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Abstract 

 
In this paper, the half width of the chaotic separatrix has been estimated by Chirikov’s  criterion. Through surface of 
section method, it has been observed that the aerodynamic torque parameter and the mass distribution parameter play 

an important role in changing the regular motion into chaotic one.  
   
Keywords: Chaos, Poincare section, Solar System, Aerodynamic Torque  

 
 
1. Introduction 

 

  Astronomers
1
 have uncovered certain kinds of 

instabilities that occur throughout the solar system, in the 
motions of Saturn's moon Hyperion, in gaps in the asteroid 
belt between Mars and Jupiter and in the orbits of the 
system's planets themselves.  Inarrea, M. and Lanchares, 
V. (2000)

 
described the chaotic behavior of a dual – spin 

spacecraft with time – dependent moments of inertia in 
free motion. Ciraolo and Pettini (2002)

 
discussed the 

quantitative description of Hamiltonian chaos, based on 
Riemannian geometry of Newtonian dynamics. Dvorak, 
Rudolf (2003)

 
showed that the chaotic motion has been 

found in the motion of the planets and appears to be 

present on even a larger level in extra-solar planetary 
system. Winter,  and  Murray, D. (1997) reviewed 
analytical models for studying the dynamical behavior of 
objects near interior, mean motion resonances in the 
context of the planar, circular, restricted three-body 
problem. Bachelard and Chandre (2006)

 
discussed a 

method to reduce or enhance chaos in Hamiltonian flows 
with two degrees of freedom. In this paper, it has been 
discussed that the aerodynamic torque plays a significant 
role in changing the motion of revolution into liberation or 
infinite period separatrix. 

2. Equation of Motion 

 
Let us consider a rigid satellite S moving around the earth 

E in a Circular orbit such that the orbital plane coincides 
with the equatorial plane of the earth (Fig 1).  The body is 
assumed to be tri-axial body with principal moments of 
inertia A < B < C at its centre of mass. Here C is the 
moment of inertia about the spin axis which is 
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perpendicular to the orbital plane. These principal axes are 
taken as our co-ordinate axes x, y, z; the z axis being 

perpendicular to the orbital plane. Let r be the 
instantaneous radius vector of the centre of mass of the 
satellite, θ the angle that the long axis of the satellite 
makes within a fixed line EF lying in the orbital plane and   
δ/2 the angle between the radius r and the long axis.  

 
Fig. 1  Satellite planar oscillation in circular orbit 

The equation of motion for the non-linear motion of a 
satellite under the influence of aerodynamic torque in a 
circular orbit is obtained as 
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3. Estimation of Resonance Width 
 

Taking  2 2
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n w
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   2( )     and using Fourier 

like Poisson-Series, Equation (1) represents the equation 

of motion of disturbed pendulum given by 
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For the unperturbed part of Equation (2)  
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where 1pc  is constant of integration. 

 

The motion to be real if 2
1 12 0p pc k  . There are three 

Categories of motion depending upon 
2 2

1 1 1 12 , 2p p p pc k c k   and 2
1 12p pc k  

 

3.1 CATEGORY-I:   2
1 12p pc k  

 
In case of perturbed pendulum by making use of the 
theory of variation of parameters Brown and Shook 

(1964)
[2]

, since 2
1,p pm k  are small quantities, so rejecting 

second or higher order terms 1
0

pdc

dt
  so, 1pc  is a constant 

up to second order of approximation and 
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where 2 pc  is constant of integration and  
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Again it gives three types of motion, Type I is that in 

which pdx

dt
 is never zero, Type II is that in which pdx

dt
=0, 

at 0 or ,  

 

For Type-I, the solution is  
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revolution. 

 

For the Type II, the solution is  
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constants. This is the case of libration. 
 

TYPE  III, occurs when  
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The solution is 1
2 04tan exp( )p px k t    , where 0  is an 

arbitrary constant and the other having a particular value. 

When , ,pt x    at both places, 0
pdx

dt

 
  
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 and all 

higher derivatives of px approach to zero. This is the case 

of infinite period separatrix which is asymptotic forward 
and backward in time to the unstable equilibrium. 
 

3.2 CATEGORY-II: 2
1 12p pc k  

 

In case of perturbed equation again, using the theory of 

variation of parameters, we get 
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which is again the equation of pendulum. As in previous 
case this equation gives us revolution, libration and 
infinite period separatrix motion. On the other hand, if 

1
n  

is odd. 
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When pl  is small, the solution of above equation is given 

by 3 3p pk t k t
pl e e


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3.2 CATEGORY-III: 2
1 12p pc k . 

 
The unperturbed solution is 

11
04tan pk t

px e    ,  

where 0  is an arbitrary constant and the other having a 

specific value. This is the case of infinite period separatrix 
which is asymptotic forward and backward in time to the 
unstable equilibrium. Near the infinite period separatrix 
broadened by the high frequency term into narrow chaotic 
band (Chirikov (1979)

[4]
), for small n, the half width of the 

chaotic separatrix is given by  
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where 1  is the ratio of the coefficient of the nearest 

perturbing high–frequency term to the coefficient of the 

perturbed term, and λ= 



 is the ratio of the frequency 

difference between the resonant term and the nearest non 
resonant term    to the frequency of small–amplitude 

liberations ( ). 

 

4. The Spin Orbit Phase Space 

 

It is known that most of the Hamiltonian systems give 
regular and irregular trajectories. Henon and Heiles (1964)

 
 

have shown that the phase space is divided into two 
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regions in which trajectories behave chaotically or quasi-
periodically. In this paper, the spin orbit problem is 2π-
periodic in dimensionless time and surface of section have 
been drawn by looking at the trajectories stroboscopically 

with period 2π. The section has been drawn with dq/dv 
versus  ν at every periapse passage. Since the orientation 
denoted by q is equivalent to the orientation denoted by π 
+ q, therefore, the interval restricted from θ to π. It may be 
observed that the chaotic separatrix surrounds each of the 
resonance states and each of these chaotic zones is 

separated from others by non-resonant quasi-periodic 
rotation trajectories. 

    All the possibilities are shown from Figure 2 to Figure 5 

for various values of ε, n, b and d. Figure 2 is plotted for 

different values of n when ε, b and d are fixed. Figure 3 is 

drawn for different values of ε when n, b and d are fixed. 

Figure 4 is drawn for different values of b for fixed values 

of ε, n and d. Figure 5 is drawn for different values of d for 

fixed values of ε, n and b. It has been observed that as ε 

and n changes, the regular curves disintegrate and this 

disintegration increases with the increase in aerodynamic 

torque parameter ε and n. 
 

 

 
Fig. 2  ε = 0.000001, b=0.9, d=0.4, n=0.2, 0.7 

 
Fig. 3 ε = 0.0000001, ε = 0.00001, b = 0.5, d = 0.7, n = 0.5 

 

 
Fig. 4 ε = 0.001, b = 0.2, b=0.9, d = 0.5, n = 0.3 
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Fig. 5 ε = 0.0001, b = 0.3, d=0.3, d = 0.8, n = 0.6 

5. Conclusion 

 

It has been observed that the aerodynamic torque plays a 

very significant role in changing the motion of revolution 

into libration or infinite period separatrix. The half width 

of the chaotic seperatrices estimated by the Chrikov's 

criterion is not affected by the aerodynamic torque. In the 

spin–orbit phase space the regular curves start 

disintegrating due to aerodynamic torque and the irregular 

mass distribution of the satellite and this disintegration 

increases with the increase in ε and n. 
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