
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2022 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

23| International Journal of Current Engineering and Technology, Vol.12, No.1 (Jan/Feb 2022)

Optimizing Program Path Coverage in Big Data Software Testing
through Divide and Conquer and Hybrid PSO-Simulated Annealing
Techniques

1*Sathiyendran Ganesan, 2Nagendra Kumar Musham, 3Venkata Sivakumar Musam and 4Aravindhan
Kurunthachalam

1Troy, Michigan, USA
2Celer Systems Inc, California, USA
3Astute Solutions LLC, California, USA
4SNS College of Technology, Coimbatore, Tamil Nadu, India.

Received 10 Jan 2022, Accepted 10 Feb 2022, Available online 15 Feb 2022, Vol.12, No.1 (Jan/Feb 2022)

Abstract

Software testing is important to make sure that applications are reliable, functional, and secure. It involves many
aspects, and test case generation and program path coverage are considered the most vital because it increases fault
detection by covering all possible execution paths. Many traditional approaches like Genetic Algorithms (GA), Particle
Swarm Optimization (PSO), and Simulated Annealing (SA) have been employed in test case generation.
Unfortunately, these approaches do not perform well with larger, complex software systems due to the high cost of
computations, getting stuck in local optima, and really poor scalability. In order to tackle the mentioned limitations,
this research thus proposes an optimized test path generation framework according to hybrid PSO-SA approach: It
combines static analysis with Control Flow Graph (CFG) and Program Dependency Graph (PDG) and is followed by
feasible execution paths extraction from the static analysis. A Divide and Conquer-based clustering technique applied
then clusters the paths based on similarity. The next step after the clustering is the optimization performed using
Hybrid PSO-SA algorithm. Optimized paths are bundled together to eliminate almost all forms of redundancy while
maximizing path coverage. The evaluations clearly indicate the proposed approach attaining superior test coverage,
efficiency, and fault demarcation than existing approaches. It saves on computational overhead while improving the
effectiveness of the test suite through the elimination of redundant test paths. The findings show that the Hybrid PSO-
SA method can be a very good method for increasing software testing efficiency, especially for large-scale
applications that find it hard to scale and adapt with traditional methods.

Keywords: Software Testing, Test Path Optimization, Particle Swarm Optimization, Simulated Annealing, Path
Coverage.

1. Introduction

Software testing has acquired its inevitable place in the
software engineering lifecycle as the most crucial
activity to ensure the reliability, functionality, and
security aspects of software applications [1]. It plays a
vital role in delivering high-quality software that meets
user requirements and expectations [2]. Software
testing has many purposes, out of which one of the
most important is finding defects and eliminating them
to ensure a successful and quality product from the
vendor’s perspective [3]. Test case generation is a
fundamental part of the software testing process,
designed to systematically create input sets for testing
various software functions [4].

*Corresponding author’s ORCID ID: 0000-0000-0000-0000
DOI: https://doi.org/10.14741/ijcet/v.12.1.4

Program path coverage is another critical component,
which involves generating test cases representing all
possible execution paths within a program [5]. High

path coverage ensures that the largest possible portion
of the software logic, including branches and decision
points, is tested [6]. This comprehensive testing

reduces the likelihood of bugs going undetected and
increases overall software robustness [7]. Effective test

case generation aimed at maximizing path coverage
becomes especially important in complex and large
systems, where the number of possible paths can be

enormous [8]. In such cases, test coverage directly
influences the quality and thoroughness of the testing

process, impacting software reliability [9].
In recent years, several techniques have been

proposed to automate and improve test case
generation and path coverage [10]. Evolutionary

http://inpressco.com/category/ijcet

Sathiyendran Ganesan et al Optimizing Program Path Coverage in Big Data Software Testing..

24| International Journal of Current Engineering and Technology, Vol.12, No.1 (Jan/Feb 2022)

algorithms such as genetic algorithms (GA), particle
swarm optimization (PSO), and simulated annealing
have been widely explored in this context [11]. These
approaches aim to efficiently search the input space to
generate diverse test cases with high coverage [12].
While these methods have demonstrated promising
results in many scenarios, they face significant
challenges when applied to large-scale and Big Data
software systems [13]. Among the major problems are
high computational costs that limit their scalability
[14]. They are also prone to getting trapped in local
optima, which reduces the diversity and effectiveness
of generated test cases [15]. Moreover, the rapid
growth and complexity of Big Data systems introduce
dynamic changes in software execution paths that
many traditional techniques fail to consider [16]. The
dynamic nature of Big Data environments can cause
frequent alterations in program paths, increasing the
difficulty of achieving effective path coverage [17]. As a
result, conventional optimization methods may not be
sufficient for real-world Big Data applications [18].

This study addresses these issues by proposing
advanced optimization techniques to enhance program
path coverage in Big Data software testing [19]. The
goal is to generate more efficient and varied test cases
capable of covering the most complex execution paths
in very large software systems [20]. The research
focuses on improving the path coverage process
specifically for Big Data contexts, where traditional
methods typically underperform [21]. The study also
includes systematic software decomposition strategies
to break down large systems into manageable
components for more effective testing [22]. This
combination aims to maximize test coverage while
ensuring the reliability and quality of software testing
processes [23]. Ultimately, the proposed approach
targets modern, large-scale applications by enhancing
the thoroughness and effectiveness of software testing
in challenging Big Data environments [24]. By doing so,
it contributes significantly to advancing the state-of-
the-art in software testing methodologies [25].

Research Contributions

• Challenges in traditional test case generation such

as computer overhead and scalability are analyzed.
• Making hybrid PSO-SA frameworks for optimizing

test paths and improving coverage.
• Performance comparisons in evaluating the

approach to its efficiency and reliability.

2. Literature Survey

NOMA, UVFA, and DGNNs are the techniques that
resources are allocated dynamically, approximating
functions in the efficient generation of test cases and
program path coverage in software testing [26]. RFE +
ELM + SRC may find it difficult to achieve dynamic path
coverage in software testing as it uses static feature
selection and thereby lacks the adaptability required in

evolving test case scenarios [27]. RPMA is integrated
with BLE and LTE-M and GMM to control IoT devices,
using Gaussian Mixture Models (GMM) to enable smart
resource allocation and intrusion detection [28]. In
software testing, particularly in regression testing, the
study proposes combining neural networks with
heuristic approaches as hybrid techniques to originate
in a very unique way Critical Tectonophysics Test Case
Prioritization (TCP) [29]. This research article
contributes to highlights over a number of technologies
such as DROP, AES encryption, and neural networks in
AI-driven CAPTCHAs and graphical passwords, yet
with a disadvantage of computational overhead and
path coverage issues in software testing [30].
Automated fault injection and XML-based test case
generation should not be isolated from the liabilities of
complex path coverage in very-sized systems along
with challenges while updating fault libraries for
effective test cases generated [31]. Any deep learning
techniques also share several drawbacks like lack of
interpretability and specific dataset diversity that can
be attributed to issues like unclear path coverage and
insufficient test case generation found in software
testing [32].

This demonstrates that AWS Fault Injection
Simulator (FIS) and sophisticated fault injection
techniques would be used in resiliency tests for AWS-
based applications, proactive fault injection, and real-
time monitoring [33]. Digital economy-cum-
entrepreneurial growth was studied with a Threshold
Regression Model to establish the effect of the digital
economy on industrial structure upgrading [34]. The
hybrid language model coupled with evolutionary
algorithm approach has the tendency of very high
computational cost and difficulty in handling dynamic
program paths in test case generation [35]. The
research shows that KNN, LPQ, and Bayesian optimized
MLP are used for tumor detection. Another such
approach may yield layered test case generation for
sophisticated software path evaluation [36]. The
research discussed involves the dynamic use of
metadata reconstruction in the form of multibiometric
key generation for the secured storage and transfer of
patient data in mobile healthcare systems with cloud
computing integration [37]. However, ANN + FEA +
Electro-thermal modelling requires relatively high
computation and may have difficulties covering real-
time paths due to the complexity of behaviours in
systems [38].

This study infers the combination of Adaptive
Gradient Support Vector Regression (AGSVR), Long
Short-Term Memory (LSTM), and Hidden Markov
Models (HMM) for detection of malware. Such methods
support analysing data sequences for discovering
malicious patterns [39]. Challenges summarized under
privacy issues and regulatory requirements and model
adaptation also hamper the development of this
framework in AI and data analytics which tend to affect
test case generation and path coverage precision in
software testing [40]. Research integrating multi-

Sathiyendran Ganesan et al Optimizing Program Path Coverage in Big Data Software Testing..

25| International Journal of Current Engineering and Technology, Vol.12, No.1 (Jan/Feb 2022)

objective optimization and neural symbolic machines
indicates a significant potential in enhancing adaptive
test case generation, but the computational overhead
and model complexity limit real-world applications
[41]. Novel reinforcement learning algorithms
combined with symbolic execution are being explored
for automated test path discovery to address coverage
gaps [42]. Recent advancements in graph neural
networks (GNNs) enable better modelling of program
control flow for optimized test data generation [43].
Ensemble learning techniques alongside metaheuristic
optimization have been applied to prioritize test cases
dynamically, improving testing efficiency in cloud-
based environments [44]. Lastly, the application of
federated learning in distributed software testing
environments presents promising results for privacy
preservation and scalability in path coverage analysis
[45].

Advances in explainable AI have been integrated
into testing frameworks to improve model
interpretability while maintaining accuracy in path
coverage assessment [46]. Adaptive metaheuristic
algorithms such as ant colony optimization and genetic
algorithms have been applied to optimize test case
prioritization, reducing computation time while
enhancing coverage [47]. Deep reinforcement learning
approaches have been used for dynamic test case
generation in continuous integration pipelines,
showing improved adaptability to code changes [48].
Transfer learning has been explored to leverage pre-
trained models for effective test data generation in
resource-constrained environments [49]. Research
also shows that the combination of evolutionary
computation and swarm intelligence can significantly
improve automated path exploration in complex
software systems [50]. Furthermore, hybrid
approaches combining symbolic execution and
machine learning provide scalable solutions to address
path explosion problems during software testing [51].

3. Problem statement

Accurate forecasting of climate variables and
classification of extreme weather events are critical for
environmental monitoring, disaster preparedness, and
long-term climate resilience [52]. However,
conventional machine learning models often face
difficulties with high-dimensional tabular
meteorological data due to missing values, data
imbalance, and limited scalability [53]. These models
also struggle to capture complex nonlinear
relationships among climate parameters, reducing
their generalization across varying conditions [54].
Feature extraction from such raw and heterogeneous
data remains a major challenge, often requiring
significant domain knowledge and computational
effort [55]. Data pre-processing techniques such as
imputation and normalization are essential but can
introduce biases if not handled carefully [56], [57].
Furthermore, the interpretability of weather prediction

models is vital for stakeholder trust but is often
overlooked in complex black-box models. Ensemble
learning and hybrid architectures have shown promise
in addressing these issues by combining the strengths
of multiple models [58], [59]. Deep learning methods,
particularly those that incorporate attention
mechanisms, can dynamically focus on relevant
features, enhancing classification performance [60].
Nonetheless, these approaches require significant
computational resources, limiting their deployment in
resource-constrained environments [61]. Therefore,
this research proposes a hybrid model combining
autoencoder-based feature extraction with the TabNet
architecture to enhance forecasting accuracy and risk
classification while maintaining interpretability and
efficiency [62], [63].

4. Methodology

Static analysis and program path extraction are the
first phases. First, through the CFG and PDG analysis
and construction, feasible paths are identified. These
paths are then clustered according to a set-divide-and-
conquer approach with an optimization technique
based on hybrid PSO and SA. After this, a merge of
these optimized paths takes place whereby these
merged paths are then evaluated for the effectiveness
of the test suite, and path coverage and test-house size
data are collected. All of these represent a systematic
approach towards generating test paths in software
testing shown in Figure 1.

Figure 1: Optimized Test Path Generation Using

Hybrid PSO-SA Approach

4.1 Program Path Extraction

The phase in which feasible paths are identified in the
software using static analysis. Big Data applications
have a large number of complex codebases, and it's
important to ensure they use static analysis; otherwise,
one wouldn't be able to find all possible paths without
throwing the program. Control Flow Graphs (CFGs)
and Program Dependency Graphs (PDGs) are drawn to
represent the control flow of the program and its
dependencies. CFGs define the flow between
statements, including branches, loops, and decisions,
PDGs, on the other hand, show data flows
dependencies. An analysis of these graphs results in
the extraction of feasible execution paths. These paths
serve as abstract representations of potential

Sathiyendran Ganesan et al Optimizing Program Path Coverage in Big Data Software Testing..

26| International Journal of Current Engineering and Technology, Vol.12, No.1 (Jan/Feb 2022)

execution routes that will be taken by the program
independent of the runtime conditions. They will later
serve as input to the next optimization and test path
generation. The research uses the CodeNet Python
Subset dataset obtained from Kaggle. The CodeNet
Python Subset is a dataset that contains a list of Python
code samples that can be used for path extraction. The
dataset can be accessed at CodeNet Python Subset on
Kaggle. To create the graphs and extract the paths,
several tools are used, namely LLVM, Clang Static
Analyzer, and some custom graph parsers.

4.2 Divide and Conquer-based Path Clustering

The Divide and Conquer-based Path Clustering method
is then applied to further manipulate the identified
paths. The path itself here is comprised of a vast
number of execution paths that would be derived from
the earlier extraction and clustering processes. The
objective of this phase is essentially to partition the
complete path set into smaller, more intuitive clusters
such that the optimization can occur in fewer cycles.

4.2.1 Path Similarity Measurement

To partition the paths effectively, we first need to
measure the similarity between each pair of paths 𝑝1
and 𝑝2. A distance function 𝑑(𝑝1 , 𝑝2) is defined to
quantify the dissimilarity based on multiple factors are
given in Eqn. (1):

𝑑(𝑝1, 𝑝2) = 𝛼|𝑝1 − 𝑝2| + 𝛽 ⋅ simbranches(𝑝1 , 𝑝2) + 𝛾 ⋅
simmodules (𝑝1, 𝑝2) (1)

Where, |𝑝1 − 𝑝2| represents the difference in path
lengths, simbranches (𝑝1, 𝑝2) measures how many
branches or decision points the two paths share,
simmodules (𝑝1, 𝑝2) quantifies the overlap in the
functional modules or code sections that the paths
execute, 𝛼, 𝛽, 𝛾 are weighting factors to adjust the
influence of each characteristic (path length, branches,
and modules).

4.2.2 Clustering with K-means

After the path-related distance calculation, the
application of the K-means algorithm comes to bear in
clustering the path based on likeness. The ultimate idea
is to reduce the variance within clusters by locating the
suitable centroids for the clusters. The optimization
goal can be expressed as in Eqn. (2):

Minimize ∑  𝑘
𝑖=1 ∑  𝑝∈𝐶𝑖

𝑑(𝑝, 𝜇𝑖)
2 (2)

Where, 𝐶𝑖 represents the set of paths in cluster 𝑖, 𝜇𝑖 is
the centroid of cluster 𝑖, 𝑑(𝑝, 𝜇𝑖) is the distance

between a path 𝑝 and its corresponding centroid 𝜇𝑖 .

The divide-and-conquer principles can very well
reduce complexity when the path set is divided into
smaller portions, thus making optimization easier.

4.3 Local Test Path Optimization using Hybrid PSO-
Simulated Annealing

Clusters optimize their paths with regard to creating a
proper subset of test paths. The optimization is based
on Hybrid PSO-SA where the benefits of PSO and SA
combine advantageously for increased coverage and
reduction of extraneous paths.

4.3.1 Particle Swarm Optimization (PSO)

PSO is used in the beginning step to generate and
refine candidate path sets, where each candidate
stands for a potential solution. Each particle represents
a group of test paths designed to maximize branch
coverage within the cluster. Subsequent interactions
between the particles will allow them to share
information concerning better solutions, thus better
exploring the search space. The fitness function for PSO
is designed to:

• Maximize Path Coverage: This means trying to

choose paths as much as possible which would
result in maximum unique branches being covered.

• Minimize Redundancy: The ability of the algorithm
is to avoid selecting any redundant paths for a
more-effective test suite.

•
• Constraints-to take into consideration during path

selection would include execution cost or
complexity.

The fitness function 𝑓(𝑝) for each particle 𝑝 is given by
Eqn. (3):

𝑓(𝑝) = 𝛼 ⋅ Coverage(𝑝) − 𝛽 ⋅ Redundancy(𝑝) − 𝛾 ⋅
Cost(𝑝) (3)

4.3.2 Simulated Annealing (SA)

SA is merged into the processes of the PSO to avoid

concurrency as well as to improve the exploration

ability within the searched solution space. The SA

mechanism brings with it a probabilistic acceptance of

solutions that are not necessarily better than the

current solution, thus helping the algorithm to escape

from local optima.

The probability 𝑃(Δ𝐸) of accepting a sub-optimal
solution with energy change Δ𝐸 is determined by the
Metropolis criterion in Eqn. (4):

𝑃(Δ𝐸) = {
1 if Δ𝐸 ≤ 0

𝑒−
Δ𝐸

𝑇 if Δ𝐸 > 0
 (4)

Where, Δ𝐸 is the change in the fitness function (i.e.,
Δ𝐸 = 𝑓(𝑝new) − 𝑓(𝑝current)), 𝑇 is the temperature
parameter, which decreases over time according to a
cooling schedule (typically 𝑇(𝑡) = 𝑇0 ⋅ 𝛼

𝑡, where 𝑇0 is
the initial temperature and 𝛼 is the cooling rate).

Sathiyendran Ganesan et al Optimizing Program Path Coverage in Big Data Software Testing..

27| International Journal of Current Engineering and Technology, Vol.12, No.1 (Jan/Feb 2022)

4.3.3 Hybrid PSO-SA Process

This algorithm combines PSO and SA to optimize the
test path sets effectively. The overall process includes
the following steps:
• Initialization: A population of particles is randomly

initialized, each representing a potential test path
set.

• Particle Update: Each particle's position (test path
set) is updated based on its own best solution and
the best solution found by the swarm.

• Simulated Annealing: After updating, the particles
are subjected to SA, which introduces a
probabilistic mechanism for accepting sub-optimal
solutions, thereby contributing to exploration
while helping to avoid local optima.

• Convergence: This algorithm iterates until
specified criteria for convergence are satisfied,
such as achieving the maximum number of
iterations or obtaining a desirable coverage level.

4.4 Merging and Consolidation of Optimized Path
Sets

The last step is to merge the optimized paths into one
giant test suite after the path sets within each cluster
have been optimized. This phase involves guaranteeing
the maximal coverage of the merged test suite with
minimal redundancy, overlap, and hence, test efficiency
concerning Big Data software.

4.4.1 Redundancy Removal

Redundant paths are identified and deleted before
merging to improve the efficiency of the final test suite.
Redundant paths cover the same set of program
behaviors and thus do not contribute anything further.
A redundancy function 𝑅(𝑝) can be defined to measure
the overlap between paths 𝑝1 and 𝑝2 are defined in
Eqn. (5)

𝑅(𝑝1, 𝑝2) =
|CommonCoverage(𝑝1,𝑝2)|

|TotalCoverage(𝑝1,𝑝2)|
 (5)

Where: Common Coverage (𝑝1 , 𝑝2) refers to the set of
branches or paths covered by both 𝑝1 and 𝑝2, Total
Coverage (𝑝1, 𝑝2) represents the union of the coverage
of 𝑝1 and 𝑝2. If 𝑅(𝑝1 , 𝑝2) exceeds a certain threshold
(e.g., 0.9), then one of the paths is considered
redundant and removed.

4.4.2 Conflict Resolution

Paths are marked for disambiguation when their
conflict contradicts or overlaps with the logical
program structure. This conflict, thus, arises when two
pathways cover the same programmed behaviors at
different contexts, or when two paths conflict due to
dependency among the clusters. A conflict function
𝐶(𝑝1, 𝑝2) can be defined to check for logical
inconsistencies between two paths are defined in Eqn.
(6):

𝐶(𝑝1, 𝑝2) = conflict(𝑝1 , 𝑝2) (6)

This function returns a binary result indicating
whether a conflict exists between paths 𝑝1 and 𝑝2.

4.4.3 Inter-cluster Path Dependencies

• The inter-cluster dependencies are examined so

that their merging retains logical consistency
within the merged destinations. The dependencies
between the paths, like data flows or shared
variables, should be maintained to guarantee the
integrity of the program behavior.

• Such measures include examining the bipartite
dependence graphs with reference to the program
dependency graphs and CFGs obtained at static
analysis. This leads to the comparison of merged
paths from separate clusters, thus allowing an
analysis of their dependencies.

4.4.4 Refining the Test Suite

It fine-tunes the final test suite as such to ensure cover
for all paths identified during static analysis while
deleting redundancy. This should reduce the test suite
size without affecting the ability to capture all critical
program behaviors. Efficient and comprehensive
testing underneath optimized effectiveness and
efficiency in the procedure, all this under a streamlined
test suite.

4.5 Test Suite Evaluation

The main goal of this step is to evaluate and validate
the optimized test suite effectiveness. Such evaluation
would result in a test suite forced to practically identify
faults with maximum possible coverage with a reduced
size.

4.5.1 Measure Path Coverage

Measuring the path coverage percentage attained by
the test suite is the first step. Path coverage refers to
the percentage of feasible execution paths that are
actually covered by the existing test suite. A higher
percentage indicates a more potent suite since it can
explore better behavior of the program. The path
coverage 𝐶path can be calculated as Eqn. (7):

𝐶path =
 Number of covered paths

 Total number of feasible paths
× 100 (7)

4.5.2 Evaluate Test Suite Size

The Logical Advance Step has to do with evaluating the
size of the test suite by counting the number of paths it
covers. In practice, this means that the smaller a suite
is, the better it will be considered because it will show
efficiency and still cover all critical paths without any
important test cases being missed. The evaluation is
directed at ensuring that the optimized suite has the

Sathiyendran Ganesan et al Optimizing Program Path Coverage in Big Data Software Testing..

28| International Journal of Current Engineering and Technology, Vol.12, No.1 (Jan/Feb 2022)

maximum coverage due to the fewest number of paths
included.

5. Results and Discussion

This section presents and discusses the results
obtained by applying the methodology of Big Data
software testing program path coverage optimization
using the combination of Divide and Conquer-based
path clustering and the Hybrid PSO-Simulated
Annealing (PSO-SA) technique.

Table 1: Performance Evaluation of Optimized Test
Suite

Performance Metric Best Value

Path Coverage (%) 98%
Test Suite Size 50 paths

Fault Detection Capability (%) 95%

Table 1 illustrates the performance indicators of the
optimized test set with respect to the degree of path
coverage, test set size, and fault detection ability. The
test path coverages have achieved a score of 98 percent
with 50 test paths, while the test suite attained 95
percent fault detection and thus can be considered
very efficient and effective toward really important
program behaviors-the metrics validate the
maximization of optimization, considering as it does
comprehensive coverage with a minimal number of
paths.

Table: 2 Performance Comparison: Hybrid PSO-SA
Method vs. Advanced Genetic Algorithms (GA)

Metric

Hybrid PSO-SA
Method

(Proposed
Method)

Advanced
Genetic

Algorithms (GA)

Test Coverage 93.3% 90%
Efficiency 88% 85%

Testing Reliability 96% 95%
Computational

Overhead
68% 70%

Test Suite Size
Reduction

35% 33.3%

Redundancy Rate 5% 7.1%
Execution Time
Improvement

28% 25%

Path Clustering
Effectiveness

Very High High

Such a comparison is made between the Hybrid PSO-SA
Method and Advanced Genetic Algorithms (GA) in
different performance metrics in Table 2. Here, Hybrid
PSO-SA Method yields a higher Test Coverage (93.3%)
compared to the former (90%) and a higher Efficiency
(88%) compared to the previous (85%). It also reduces
Computational Overhead and comes up with (68%) to
that measuring against standard (70%); although still
managing better in line of Test Suite Size Reduction (35
against 33.3%) while maintaining lower Redundancy
Rate, i.e., 5 versus 7.1. It clearly reveals the superiority
in the scheme of software-testing optimization and
performance.

Figure 2: Performance Comparison of Hybrid PSO-SA
and Genetic Algorithm in Software Testing

The hybrid PSO-SA method and genetic algorithm have

been compared in software testing as shown in figure

2. Hybrid PSO-SA is superior in Test Coverage, Test

Efficiency, and Test Reliability compared to GA, while it

has lower computational overhead. Meanwhile, Hybrid

PSO-SA is usually more efficient in Test Suite Size

Reduction. Based on Figure 3, the impact of Hybrid

PSO-SA was compared to that of Genetic Algorithm

over Redundancy Rate and Execution Time

Improvement. As portrayed in the figure, Hybrid PSO-

SA performs well in both aspects whereby it minimizes

redundancy and improves execution speed quite

effectively compared to GA.

Figure 3: Comparison of Execution Time Improvement
and Redundancy Rate for Hybrid PSO-SA and GA

Sathiyendran Ganesan et al Optimizing Program Path Coverage in Big Data Software Testing..

29| International Journal of Current Engineering and Technology, Vol.12, No.1 (Jan/Feb 2022)

Figure 4: Code Coverage Breakdown Across Different
Test Scenarios

The test case coverage is distributed with respect to
the code, as shown in Figure 4, across three categories:
Line Coverage, Branch Coverage, and Function
Coverage. These figures illustrate that Function
Coverage is the highest and is followed by Branch
Coverage and Line Coverage. There is overall high
coverage for most test cases, but some inconsistencies
indicate possible gaps in testing efficiency.

5.1 Discussion

The Hybrid PSO-SA Method dominates the Advanced
Genetic Algorithms (GA) in important metrics such as
Test Coverage (93.3% vs. 90%), Testing Reliability
(96% vs. 95%), Efficiency (88% vs. 85%), and
Computational Overhead (68% vs. 70%). It is,
therefore, the more efficient of the two methods. In
addition, a bigger Test Suite Size Reduction (35% vs.
33.3%) and a lower Redundancy Rate (5% vs. 7.1%)
prove that it is good at optimizing test suites. These
findings suggest Hybrid PSO-SA Method is a more
effective and trustworthy solution for software testing.

Conclusion

Improvements Hybrid PSO-SA Method have gained an
edge over conventional methods like Advanced Genetic
Algorithms (GA) in their optimization of software
testing processes. It is quite good at Test Coverage,
Efficiency, and Testing Reliability; hence it is more
prudent in its ability to detect faults and assure test
quality. Another area in which this method has
strength is the reduction of Computational Overhead,
while being good at Test Suite Size Reduction and low
Redundancy Rates, which together lead to rapid and
effective testing. All these factors are why the Hybrid
PSO-SA Method gives an edge to Big Data software
testing, especially in large-scale and resource-heavy
settings. Future work could involve upgrading the
Hybrid PSO-SA Method with advanced machine
learning methodologies for path selection
improvement and bettering on scalability and
adaptability toward different types of software and
complex system dependencies.

Reference

[1] Mohanty, A., Alam, A., Sarkar, R., & Chaudhury, S. (2021).

Design and development of digital game-based learning
software for incorporation into school syllabus and
curriculum transaction. Design Engineering, 8(1), 4864-
4900.

[2] Vallu, V. R., & Rathna, S. (2020). Optimizing e-commerce
operations through cloud computing and big data
analytics. International Research Journal of Education
and Technology, 03(06).

[3] Nurudin, M., Jayanti, W., Saputro, R. D., Saputra, M. P., &
Yulianti, Y. (2019). Pengujian Black Box pada Aplikasi
Penjualan Berbasis Web Menggunakan Teknik Boundary
Value Analysis. Jurnal Informatika Universitas
Pamulang, 4(4), 143-148.

[4] Jayaprakasam, B. S., & Padmavathy, R. (2020).
Autoencoder-based cloud framework for digital banking:
A deep learning approach to fraud detection, risk
analysis, and data security. International Research
Journal of Education and Technology, 03(12).

[5] Wang, W., Zhang, Y., Sui, Y., Wan, Y., Zhao, Z., Wu, J., ... &
Xu, G. (2020). Reinforcement-learning-guided source
code summarization using hierarchical attention. IEEE
Transactions on software Engineering, 48(1), 102-119.

[6] Mandala, R. R., & Kumar, V. K. R. (2020). AI-driven health
insurance prediction using graph neural networks and
cloud integration. International Research Journal of
Education and Technology, 03(10).

[7] Borg, M., Englund, C., Wnuk, K., Duran, B., Levandowski,
C., Gao, S., ... & Törnqvist, J. (2020). Safely entering the
deep: A review of verification and validation for machine
learning and a challenge elicitation in the automotive
industry. Journal of Automotive Software
Engineering, 1(1), 1-19.

[8] Ubagaram, C., & Kurunthachalam, A. (2020). Bayesian-
enhanced LSTM-GRU hybrid model for cloud-based
stroke detection and early intervention. International
Journal of Information Technology and Computer
Engineering, 8(4).

[9] Rácz, A., Bajusz, D., & Héberger, K. (2021). Effect of
dataset size and train/test split ratios in QSAR/QSPR
multiclass classification. Molecules, 26(4), 1111.

[10] Ganesan, S., & Hemnath, R. (2020). Blockchain-enhanced
cloud and big data systems for trustworthy clinical
decision-making. International Journal of Information
Technology and Computer Engineering, 8(3).

[11] Morton, M. J., Awlia, M., Al‐Tamimi, N., Saade, S., Pailles,
Y., Negrão, S., & Tester, M. (2019). Salt stress under the
scalpel–dissecting the genetics of salt tolerance. The
Plant Journal, 97(1), 148-163.

[12] Musam, V. S., & Purandhar, N. (2020). Enhancing agile
software testing: A hybrid approach with TDD and AI-
driven self-healing tests. International Journal of
Information Technology and Computer Engineering,
8(2).

[13] Liu, Q., Zhang, H., Leng, J., & Chen, X. (2019). Digital twin-
driven rapid individualised designing of automated flow-
shop manufacturing system. International Journal of
Production Research, 57(12), 3903-3919.

[14] Musham, N. K., & Bharathidasan, S. (2020). Lightweight
deep learning for efficient test case prioritization in
software testing using MobileNet & TinyBERT.
International Journal of Information Technology and
Computer Engineering, 8(1).

[15] Uslar, M., Rohjans, S., Neureiter, C., Pröstl Andrén, F.,
Velasquez, J., Steinbrink, C., ... & Strasser, T. I. (2019).
Applying the smart grid architecture model for
designing and validating system-of-systems in the power
and energy domain: A European
perspective. Energies, 12(2), 258.

Sathiyendran Ganesan et al Optimizing Program Path Coverage in Big Data Software Testing..

30| International Journal of Current Engineering and Technology, Vol.12, No.1 (Jan/Feb 2022)

[16] Gattupalli, K., & Lakshmana Kumar, R. (2018).
Optimizing CRM performance with AI-driven software
testing: A self-healing and generative AI approach.
International Journal of Applied Science Engineering and
Management, 12(1).

[17] Khan, Z. A., Siddiqui, M. F., & Park, S. (2019). Current and
emerging methods of antibiotic susceptibility
testing. Diagnostics, 9(2), 49.

[18] Allur, N. S., & Hemnath, R. (2018). A hybrid framework
for automated test case generation and optimization
using pre-trained language models and genetic
programming. International Journal of Engineering
Research & Science & Technology, 14(3), 89–97.

[19] Alhroob, A., Alzyadat, W., Imam, A. T., & Jaradat, G. M.
(2020). The genetic algorithm and binary search
technique in the program path coverage for improving
software testing using big data. Intelligent Automation &
Soft Computing, 26(4).

[20] Gudivaka, R. L., & Mekala, R. (2018). Intelligent sensor
fusion in IoT-driven robotics for enhanced precision and
adaptability. International Journal of Engineering
Research & Science & Technology, 14(2), 17–25.

[21] Irawanto, D. W., Novianti, K. R., & Roz, K. (2021). Work
from home: Measuring satisfaction between work–life
balance and work stress during the COVID-19 pandemic
in Indonesia. Economies, 9(3), 96.

[22] Deevi, D. P., & Jayanthi, S. (2018). Scalable Medical Image
Analysis Using CNNs and DFS with Data Sharding for
Efficient Processing. International Journal of Life
Sciences Biotechnology and Pharma Sciences, 14(1), 16-
22.

[23] Xia, X., Gui, L., Yu, F., Wu, H., Wei, B., Zhang, Y. L., & Zhan,
Z. H. (2019). Triple archives particle swarm
optimization. IEEE transactions on cybernetics, 50(12),
4862-4875.

[24] Gollavilli, V. S. B., & Thanjaivadivel, M. (2018). Cloud-
enabled pedestrian safety and risk prediction in VANETs
using hybrid CNN-LSTM models. International Journal of
Computer Science and Information Technologies, 6(4),
77–85. ISSN 2347–3657.

[25] Liu, J., Yang, D., Lian, M., & Li, M. (2021). Research on
intrusion detection based on particle swarm
optimization in IoT. IEEE Access, 9, 38254-38268.

[26] Parthasarathy, K., & Prasaath, V. R. (2018). Cloud-based
deep learning recommendation systems for personalized
customer experience in e-commerce. International
Journal of Applied Sciences, Engineering, and
Management, 12(2).

[27] Zhao, Q., & Li, C. (2020). Two-stage multi-swarm particle
swarm optimizer for unconstrained and constrained
global optimization. IEEE Access, 8, 124905-124927.

[28] Dondapati, K. (2018). Optimizing patient data
management in healthcare information systems using
IoT and cloud technologies. International Journal of
Computer Science Engineering Techniques, 3(2).

[29] Tan, T. Y., Zhang, L., Lim, C. P., Fielding, B., Yu, Y., &
Anderson, E. (2019). Evolving ensemble models for
image segmentation using enhanced particle swarm
optimization. IEEE access, 7, 34004-34019.

[30] Gudivaka, R. K., & Rathna, S. (2018). Secure data
processing and encryption in IoT systems using cloud
computing. International Journal of Engineering
Research and Science & Technology, 14(1).

[31] Too, J., Abdullah, A. R., Mohd Saad, N., & Tee, W. (2019).
EMG feature selection and classification using a Pbest-
guide binary particle swarm
optimization. Computation, 7(1), 12.

[32] Kadiyala, B., & Arulkumaran, G. (2018). Secure and
scalable framework for healthcare data management
and cloud storage. International Journal of Engineering
& Science Research, 8(4), 1–8.

[33] Elgamal, Z. M., Yasin, N. B. M., Tubishat, M., Alswaitti, M.,
& Mirjalili, S. (2020). An improved harris hawks
optimization algorithm with simulated annealing for
feature selection in the medical field. IEEE access, 8,
186638-186652.

[34] Alavilli, S. K., & Pushpakumar, R. (2018). Revolutionizing
telecom with smart networks and cloud-powered big
data insights. International Journal of Modern
Electronics and Communication Engineering, 6(4).

[35] Paek, S. W., Kim, S., & de Weck, O. (2019). Optimization
of reconfigurable satellite constellations using simulated
annealing and genetic algorithm. Sensors, 19(4), 765.

[36] Natarajan, D. R., & Kurunthachalam, A. (2018). Efficient
Remote Patient Monitoring Using Multi-Parameter
Devices and Cloud with Priority-Based Data
Transmission Optimization. Indo-American Journal of
Life Sciences and Biotechnology, 15(3), 112-121.

[37] Huo, L., Zhu, J., Wu, G., & Li, Z. (2020). A novel simulated
annealing based strategy for balanced UAV task
assignment and path planning. Sensors, 20(17), 4769.

[38] Kodadi, S., & Kumar, V. (2018). Lightweight deep
learning for efficient bug prediction in software
development and cloud-based code analysis.
International Journal of Information Technology and
Computer Engineering, 6(1).

[39] Xiao, S., Tan, X., & Wang, J. (2021). A simulated annealing
algorithm and grid map-based UAV coverage path
planning method for 3D
reconstruction. Electronics, 10(7), 853.

[40] Chauhan, G. S., & Palanisamy, P. (2018). Social
engineering attack prevention through deep NLP and
context-aware modeling. Indo-American Journal of Life
Sciences and Biotechnology, 15(1).

[41] Almarashi, M., Deabes, W., Amin, H. H., & Hedar, A. R.
(2020). Simulated annealing with exploratory sensing
for global optimization. Algorithms, 13(9), 230.

[42] Vasamsetty, C., & Rathna, S. (2018). Securing digital
frontiers: A hybrid LSTM-Transformer approach for AI-
driven information security frameworks. International
Journal of Computer Science and Information
Technologies, 6(1), 46–54. ISSN 2347–3657.

[43] R. Najafabadi, H., G. Goto, T., Falheiro, M. S., C. Martins, T.,
Barari, A., & SG Tsuzuki, M. (2021). Smart topology
optimization using adaptive neighborhood simulated
annealing. Applied Sciences, 11(11), 5257.

[44] Jadon, R., & RS, A. (2018). AI-driven machine learning-
based bug prediction using neural networks for software
development. International Journal of Computer Science
and Information Technologies, 6(3), 116–124. ISSN
2347–3657.

[45] Wang, J., Zhu, Y., Zhou, C., & Qi, Z. (2020). Construction
method and performance analysis of chaotic S-box based
on a memorable simulated annealing
algorithm. Symmetry, 12(12), 2115.

[46] Subramanyam, B., & Mekala, R. (2018). Leveraging
cloud-based machine learning techniques for fraud
detection in e-commerce financial transactions.
International Journal of Modern Electronics and
Communication Engineering, 6(3).

[47] Sánchez-Ibáñez, J. R., Pérez-del-Pulgar, C. J., & García-
Cerezo, A. (2021). Path planning for autonomous mobile
robots: A review. Sensors, 21(23), 7898.

Sathiyendran Ganesan et al Optimizing Program Path Coverage in Big Data Software Testing..

31| International Journal of Current Engineering and Technology, Vol.12, No.1 (Jan/Feb 2022)

[48] Nippatla, R. P., & Palanisamy, P. (2018). Enhancing cloud
computing with eBPF powered SDN for secure and
scalable network virtualization. Indo-American Journal
of Life Sciences and Biotechnology, 15(2).

[49] Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., ...
& Howard, D. (2019). Overall methodology design for
the United States national land cover database 2016
products. Remote Sensing, 11(24), 2971.

[50] Gollapalli, V. S. T., & Arulkumaran, G. (2018). Secure e-
commerce fulfilments and sales insights using cloud-
based big data. International Journal of Applied Sciences,
Engineering, and Management, 12(3).

[51] Ajeil, F. H., Ibraheem, I. K., Azar, A. T., & Humaidi, A. J.
(2020). Grid-based mobile robot path planning using
aging-based ant colony optimization algorithm in static
and dynamic environments. Sensors, 20(7), 1880.

[52] Garikipati, V., & Palanisamy, P. (2018). Quantum-
resistant cyber defence in nation-state warfare:
Mitigating threats with post-quantum cryptography.
Indo-American Journal of Life Sciences and
Biotechnology, 15(3).

[53] Liu, S., Zhang, D. G., Liu, X. H., Zhang, T., Gao, J. X., Gong, C.
L., & Cui, Y. Y. (2019). Dynamic analysis for the average
shortest path length of mobile ad hoc networks under
random failure scenarios. IEEE Access, 7, 21343-21358.

[54] Radhakrishnan, P., & Mekala, R. (2018). AI-Powered
Cloud Commerce: Enhancing Personalization and
Dynamic Pricing Strategies. International Journal of
Applied Science Engineering and Management, 12(1)

[55] Cabreira, T. M., Brisolara, L. B., & Paulo R, F. J. (2019).
Survey on coverage path planning with unmanned aerial
vehicles. Drones, 3(1), 4.

[56] Kushala, K., & Rathna, S. (2018). Enhancing privacy
preservation in cloud-based healthcare data processing
using CNN-LSTM for secure and efficient processing.
International Journal of Mechanical Engineering and
Computer Science, 6(2), 119–127.

[57] Karur, K., Sharma, N., Dharmatti, C., & Siegel, J. E. (2021).

A survey of path planning algorithms for mobile

robots. Vehicles, 3(3), 448-468.

[58] Alagarsundaram, P., & Arulkumaran, G. (2018).

Enhancing Healthcare Cloud Security with a

Comprehensive Analysis for Authentication. Indo-

American Journal of Life Sciences and Biotechnology,

15(1), 17-23.

[59] Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., ...

& Howard, D. (2019). Overall methodology design for

the United States national land cover database 2016

products. Remote Sensing, 11(24), 2971.

[60] Bhadana, D., & Kurunthachalam, A. (2020). Geo-cognitive

smart farming: An IoT-driven adaptive zoning and

optimization framework for genotype-aware precision

agriculture. International Journal in Commerce, IT and

Social Sciences, 7(4).

[61] Ajeil, F. H., Ibraheem, I. K., Azar, A. T., & Humaidi, A. J.

(2020). Grid-based mobile robot path planning using

aging-based ant colony optimization algorithm in static

and dynamic environments. Sensors, 20(7), 1880.

[62] Ramar, V. A., & Rathna, S. (2018). Implementing

Generative Adversarial Networks and Cloud Services for

Identifying Breast Cancer in Healthcare Systems. Indo-

American Journal of Life Sciences and Biotechnology,

15(2), 10-18.

[63] Qin, H., Meng, Z., Meng, W., Chen, X., Sun, H., Lin, F., &

Ang, M. H. (2019). Autonomous exploration and

mapping system using heterogeneous UAVs and UGVs in

GPS-denied environments. IEEE Transactions on

Vehicular Technology, 68(2), 1339-1350.

