minimal loop

testing and uncovers synchronization faults (Debasish

Kundu and Debasis Samanta, 2009).

Limitations in the existing systems

• Need of skilled model designers for the creation of the
abstract and design models
• The gray-box testing method does not handle fork-join
efficiently and this limits the scope of the technique.
• Dependency on manual creation of UML diagrams such
as sequence diagrams.
• Incorrect test cases may be generated if outdated
requirements lead to building of the wrong model.
• Test case generation from UML diagrams is time
consuming and fails to capture non-functional
requirements.
• The process of generating the sequence diagrams,
sequence tables and sequence graphs is lengthy and slow.
• There is no mechanism to map the test cases to the
requirements and verify their correctness which may lead
to unprecedented faults and increased costs incurred for
correction and rework.

3. Proposed Method

The sequence of steps in the proposed solution is depicted

in Figure 1.

Fig. 1 Proposed Architecture

To illustrate the process, the following statement is

selected as a requirement for an ATM system and taken

under consideration:

The balance in the account is insufficient if the balance is

less than the amount to withdraw.

3.1. Preprocessing

In order to process the requirements, we need to convert

the natural language sentences into appropriate forms.

This includes normalization of the text by removing

unwanted words, performing stemming etc. If a statement

has unnecessary or irrelevant words such as articles, then

they are removed, otherwise the POS tagger will treat

them as words in the corpus that need to be determined.

Considering the example given, the requirement can be

rephrased and preprocessed to obtain the following:

Balance is insufficient if balance < withdrawal-amount.

3.2. POS Tagging

In this step, each word in a sentence is assigned a part-of-

speech tag, indicating whether it is a noun, verb or

adjective etc. By assigning unique tags to each word such

as 'VBZ' for verbs, 'NN' for nouns and 'CD' for cardinal

numbers, we can categorize the words in the sentence into

meaningful groups. These tags are useful in subsequent

word sense disambiguation and parsing. POS tagging

helps to resolve lexical ambiguity so that each word is

correctly assigned its correct semantic connotation.

POS-tagging the requirement stated above results in:

Balance -> NN, is -> VBZ, insufficient -> JJ, if -> IN, etc.

Priyanka Kulkarni et al Generating and Analyzing Test cases from Software Requirements Using NLP and Hadoop

3936 | International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014)

3.3. Parsing

 In this step, a sentence is given as input to a natural

language parser, which determines the labeled syntactic

tree structure that corresponds to the interpretation of the

sentence. This step results in a tree structure representing

the hierarchy and order of the parsed words. The parse tree

obtained for the given example is shown in Figure 2. The

steps of pre-processing, POS tagging and parsing can be

performed using tools such as Apache OpenNLP based on

the maximum entropy framework (A. Ratna Parkhi, 1998)

or Stanford's CoreNLP.

Fig. 2 Balance is insufficient if [balance < amount]

3.4. Knowledge Representation

 Knowledge is represented from requirements expressed in

natural languages using graph-based approach in which

the nodes represent nouns and verbs and interjections

represent the transactions. The transactions are labeled

with conditions from subordinate clauses. The preposition

tags and verb will decide the direction of transition. The

graph is constructed according to a set of stipulated rules

to govern how the nodes are interconnected and the type

of transitions between them.

Fig. 3Knowledge graph generated

3.5. Merging graphs

The sub graphs obtained in the previous step are merged to

obtain a single master knowledge graph encompassing

each node. The final graph is constructed by merging

graphs whose start and end nodes are same and including

the intermediate nodes. The transitions labels are

concatenated and remaining redundant nodes are

eliminated. The final merged graph is stored and

subsequently used for traversal to generate the test cases.

This merged graph is useful in checking for incorrect or

inconsistent requirements. If the requirements are missing

or inconsistent, the graph generated will also be

incomplete or incorrect, providing a mechanism to detect

such flaws in the early stages of the software development

lifecycle.

3.6. Storing and Processing Knowledge Graphs using

Hadoop

 As the software requirements specified become

increasingly more complex and interconnected in large

systems, the knowledge graphs developed will be

convoluted networks of linked data (Jiewen Huang, Daniel

J. Abadi, Kun Ren, 2011). As graph data is proliferating, it

has tremendous value if analyzed and processed properly

leading to tools such as Hadoop becoming increasingly

popular.

 Hadoop has emerged as the de facto standard for data

processing on a large scale. We can improve the efficacy

of this automation process by using Hadoop to store the

knowledge graphs generated. Since the graphs for large,

complex systems can be very convoluted with millions of

nodes and edges, traversal of all edges in the graphs and

subsequent generation of the test cases can be

cumbersome and time-consuming. The power of Hadoop

is its rapid processing power at low cost.

 By using Hadoop to store the graphs, we can speed up

the test case generation process by exploiting its ability to

efficiently process large data sets in a distributed

environment. This will significantly reduce the time

required to generate the test cases, thereby improving the

efficiency of this method. Hadoop can further be used at a

later stage to compute graph derivations, statistics and data

mappings when we want to filter out subsets of specific-

scenario test cases for analysis and processing. In order to

extract specific test case information from the graphs, we

can utilize query languages such as SPARQL to query the

linked data. This is akin to sub graph pattern matching

which allows you to retrieve specific data from nodes and

relationships among them using queries. Another

advantage is working with MapReduce jobs for sub graph

pattern matching, which performs better than a naive

Hadoop solution and achieves higher scalability than other

parallelization models. MapReduce query languages like

Hive and Pig can be used to query the graphs and help to

optimize the computation time for analysis (R.J. Stewart,

P.W. Trinder, and H-W. Loidl, 2011). Furthermore, graph

query languages like Gremlin empower analysis of graphs,

which help in better understanding the test cases and

correlation between the nodes of the graphs.

3.7. Test Case Generation

We use boundary value analysis for the automatic

generation of test data. The headword is identified, the

path the headword is traversed and visited nodes are

saved. A table is formulated based on nodes and whether

conditions are satisfied or not. Expected result based on

conditions is then added to the table. The final table

obtained represents the expected result for each path

traversal depending on the input values and conditions.

Priyanka Kulkarni et al Generating and Analyzing Test cases from Software Requirements Using NLP and Hadoop

3937 | International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014)

Following table depicts the test case generated for the

above said example.

Table 1Sample Test Case Generated

B B<amount IB Expected Output

 0 1 1 IB

1000 0 0 !(IB)

4. Advantages of Proposed System

Implementation of this system to automate generation of

test cases is beneficial in the following ways:

1. Automation leads to fast, precise and comprehensive

generation of test cases.

2. Time expended in testing is reduced as compared to

manual testing.

3. Incorporating Hadoop enables you to perform

computations efficiently on not just elementary

requirements, but larger and more complex requirements.

4. It ensures that the program paths are exercised

adequately without manual checking of path selection

criteria.

5. It provides a mechanism to detect incomplete or

inconsistent requirements early on in the software

development lifecycle.

6. It minimizes cost of correction of the requirements that

is incurred since the discrepancies are identified and

resolved in the initial stages of software development.

Conclusion

The proposed system will be effective for automating the

generation of test cases as well as for studying and

analyzing the correctness and completeness of

requirements. Inconsistent, incomplete or ambiguous

requirements can be detected through this method since

the knowledge graphs will reflect the same incongruity.

Using Hadoop to store the knowledge graphs will enable

this method to be effective even as scalability of the

system under test increases, since it can handle and

process complex requirements efficiently and minimize

computation time. Further analysis of the knowledge

graphs and test cases is possible using graph query

languages.

References

Ravi Prakash Verma, Dr. (Prof.) Md. Rizwan Beg (2013),

Generation of Test Cases from Software Requirements Using

Natural Language Processing, 6th International Conference on

Emerging Trends in Engineering and Technology.

Lam, Chuck (July 28, 2010). Hadoop in Action (1st ed.).

Manning Publications.p. 325.ISBN1-935182-19-6.

Ratna Parkhi, A. (1998), Maximum Entropy Models for Natural

Language Ambiguity Resolution.Ph.D. thesis, University of

Pennsylvania.

Jiewen Huang, Daniel J. Abadi, Kun Ren (2011), Scalable

SPARQL Querying of Large RDF Graphs.

R.J. Stewart, P.W. Trinder, and H-W. Loidl (2011), Comparing

High Level MapReduce Query Languages, Mathematical And

Computer Sciences Heriot Watt University.

Debasish Kundu and Debasis Samanta (2009), Novel Approach

to Generate Test Cases from UML Activity Diagrams, ETH

Zurich, Chair of Software Engineering, Indian Institute of

Technology, Kharagpur.

B. Beizer (1990), Software Testing Techniques, Van Nostrand

Reinhold, Inc, New York NY, 2nd edition. ISBN 0-442-

20672-0.

Mich, L., Franch, M. and Novi Inverardi, P. (2003),

Requirements Analysis using Linguistic Tools: Results of an

On-line Survey, Requirements Engineering Journal, Technical

Report 66, Department of Computer and Management

Sciences, University of Trento, Italy.

Annamariale Chandran (2011), Model Based Testing -

Executable State Diagrams, AVACorp Technology, Step-

Auto.

S. Shanmuga Priya, P. D. Sheba Kezia Malarchelvi (2013), Test

Path Generation Using Uml Sequence Diagram, International

Journal of Advanced Research in Computer Science and

Software Engineering.

Vinaya Sawant, Ketan Shah (2011), Automatic Generation of

Test Cases from UML Models, International Conference on

Technology Systems and Management (ICTSM).

W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, and

Z. Guoliang (2004), Generating test cases from UML activity

diagram based on gray-box method, 11th Asia-Pacific

Software Engineering Conference (APSEC04), pp. 284-29.

C. Mingsong, Q. Xiaokang, and L. Xuandong (2006), Automatic

test case generation for UML activity diagrams, International

workshop on Automation of software test, pp. 2-8.

