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Abstract 

 

Stochastic Banking models (S.B.Ms) occupy an important place in modern research, dealing with cash flow analysis of a 

Banking System.   Knowledge about the reserve level of a Banking system, play a vital role in many Fiscal policies of any 

economy.   To have prospective and fruitful economic plans, one must have a prior knowledge about the cash reserve 

level available with the nation, without which the plans will be vague and ineffective.   Hence in 1983 (Sarma, 1983)  

proposed a stochastic banking model (S.B.M) with a critical reserve level (C ≥ 0) and obtain many results relating to the 

reserve level X(t) available with the system at any given time t ≥ 0, (vide Ref .2).   Later in 1991, (Sarma and 

Pushpangali ,1991) Proposed a S.B.M.with general linear rate of inputs and obtained explicit expressions of 

M/G/1/FIFO/K and G/M/1/FIFO/K S.B.Ms.  Further in 1995,(Sarma and Sarma, 1995) obtained results of S.B.Ms where 

withdrawals or inter – withdrawals are assume to follow an Erlangian distribution.   The application of this distribution 

to S.B.M.has more practical relevance because the service of a customer in a Bank consists of different phases like 

issuing of tokens, passing of the amount, making suitable entries and so on. 

 Thus more and more practically relevant assumptions were brought in to the model, so that the S.B.M. suggested in 

1983 is more and more closer to the reality.   

 In this paper a practically valid and more essential assumption namely (1) Lower Truncation Of Inter – Withdrawal 

Times  And (2) Upper Truncation Of Amounts Of Withdrawals, is incorporated into the Stochastic Banking Model in 

order to make the model more closer to reality and to increase the application potentiality of the model.   In General a 

customer is not allowed to withdraw or take loan against the amount deposited by him in the form of fixed deposits, until 

a minimum pre - stipulated time is over.   Further, he cannot withdraw the entire amount deposited by him as Loan.   

Only a certain percentage of amounts are sanctioned to the customer which is generally known as eligible amount for the 

loan and he is eligible to withdraw the amount as loan up to an maximum of that eligible amount   An analytic solution of 

a MT/M
a
/1/FIFO/∞ Stochastic Banking Model (S.B.M) is obtained, Where MT represents a lower truncated Law 

governing the random variable of inter – withdrawal times and  M
a
 represents a upper truncated Law governing the 

random variable of amount of withdrawals. 

 

Keywords: Lower Truncated Variable, Upper Truncated Variable, Reserve level of a Bank, Stochastic Banking Models, 

Critical reserve level. 

 

 

1.  Introduction 

 
1
 Application of Stochastic storage models in banking 

system was first studied in 1983 by 

(Sarma.K.L.A.P.,1983). He introduced a random variable 

X(t) which represents the reserve level available with the 

system at time t.   X(t) is assumed to be a stochastic 

variable because it is mainly depending upon two other 

independent random variables namely 

(1) The Inter – Withdrawal times denoted by ‘u’ and (2) 

The amount of withdrawals denoted by ‘v’.   Let h(u) 

represents the p.d.f. of the random variable ‘u’ and g(v) 

represents the p.d.f.of the random variable ‘v’ .   

                                                           
*Corresponding author Dr. G.S.Devasena is working as Associate 

Professor of Statistics 

Knowledge about the reserve level available with the 

system at any given time play a vital role in fiscal policies. 

Stochastic banking models attract more and more 

researches to obtain solutions to many problems relating to 

banking system.  Thus Sarma proposed a S.B.M. with the 

following assumptions. 

1.  Input fed into the system is assumed to increase 

linearly at a unit rate. 

2.  Inter – Withdrawal times (u) are assumed to follow an 

independent r.v. which is governed by a known    

probability law, whose p.d.f. is denoted by h(u). 

3. Random withdrawal depletes the reserve level x (t) 

instantaneously. 

4. Amount of withdrawals (v) are also assumed to follow 

an independent random variable which is governed by a 

known probability law whose p.d.f. is denoted by g (v). 
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With the above assumptions Sarma obtained many results 

relating to the reserve level X(t) vide references (Sarma, 

1983) and (Sarma and Venugopal,1981).   A typical 

realization of the model with the above assumptions is 

given in Fig (1.1). Further (Sarma and Pushpanjali, 1991) 

obtained results for S.B.Ms by assuming a generalized 

linear rate of cash flow into the system.   When the inter – 

withdrawal times follow an Erlangian distribution, the 

results relating to a banking model were obtained by 

(Sarma and Sarma, 1995).The concept of truncation 

applied in reliability and life testing problems can be used 

in S.B.Ms to know the reserve level X (t). In this paper a 

S.B.M. is considered, where inter – withdrawal times are 

assumed to follow a lower – truncated random variable 

truncated at time T because in order to draw a loan against 

deposits made by the customer, he has to wait a minimum 

pre – stipulated time T and amount of withdrawals are 

assumed to follow a upper – truncated random variable 

truncated at a point ‘a’ because in order to draw a loan 

against deposits made by the customer, he is eligible to 

draw up to a certain  percentage of the amount deposited 

by him.    The amount ‘a’ is usually known as loan 

eligibility amount.   A customer can withdraw any amount 

less than or equal to ‘a’.   In  this paper an analytic 

solution is obtained for MT/M
a
/1/FIFO/∞ model.                     

 

 
 

2. Formulation of the model 

 

The S.B.M. considered in this paper is based on the four 

assumptions explained from A1 to A4 in section 1.   To 

bring the model more closer to reality two more practically 

valid assumptions is incorporated into the model namely. 

5. Inter – withdrawal times are assumed to follow a lower 

– truncated random variable because in order to draw a 

loan against deposits made by the customer, he has  to  

wait a minimum pre – stipulated time T. 

6. Amount of withdrawals times are assumed to follow a 

upper – truncated random  variable because in order to 

draw a loan against deposits made by the customer, he is 

eligible to draw up to a certain percentage of the amount 

deposited by him. 

Under the assumption  (5), the p.d.f. of the random 

variable (u) and under the assumption (6) the p.d.f. of the 

random variable (v) for  MT /M
a
/1/FIFO/∞ is assumed 

as : 

T

u

T
e
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In order to obtain solution for the reserve level X(t),  we 

introduce two conditional p.d. functions namely M(x,y,t) 

and V(x,y,t) which are defined as follows. 
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and 

  
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                     (2.4)  

Above two conditional p.d.fs govern the reserve level at 

time t, the reserve level being never zero in [0,t] 

conditioned upon the initial reserve level y is known after 

a withdrawal is made at 0-.   The basic difference between 

the M(x,y,t) and V(x,y,t) is that in the latter one an extra 

intermediary condition that time t is also an epoch of 

withdrawal is assumed i.e. at time t there should be 

withdrawal.   In order to obtain solutions for M(x,y,t) and 

V(x,y,t) by using embedded regenerative process 

technique and using addition and multiplication theorems 

of probability we have the following two integral 

equations viz ;   
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                      (2.6) 

Where U(.) represents Heavy side unit step function and 

δ(.) is Dirac – delta function.    

       The reserve level x > 0 at t is the result of the two 

mutually exclusive and completely exhaustive cases 

namely (i) that there is no withdrawal during [0,t] and (ii) 

there is atleast one withdrawal in [0,t]. By applying 

addition and multiplication theorems of probability and the 

concept of regenerative process we obtain (2.5) and (2.6).   

Since the epoch of t is a point of withdrawal, h(t) in the 

first term on the R.H.S. of (2.6) appeared instead of an 

integral in the corresponding place of (2.5).   Integral 

equations given in (2.5) and (2.6) are useful to provide 

solutions for M(x,y,t) and V(x,y,t) introduced in (2.3) and 

(2.4) respectively.   These integral equations are formed 

using the regenerative process {X(ti +)}imbedded in the 

general process {X(t)}where ti ‘s are the epochs of 

withdrawals. The process X(ti +) is a regenerative in the 

sense that conditioned upon the knowledge   that X(ti +) = 

y is known after a withdrawal is made and the process 

starts afresh from every such ti. 

 

3. Results and Discussions 

 

Now we proceed to obtain solutions for M(x,y,t) and 

V(x,y,t) by using the integral equations introduced in (2.5) 

and (2.6) for MT/M
a
/1/FIFO/∞ model.   Defining the 

double Laplace transforms F*(s,p) of F(y,t) w.r.t.y and t as  

 
 


0 0

),(),(* dttyFedyepsF ptsy ,     (3.1)              

Re s, Re p>0                       
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First we proceed to obtain analytic solution for M(x,y,t) in 

the following two theorems. 

  Theorem 3.1: The double Laplace transforms of 

M*(x,s,p) of M(x,y,t) for MT /M
a
/1/FIFO/∞ model is         

  given by   

 

M*(x,s,p) =  
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Proof:   Using M(x,y,t) given in (2.5) in the place of F(y,t) 

in equation (3.1),substituting   equation (2.1) for hT(u) and 

equation (2.2) for ga(v) the p.d.f.s of inter withdrawal 

times and  truncated amount of withdrawals,    

            

 M*(x,s,p)=A+B                          (3.3) 

 

Where  
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                 (3.5) 

 After some simplifications by considering two cases for 

t<T and t>T we have  
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Similarly by substituting equations (2.1) and (2.2) in 

equation (3.5) and after some simplifications 

                    We have  
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                                             (3.7) 

Adding equations (3.6) and (3.7) and after some 

simplications we obtain equation (3.2). 

 Theorem 3.2:   The time dependent solution of 

M(x,y,t) is well determined in terms of   M*(x,s,p) using 

equation (3.2). 

 Proof: We first observe the R.H.S of equation (3.2) 

which involves one unknown constant namely 

M*(x,λ+p,p) obtaining which M*(x,s,p) is completely 

determined.   Further we notice that M*(x,s,p) is analytic 

in s in the right half plane i.e. s > 0 we then observe that 

the denominator in equation (3.2)  

i.e.  
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is a quadratic in s and has two roots of which one root is 

with positive real part.   Let this real part be denoted by δ.   

Since M*(x,s,p) is analytic in s for Re.s > 0 the numerator 

of equation (3.2) also should vanish at this δ.   Thus we 

obtain a non – homogenous linear equation involving 

M*(x,λ+p,p), solving which the unknown constant can be 

determined and hence M*(x,s,p) is completely known.   

Inverting M*(x,s,p) with respect to s and p successively 

M(x,y,t) is completely determined.  

 Now we proceed to obtain time dependent solution for 

V(x,y,t) in the following in the following two theorems.  

Theorem 3.3: The double Laplace transforms of V*(x,s,p) 

of V(x,y,t) for MT/M
a
/1/FIFO/∞ model is given by  

V*(x,s,p)   =       
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Proof: Using V(x,y,t) given in equation (2.6)  in the place 

of F(y,t) in equation (3.1) substituting equation (2.1) for 

hT(u) and equation (2.2) for ga(v) the p.d.f.s of inter 

withdrawal times and  truncated amount of withdrawals, 

using       ( )
t

T

e
h t

e
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                      (3.9)                        

       

we have 
 

V*(x,s,p)=C+D                       (3.10)                                                                                                                             
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After some simplifications of equation (3.11) we have  
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Similarly after some simplifications of equation (3.12)   

We have  
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Adding equations (3.13) and (3.14) and after some 

simplifications we obtain equation (3.8). 

 

Hence the proof.  

 

Theorem 3.2:   The time dependent solution of V(x,y,t) is 

well determined in terms of   

 

V*(x,s,p) using equation (3.8). 

 

 Proof: We first observe the R.H.S of equation (3.8) which 

involves one unknown constant namely V*(x,λ+p,p) 

obtaining which V*(x,s,p) is completely determined.   

Further we notice that V*(x,s,p) is analytic in s in the right 

half plane i.e. s > 0 we then observe that the denominator 

in equation(3.8) 

 

i.e.  
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is a quadratic in s and has two roots of which one root is 

with positive real part.   Let this real part be denoted by δ.   

Since V*(x,s,p) is analytic in s for Re.s > 0 the numerator 

of equation (3.8) also should vanish at this δ.   Thus we 

obtain a non – homogenous linear equation involving 

V*(x,λ+p,p), solving which the unknown constant can be 

determined and hence V*(x,s,p) is completely known.   

Inverting V*(x,s,p) with respect to s and p successively 

V(x,y,t) is completely determined.  

Hence the proof.   

     It is important to note that the basic difference between 

M(x,y,t) and V(x,y,t) is that in the latter one, t is the epoch 

of withdrawal and hence the difference came in A and C 

terms given in equations (3.6) and (3.13).   Further an 

extra constant λ which is the average of the law governing 

inter-withdrawal times came as a multiplicative constant in 

V*(x,s,p) when compared with M*(x,s,p) which is natural 

because it is a point of withdrawal in V(x,y,t).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus in this paper we obtained analytic solutions of 

M(x,y,t) and V(x,y,t) for  MT/M
a
/1/FIFO/∞ model.   In 

these results, if we substitute T = 0 and a = ∞ (i.e. if there 

is no lower truncation of inter-withdrawal times and upper 

truncation of amount of withdrawals)  we obtain the 

results obtained by (Sarma, 1983). 

 Thus in this paper an attempt is made to bring the 

S.B.M. introduced by (Sarma, 1983)  closer to the reality 

by introducing lower truncated inter- withdrawal times and 

upper – truncated amount of withdrawals obtained analytic 

solution of M(x,y,t) and V(x,y,t) for MT/M
a
/1/FIFO/∞ 

model.   Some more practically valid assumptions like  

 1.The capacity of the reserve level can be  considered as 

finite i.e.k<∞. 

 2. Explicit results for M(x,y,t),V(x,y,t) introduced in this 

Paper  (MT/M
a
/1/FIFO/∞, MT /M

a
/1/FIFO/k models). 
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