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Abstract  
  
Software testing is important to make sure that applications are reliable, functional, and secure. It involves many 
aspects, and test case generation and program path coverage are considered the most vital because it increases fault 
detection by covering all possible execution paths. Many traditional approaches like Genetic Algorithms (GA), Particle 
Swarm Optimization (PSO), and Simulated Annealing (SA) have been employed in test case generation. 
Unfortunately, these approaches do not perform well with larger, complex software systems due to the high cost of 
computations, getting stuck in local optima, and really poor scalability. In order to tackle the mentioned limitations, 
this research thus proposes an optimized test path generation framework according to hybrid PSO-SA approach: It 
combines static analysis with Control Flow Graph (CFG) and Program Dependency Graph (PDG) and is followed by 
feasible execution paths extraction from the static analysis. A Divide and Conquer-based clustering technique applied 
then clusters the paths based on similarity. The next step after the clustering is the optimization performed using 
Hybrid PSO-SA algorithm. Optimized paths are bundled together to eliminate almost all forms of redundancy while 
maximizing path coverage. The evaluations clearly indicate the proposed approach attaining superior test coverage, 
efficiency, and fault demarcation than existing approaches. It saves on computational overhead while improving the 
effectiveness of the test suite through the elimination of redundant test paths. The findings show that the Hybrid PSO-
SA method can be a very good method for increasing software testing efficiency, especially for large-scale 
applications that find it hard to scale and adapt with traditional methods. 
 
Keywords: Software Testing, Test Path Optimization, Particle Swarm Optimization, Simulated Annealing, Path 
Coverage. 
 
 
1. Introduction 
 
Software testing has acquired its inevitable place in the 
software engineering lifecycle as the most crucial 
activity to ensure the reliability, functionality, and 
security aspects of software applications [1]. It plays a 
vital role in delivering high-quality software that meets 
user requirements and expectations [2]. Software 
testing has many purposes, out of which one of the 
most important is finding defects and eliminating them 
to ensure a successful and quality product from the 
vendor’s perspective [3]. Test case generation is a 
fundamental part of the software testing process, 
designed to systematically create input sets for testing 
various software functions [4].  
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Program path coverage is another critical component, 
which involves generating test cases representing all 
possible execution paths within a program [5]. High 

path coverage ensures that the largest possible portion 
of the software logic, including branches and decision 
points, is tested [6]. This comprehensive testing 

reduces the likelihood of bugs going undetected and 
increases overall software robustness [7]. Effective test 

case generation aimed at maximizing path coverage 
becomes especially important in complex and large 
systems, where the number of possible paths can be 

enormous [8]. In such cases, test coverage directly 
influences the quality and thoroughness of the testing 

process, impacting software reliability [9]. 
In recent years, several techniques have been 

proposed to automate and improve test case 
generation and path coverage [10]. Evolutionary 
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algorithms such as genetic algorithms (GA), particle 
swarm optimization (PSO), and simulated annealing 
have been widely explored in this context [11]. These 
approaches aim to efficiently search the input space to 
generate diverse test cases with high coverage [12]. 
While these methods have demonstrated promising 
results in many scenarios, they face significant 
challenges when applied to large-scale and Big Data 
software systems [13]. Among the major problems are 
high computational costs that limit their scalability 
[14]. They are also prone to getting trapped in local 
optima, which reduces the diversity and effectiveness 
of generated test cases [15]. Moreover, the rapid 
growth and complexity of Big Data systems introduce 
dynamic changes in software execution paths that 
many traditional techniques fail to consider [16]. The 
dynamic nature of Big Data environments can cause 
frequent alterations in program paths, increasing the 
difficulty of achieving effective path coverage [17]. As a 
result, conventional optimization methods may not be 
sufficient for real-world Big Data applications [18]. 

This study addresses these issues by proposing 
advanced optimization techniques to enhance program 
path coverage in Big Data software testing [19]. The 
goal is to generate more efficient and varied test cases 
capable of covering the most complex execution paths 
in very large software systems [20]. The research 
focuses on improving the path coverage process 
specifically for Big Data contexts, where traditional 
methods typically underperform [21]. The study also 
includes systematic software decomposition strategies 
to break down large systems into manageable 
components for more effective testing [22]. This 
combination aims to maximize test coverage while 
ensuring the reliability and quality of software testing 
processes [23]. Ultimately, the proposed approach 
targets modern, large-scale applications by enhancing 
the thoroughness and effectiveness of software testing 
in challenging Big Data environments [24]. By doing so, 
it contributes significantly to advancing the state-of-
the-art in software testing methodologies [25]. 
 
Research Contributions 
 
• Challenges in traditional test case generation such 

as computer overhead and scalability are analyzed. 
• Making hybrid PSO-SA frameworks for optimizing 

test paths and improving coverage. 
• Performance comparisons in evaluating the 

approach to its efficiency and reliability. 

 
2. Literature Survey 
 
NOMA, UVFA, and DGNNs are the techniques that 
resources are allocated dynamically, approximating 
functions in the efficient generation of test cases and 
program path coverage in software testing [26]. RFE + 
ELM + SRC may find it difficult to achieve dynamic path 
coverage in software testing as it uses static feature 
selection and thereby lacks the adaptability required in 

evolving test case scenarios [27]. RPMA is integrated 
with BLE and LTE-M and GMM to control IoT devices, 
using Gaussian Mixture Models (GMM) to enable smart 
resource allocation and intrusion detection [28]. In 
software testing, particularly in regression testing, the 
study proposes combining neural networks with 
heuristic approaches as hybrid techniques to originate 
in a very unique way Critical Tectonophysics Test Case 
Prioritization (TCP) [29]. This research article 
contributes to highlights over a number of technologies 
such as DROP, AES encryption, and neural networks in 
AI-driven CAPTCHAs and graphical passwords, yet 
with a disadvantage of computational overhead and 
path coverage issues in software testing [30]. 
Automated fault injection and XML-based test case 
generation should not be isolated from the liabilities of 
complex path coverage in very-sized systems along 
with challenges while updating fault libraries for 
effective test cases generated [31]. Any deep learning 
techniques also share several drawbacks like lack of 
interpretability and specific dataset diversity that can 
be attributed to issues like unclear path coverage and 
insufficient test case generation found in software 
testing [32]. 

This demonstrates that AWS Fault Injection 
Simulator (FIS) and sophisticated fault injection 
techniques would be used in resiliency tests for AWS-
based applications, proactive fault injection, and real-
time monitoring [33]. Digital economy-cum-
entrepreneurial growth was studied with a Threshold 
Regression Model to establish the effect of the digital 
economy on industrial structure upgrading [34]. The 
hybrid language model coupled with evolutionary 
algorithm approach has the tendency of very high 
computational cost and difficulty in handling dynamic 
program paths in test case generation [35]. The 
research shows that KNN, LPQ, and Bayesian optimized 
MLP are used for tumor detection. Another such 
approach may yield layered test case generation for 
sophisticated software path evaluation [36]. The 
research discussed involves the dynamic use of 
metadata reconstruction in the form of multibiometric 
key generation for the secured storage and transfer of 
patient data in mobile healthcare systems with cloud 
computing integration [37]. However, ANN + FEA + 
Electro-thermal modelling requires relatively high 
computation and may have difficulties covering real-
time paths due to the complexity of behaviours in 
systems [38]. 

 

This study infers the combination of Adaptive 
Gradient Support Vector Regression (AGSVR), Long 
Short-Term Memory (LSTM), and Hidden Markov 
Models (HMM) for detection of malware. Such methods 
support analysing data sequences for discovering 
malicious patterns [39]. Challenges summarized under 
privacy issues and regulatory requirements and model 
adaptation also hamper the development of this 
framework in AI and data analytics which tend to affect 
test case generation and path coverage precision in 
software testing [40]. Research integrating multi-
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objective optimization and neural symbolic machines 
indicates a significant potential in enhancing adaptive 
test case generation, but the computational overhead 
and model complexity limit real-world applications 
[41]. Novel reinforcement learning algorithms 
combined with symbolic execution are being explored 
for automated test path discovery to address coverage 
gaps [42]. Recent advancements in graph neural 
networks (GNNs) enable better modelling of program 
control flow for optimized test data generation [43]. 
Ensemble learning techniques alongside metaheuristic 
optimization have been applied to prioritize test cases 
dynamically, improving testing efficiency in cloud-
based environments [44]. Lastly, the application of 
federated learning in distributed software testing 
environments presents promising results for privacy 
preservation and scalability in path coverage analysis 
[45]. 

Advances in explainable AI have been integrated 
into testing frameworks to improve model 
interpretability while maintaining accuracy in path 
coverage assessment [46]. Adaptive metaheuristic 
algorithms such as ant colony optimization and genetic 
algorithms have been applied to optimize test case 
prioritization, reducing computation time while 
enhancing coverage [47]. Deep reinforcement learning 
approaches have been used for dynamic test case 
generation in continuous integration pipelines, 
showing improved adaptability to code changes [48]. 
Transfer learning has been explored to leverage pre-
trained models for effective test data generation in 
resource-constrained environments [49]. Research 
also shows that the combination of evolutionary 
computation and swarm intelligence can significantly 
improve automated path exploration in complex 
software systems [50]. Furthermore, hybrid 
approaches combining symbolic execution and 
machine learning provide scalable solutions to address 
path explosion problems during software testing [51]. 

 
3. Problem statement  
 
Accurate forecasting of climate variables and 
classification of extreme weather events are critical for 
environmental monitoring, disaster preparedness, and 
long-term climate resilience [52]. However, 
conventional machine learning models often face 
difficulties with high-dimensional tabular 
meteorological data due to missing values, data 
imbalance, and limited scalability [53]. These models 
also struggle to capture complex nonlinear 
relationships among climate parameters, reducing 
their generalization across varying conditions [54]. 
Feature extraction from such raw and heterogeneous 
data remains a major challenge, often requiring 
significant domain knowledge and computational 
effort [55]. Data pre-processing techniques such as 
imputation and normalization are essential but can 
introduce biases if not handled carefully [56], [57]. 
Furthermore, the interpretability of weather prediction 

models is vital for stakeholder trust but is often 
overlooked in complex black-box models. Ensemble 
learning and hybrid architectures have shown promise 
in addressing these issues by combining the strengths 
of multiple models [58], [59]. Deep learning methods, 
particularly those that incorporate attention 
mechanisms, can dynamically focus on relevant 
features, enhancing classification performance [60]. 
Nonetheless, these approaches require significant 
computational resources, limiting their deployment in 
resource-constrained environments [61]. Therefore, 
this research proposes a hybrid model combining 
autoencoder-based feature extraction with the TabNet 
architecture to enhance forecasting accuracy and risk 
classification while maintaining interpretability and 
efficiency [62], [63]. 
 
4. Methodology 
 
Static analysis and program path extraction are the 
first phases. First, through the CFG and PDG analysis 
and construction, feasible paths are identified. These 
paths are then clustered according to a set-divide-and-
conquer approach with an optimization technique 
based on hybrid PSO and SA. After this, a merge of 
these optimized paths takes place whereby these 
merged paths are then evaluated for the effectiveness 
of the test suite, and path coverage and test-house size 
data are collected. All of these represent a systematic 
approach towards generating test paths in software 
testing shown in Figure 1. 
 

 
Figure 1: Optimized Test Path Generation Using 

Hybrid PSO-SA Approach 
 

4.1 Program Path Extraction 
 
The phase in which feasible paths are identified in the 
software using static analysis. Big Data applications 
have a large number of complex codebases, and it's 
important to ensure they use static analysis; otherwise, 
one wouldn't be able to find all possible paths without 
throwing the program. Control Flow Graphs (CFGs) 
and Program Dependency Graphs (PDGs) are drawn to 
represent the control flow of the program and its 
dependencies. CFGs define the flow between 
statements, including branches, loops, and decisions, 
PDGs, on the other hand, show data flows 
dependencies. An analysis of these graphs results in 
the extraction of feasible execution paths. These paths 
serve as abstract representations of potential 
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execution routes that will be taken by the program 
independent of the runtime conditions. They will later 
serve as input to the next optimization and test path 
generation. The research uses the CodeNet Python 
Subset dataset obtained from Kaggle. The CodeNet 
Python Subset is a dataset that contains a list of Python 
code samples that can be used for path extraction. The 
dataset can be accessed at CodeNet Python Subset on 
Kaggle. To create the graphs and extract the paths, 
several tools are used, namely LLVM, Clang Static 
Analyzer, and some custom graph parsers. 
 
4.2 Divide and Conquer-based Path Clustering 
 
The Divide and Conquer-based Path Clustering method 
is then applied to further manipulate the identified 
paths. The path itself here is comprised of a vast 
number of execution paths that would be derived from 
the earlier extraction and clustering processes. The 
objective of this phase is essentially to partition the 
complete path set into smaller, more intuitive clusters 
such that the optimization can occur in fewer cycles.  
 
4.2.1 Path Similarity Measurement 
 
To partition the paths effectively, we first need to 
measure the similarity between each pair of paths 𝑝1 
and 𝑝2. A distance function 𝑑(𝑝1 , 𝑝2) is defined to 
quantify the dissimilarity based on multiple factors are 
given in Eqn. (1): 
 
𝑑(𝑝1, 𝑝2) = 𝛼|𝑝1 − 𝑝2| + 𝛽 ⋅ simbranches(𝑝1 , 𝑝2) + 𝛾 ⋅
simmodules (𝑝1, 𝑝2)           (1) 
 
Where, |𝑝1 − 𝑝2| represents the difference in path 
lengths, simbranches (𝑝1, 𝑝2) measures how many 
branches or decision points the two paths share, 
simmodules (𝑝1, 𝑝2) quantifies the overlap in the 
functional modules or code sections that the paths 
execute, 𝛼, 𝛽, 𝛾 are weighting factors to adjust the 
influence of each characteristic (path length, branches, 
and modules). 
 

4.2.2 Clustering with K-means 
 

After the path-related distance calculation, the 
application of the K-means algorithm comes to bear in 
clustering the path based on likeness. The ultimate idea 
is to reduce the variance within clusters by locating the 
suitable centroids for the clusters. The optimization 
goal can be expressed as in Eqn. (2): 
 

Minimize ∑  𝑘
𝑖=1 ∑  𝑝∈𝐶𝑖

𝑑(𝑝, 𝜇𝑖)
2      (2) 

 
Where, 𝐶𝑖  represents the set of paths in cluster 𝑖, 𝜇𝑖  is 
the centroid of cluster 𝑖, 𝑑(𝑝, 𝜇𝑖) is the distance 

between a path 𝑝 and its corresponding centroid 𝜇𝑖 . 
 
The divide-and-conquer principles can very well 
reduce complexity when the path set is divided into 
smaller portions, thus making optimization easier. 

4.3 Local Test Path Optimization using Hybrid PSO-
Simulated Annealing 
 
Clusters optimize their paths with regard to creating a 
proper subset of test paths. The optimization is based 
on Hybrid PSO-SA where the benefits of PSO and SA 
combine advantageously for increased coverage and 
reduction of extraneous paths. 
 
4.3.1 Particle Swarm Optimization (PSO) 
 
PSO is used in the beginning step to generate and 
refine candidate path sets, where each candidate 
stands for a potential solution. Each particle represents 
a group of test paths designed to maximize branch 
coverage within the cluster. Subsequent interactions 
between the particles will allow them to share 
information concerning better solutions, thus better 
exploring the search space. The fitness function for PSO 
is designed to: 
 
• Maximize Path Coverage: This means trying to 

choose paths as much as possible which would 
result in maximum unique branches being covered. 

• Minimize Redundancy: The ability of the algorithm 
is to avoid selecting any redundant paths for a 
more-effective test suite.  

•  
• Constraints-to take into consideration during path 

selection would include execution cost or 
complexity. 

The fitness function 𝑓(𝑝) for each particle 𝑝 is given by 
Eqn. (3): 
 
𝑓(𝑝) = 𝛼 ⋅ Coverage(𝑝) − 𝛽 ⋅ Redundancy(𝑝) − 𝛾 ⋅
Cost(𝑝)             (3) 
 
4.3.2 Simulated Annealing (SA) 
 
SA is merged into the processes of the PSO to avoid 

concurrency as well as to improve the exploration 

ability within the searched solution space. The SA 

mechanism brings with it a probabilistic acceptance of 

solutions that are not necessarily better than the 

current solution, thus helping the algorithm to escape 

from local optima. 

 
The probability 𝑃(Δ𝐸) of accepting a sub-optimal 
solution with energy change Δ𝐸 is determined by the 
Metropolis criterion in Eqn. (4): 
 

𝑃(Δ𝐸) = {
1  if Δ𝐸 ≤ 0

𝑒−
Δ𝐸

𝑇  if Δ𝐸 > 0
       (4) 

 
Where, Δ𝐸 is the change in the fitness function (i.e., 
Δ𝐸 = 𝑓(𝑝new ) − 𝑓(𝑝current ) ), 𝑇 is the temperature 
parameter, which decreases over time according to a 
cooling schedule (typically 𝑇(𝑡) = 𝑇0 ⋅ 𝛼

𝑡, where 𝑇0 is 
the initial temperature and 𝛼 is the cooling rate). 
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4.3.3 Hybrid PSO-SA Process 
 
This algorithm combines PSO and SA to optimize the 
test path sets effectively. The overall process includes 
the following steps: 
• Initialization: A population of particles is randomly 

initialized, each representing a potential test path 
set. 

• Particle Update: Each particle's position (test path 
set) is updated based on its own best solution and 
the best solution found by the swarm. 

• Simulated Annealing: After updating, the particles 
are subjected to SA, which introduces a 
probabilistic mechanism for accepting sub-optimal 
solutions, thereby contributing to exploration 
while helping to avoid local optima. 

• Convergence: This algorithm iterates until 
specified criteria for convergence are satisfied, 
such as achieving the maximum number of 
iterations or obtaining a desirable coverage level. 

 
4.4 Merging and Consolidation of Optimized Path 
Sets 
 
The last step is to merge the optimized paths into one 
giant test suite after the path sets within each cluster 
have been optimized. This phase involves guaranteeing 
the maximal coverage of the merged test suite with 
minimal redundancy, overlap, and hence, test efficiency 
concerning Big Data software. 
 
4.4.1 Redundancy Removal 
 
Redundant paths are identified and deleted before 
merging to improve the efficiency of the final test suite. 
Redundant paths cover the same set of program 
behaviors and thus do not contribute anything further. 
A redundancy function 𝑅(𝑝) can be defined to measure 
the overlap between paths 𝑝1 and 𝑝2 are defined in 
Eqn. (5) 
 

𝑅(𝑝1, 𝑝2) =
|CommonCoverage(𝑝1,𝑝2)|

|TotalCoverage(𝑝1,𝑝2)|
            (5) 

 
Where: Common Coverage (𝑝1 , 𝑝2) refers to the set of 
branches or paths covered by both 𝑝1 and 𝑝2, Total 
Coverage (𝑝1, 𝑝2) represents the union of the coverage 
of 𝑝1 and 𝑝2. If 𝑅(𝑝1 , 𝑝2) exceeds a certain threshold 
(e.g., 0.9), then one of the paths is considered 
redundant and removed. 
 

4.4.2 Conflict Resolution 
 

Paths are marked for disambiguation when their 
conflict contradicts or overlaps with the logical 
program structure. This conflict, thus, arises when two 
pathways cover the same programmed behaviors at 
different contexts, or when two paths conflict due to 
dependency among the clusters. A conflict function 
𝐶(𝑝1, 𝑝2) can be defined to check for logical 
inconsistencies between two paths are defined in Eqn. 
(6): 

𝐶(𝑝1, 𝑝2) = conflict(𝑝1 , 𝑝2)       (6) 
 
This function returns a binary result indicating 
whether a conflict exists between paths 𝑝1 and 𝑝2. 
 
4.4.3 Inter-cluster Path Dependencies 
 
• The inter-cluster dependencies are examined so 

that their merging retains logical consistency 
within the merged destinations. The dependencies 
between the paths, like data flows or shared 
variables, should be maintained to guarantee the 
integrity of the program behavior.  

• Such measures include examining the bipartite 
dependence graphs with reference to the program 
dependency graphs and CFGs obtained at static 
analysis. This leads to the comparison of merged 
paths from separate clusters, thus allowing an 
analysis of their dependencies. 

 
4.4.4 Refining the Test Suite 
 
It fine-tunes the final test suite as such to ensure cover 
for all paths identified during static analysis while 
deleting redundancy. This should reduce the test suite 
size without affecting the ability to capture all critical 
program behaviors. Efficient and comprehensive 
testing underneath optimized effectiveness and 
efficiency in the procedure, all this under a streamlined 
test suite. 
 
4.5 Test Suite Evaluation 
 
The main goal of this step is to evaluate and validate 
the optimized test suite effectiveness. Such evaluation 
would result in a test suite forced to practically identify 
faults with maximum possible coverage with a reduced 
size. 
 
4.5.1 Measure Path Coverage 
 
Measuring the path coverage percentage attained by 
the test suite is the first step. Path coverage refers to 
the percentage of feasible execution paths that are 
actually covered by the existing test suite. A higher 
percentage indicates a more potent suite since it can 
explore better behavior of the program. The path 
coverage 𝐶path  can be calculated as Eqn. (7): 
 

𝐶path =
 Number of covered paths 

 Total number of feasible paths 
× 100     (7) 

 
4.5.2 Evaluate Test Suite Size 
 
The Logical Advance Step has to do with evaluating the 
size of the test suite by counting the number of paths it 
covers. In practice, this means that the smaller a suite 
is, the better it will be considered because it will show 
efficiency and still cover all critical paths without any 
important test cases being missed. The evaluation is 
directed at ensuring that the optimized suite has the 
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maximum coverage due to the fewest number of paths 
included. 
 
5. Results and Discussion 
 
This section presents and discusses the results 
obtained by applying the methodology of Big Data 
software testing program path coverage optimization 
using the combination of Divide and Conquer-based 
path clustering and the Hybrid PSO-Simulated 
Annealing (PSO-SA) technique.  
 

Table 1: Performance Evaluation of Optimized Test 
Suite 

 
Performance Metric Best Value 

Path Coverage (%) 98% 
Test Suite Size 50 paths 

Fault Detection Capability (%) 95% 

 
Table 1 illustrates the performance indicators of the 
optimized test set with respect to the degree of path 
coverage, test set size, and fault detection ability. The 
test path coverages have achieved a score of 98 percent 
with 50 test paths, while the test suite attained 95 
percent fault detection and thus can be considered 
very efficient and effective toward really important 
program behaviors-the metrics validate the 
maximization of optimization, considering as it does 
comprehensive coverage with a minimal number of 
paths.  
 

Table: 2 Performance Comparison: Hybrid PSO-SA 
Method vs. Advanced Genetic Algorithms (GA) 

 

Metric 

Hybrid PSO-SA 
Method 

(Proposed 
Method) 

Advanced 
Genetic 

Algorithms (GA) 

Test Coverage 93.3% 90% 
Efficiency 88% 85% 

Testing Reliability 96% 95% 
Computational 

Overhead 
68% 70% 

Test Suite Size 
Reduction 

35% 33.3% 

Redundancy Rate 5% 7.1% 
Execution Time 
Improvement 

28% 25% 

Path Clustering 
Effectiveness 

Very High High 
 

Such a comparison is made between the Hybrid PSO-SA 
Method and Advanced Genetic Algorithms (GA) in 
different performance metrics in Table 2. Here, Hybrid 
PSO-SA Method yields a higher Test Coverage (93.3%) 
compared to the former (90%) and a higher Efficiency 
(88%) compared to the previous (85%). It also reduces 
Computational Overhead and comes up with (68%) to 
that measuring against standard (70%); although still 
managing better in line of Test Suite Size Reduction (35 
against 33.3%) while maintaining lower Redundancy 
Rate, i.e., 5 versus 7.1. It clearly reveals the superiority 
in the scheme of software-testing optimization and 
performance. 

 
 

 
 

Figure 2: Performance Comparison of Hybrid PSO-SA 
and Genetic Algorithm in Software Testing 

 
The hybrid PSO-SA method and genetic algorithm have 

been compared in software testing as shown in figure 

2. Hybrid PSO-SA is superior in Test Coverage, Test 

Efficiency, and Test Reliability compared to GA, while it 

has lower computational overhead. Meanwhile, Hybrid 

PSO-SA is usually more efficient in Test Suite Size 

Reduction. Based on Figure 3, the impact of Hybrid 

PSO-SA was compared to that of Genetic Algorithm 

over Redundancy Rate and Execution Time 

Improvement. As portrayed in the figure, Hybrid PSO-

SA performs well in both aspects whereby it minimizes 

redundancy and improves execution speed quite 

effectively compared to GA. 

 

 
 

Figure 3: Comparison of Execution Time Improvement 
and Redundancy Rate for Hybrid PSO-SA and GA 
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Figure 4: Code Coverage Breakdown Across Different 
Test Scenarios 

 
The test case coverage is distributed with respect to 
the code, as shown in Figure 4, across three categories: 
Line Coverage, Branch Coverage, and Function 
Coverage. These figures illustrate that Function 
Coverage is the highest and is followed by Branch 
Coverage and Line Coverage. There is overall high 
coverage for most test cases, but some inconsistencies 
indicate possible gaps in testing efficiency. 
 
5.1 Discussion 
 
The Hybrid PSO-SA Method dominates the Advanced 
Genetic Algorithms (GA) in important metrics such as 
Test Coverage (93.3% vs. 90%), Testing Reliability 
(96% vs. 95%), Efficiency (88% vs. 85%), and 
Computational Overhead (68% vs. 70%). It is, 
therefore, the more efficient of the two methods. In 
addition, a bigger Test Suite Size Reduction (35% vs. 
33.3%) and a lower Redundancy Rate (5% vs. 7.1%) 
prove that it is good at optimizing test suites. These 
findings suggest Hybrid PSO-SA Method is a more 
effective and trustworthy solution for software testing. 

 
Conclusion 
 
Improvements Hybrid PSO-SA Method have gained an 
edge over conventional methods like Advanced Genetic 
Algorithms (GA) in their optimization of software 
testing processes. It is quite good at Test Coverage, 
Efficiency, and Testing Reliability; hence it is more 
prudent in its ability to detect faults and assure test 
quality. Another area in which this method has 
strength is the reduction of Computational Overhead, 
while being good at Test Suite Size Reduction and low 
Redundancy Rates, which together lead to rapid and 
effective testing. All these factors are why the Hybrid 
PSO-SA Method gives an edge to Big Data software 
testing, especially in large-scale and resource-heavy 
settings. Future work could involve upgrading the 
Hybrid PSO-SA Method with advanced machine 
learning methodologies for path selection 
improvement and bettering on scalability and 
adaptability toward different types of software and 
complex system dependencies. 
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