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Abstract  
  
Plant diseases, especially those that can be transmitted through seeds like Fusarium wilt, remain a daunting threat to 
agricultural productivity worldwide. Very often, traditional methods of diagnosis depend on visible symptoms and 
manual laboratory tests, causing delays in accurately identifying plant diseases. The era of genomic technologies has 
emerged, and CRISPR-based markers have begun to yield useful information regarding genetic resistance traits. 
Nevertheless, correlating such high-dimensional genomic data with phenotypic traits for accurate prediction 
continues to pose a challenge. This study proposes a hybrid deep learning–machine learning framework, based on an 
Autoencoder (AE) and XGBoost, to predict resistance against Fusarium wilt using genomic and phenotypic data 
related to CRISPR enhancement. The Autoencoder extracts features unsupervised and reduces dimensionality to 
capture complex, nonlinear patterns while filtering noise effectively. The compressed latent features are classified by 
the XGBoost algorithm, which implements gradient boosting techniques and is robust toward structured and 
imbalanced data. Genomic and phenotypic input data are horizontally concatenated (early fusion) into one single 
training matrix to ensure both types of data are used jointly during learning. Hyperparameter optimization using 
Bayesian Optimization maximizes classification accuracy and minimizes loss. The model, therefore, has a far better 
resistance prediction accuracy than existing models that give weight to biological interpretability and computational 
efficiency. With the boost of CRISPR-based markers, the developed model becomes a significant instrument for early 
detection, breeding decisions, and sustainable plant disease management. 
 
Keywords: Plant disease prediction, Fusarium wilt, CRISPR-based genomics, Autoencoder, XGBoost, Disease 
resistance classification. 
 
 
1. Introduction 
 
Plant diseases act as one of the most major constraints 
in agricultural productivity across the globe [1] [2]. 
These diseases are caused by a variety of pathogens, 
like fungi, bacteria, viruses, or nematodes [3]. Among 
other problems caused by the seed-borne disease is 
serious concern since it avails fast dissemination of 
such diseases among areas [4] [5]. Fusarium wilt 
associated with Fusarium oxysporum is extensively 
notorious for causing havoc across a wide range of 
crops, including tomatoes, bananas, and legumes [6]. 
The traditional diagnosis of diseases is mainly based on 
the symptoms visible, which develop after the onset of 
infection [7]. Advances in plant genomics and 
biotechnology have opened up the next phase of early 
detection and resistance prediction in the foreseeable 
future [8]. Insomuch as CRISPR technology has brought 
about its specific genome edits and identification of 
resistance-associated genes [9] [10].  
 
*Corresponding author’s ORCID ID: 0000-0000-0000-0000 
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The combination of phenotypic data with genomic 
profiles improves the accuracy of plant disease 
prediction models [11]. To be more scalable and data-
driven, the methods of artificial intelligence such 
machine learning and deep learning could be 
integrated into a structure for plant health 
management [12] [13]. Such versatile and very early 
diagnostic measures will, therefore, be critical for 
sustainable agriculture and a more extensive global 
food security [14]. 
 

Seed diseases are caused by pathogens invading the 
inside or on the seed surface and becoming active 
during germination [15]. Environmental conditions 
such as high humidity and temperature are favourable 
to the growth of fungi like Fusarium [16]. The 
contaminated seed stock serves as an agent 
contributing to the indiscriminate disease infection 
[17]. It is especially favoured by warmth and moisture 
in the surrounding air, Germination can also spread 
Fusarium wilt through infected seeds, soil and water 
[18] [19]. Monoculture cropping and lack of crop 
rotation aggravate the persistence of disease-causing 
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organisms [20]. Furthermore, disease outbreaks are 
mainly favored by high Genetic Susceptibility of the 
plant varieties [21]. Late control becomes inevitable as 
not early detection measures have been put in place 
[22] [23]. In addition to this, there is inadequacy in the 
disease surveillance systems and under-resourced 
laboratories [24]. In addition, it leads to the 
development of resistant strains of pathogens because 
you have overuse of chemical pesticides [25] [26]. The 
multifaceted nature of biological organisms and the 
polygenic traits of resistance characteristics make 
effective management strategies ever so difficult [27]. 
The conventional techniques for diagnosing plant 
diseases are based on physical observations and 
laboratory tests which take a lot of time and are highly 
prone to human errors [28] [29]. Most of the existing 
prediction algorithms are not able to combine high-
dimensional data and genomic and phenotypic data 
effectively [30]; traditional machine learning 
algorithms are very limited in nonlinear and complex 
interactions among genetic markers [31] [32]. Genomic 
datasets are often very large and sparse in nature, 
which calls for dimensionality reduction without losing 
information, and that has not been an efficient task for 
many methods [33] [34]. Conventional disease 
prediction approaches very rarely take input as real-
time or molecular level information such as CRISPR-
based markers [35]. Current models also fail to 
generalize well to other plant species or environmental 
conditions [36]. Manual feature engineering can be 
subjective and less efficient in capturing biological 
relationships [37]. Present classifiers lack 
interpretability and poor accuracy which blocks them 
from field deployment in practical settings [38] [39]. 
Data fusion from different sources is mostly not 
optimized but heuristically done [40]. Hence, there is 
an urgent need for developing more robust, automated, 
and interpretable prediction frameworks [41].  

For this reason, proposed a hybrid model 
combining AE and XGBoost models to predict disease 
resistance using CRISPR-based genomic data [42] [43]. 
The Autoencoder considers the deep learning 
component that works for unsupervised feature 
extraction and dimensionality reduction to efficiently 
capture latent patterns in high-dimensional data [44]. 
It compresses both genomic and phenotypic features 
into significant representations while filtering away 
noise and redundancy [45] [46]. These learned 
features will be passed on to XGBoost-an extremely 
efficient ensemble-based classifier deliberately 
designed to handle structured and imbalanced datasets 
[47]. Hence, both the non-linear relationships and 
high-level interactions among the features may now be 
captured by the model. Specific genetic edits related to 
disease resistance are incorporated into the input 
through CRISPR data. This approach offers early and 
accurate prediction of susceptibility or resistance of 
plants to fusarium wilt. The proposed system 
outperforms other isolated techniques in terms of 
classification performance and biological 

interpretability [48]. The requirement for computation 
complexity is reduced while maintaining high accuracy 
[49]. Thus, ultimately, this model facilitates precise 
breeding and smarter decisions in plant health 
management [50]. 

In the preceding Section 2, the Literature Review 
presents various existing methods and examines their 
bottlenecks to propound. Later came Section 3, focused 
on the augmented Plant diseases Deep Learning 
challenges regarding disease prediction [51]. The 
Proffered Methodology then discusses Autoencoder–
XGBoost-Based Plant Classification System Section 4. 
This is followed by Section 5, which presents results 
and discussions, while Section 6 conclusion and 
indicates some directions for future work. 
 
2. Literature Review 
 
Garikipati & Palanisamy, (2018), [52] Proposed Studies 
show that AI makes recruitment easy through resume 
screening and interview scheduling while Blockchain 
enhances secure credential verification. Techniques 
like Natural Language Processing or machine learning 
increase performance, whereas the demerits are data 
privacy and high costs due to lack of standardization. 
Hofer et al., [53] with reinforcement learning, NLP, and 
predictive analytics to improve efficiency and decision 
making; AI and ML improve workforce optimization. 
Algorithmic bias, data privacy, system integration, and 
lack of adaptability from the workforce into employing 
such systems are among the major hindrances, 
however. 

Radhakrishnan & Mekala, (2018) [54] suggested, 
HIBE, RBAC, and SMC are the popular combinations in 
Health systems for secure access and data secrecy. AI 
provides much better scalability and efficiency, but 
negative elements in these models include overheads 
in computation, complexity in integration, and issues 
with real-time performances. Khan et al., (2021) [55] 
Federated and split learning in combination with GNN 
and Hash graph would improve cybersecurity through 
decent rally and securely detecting threats. These 
techniques promote the real-time abnormal detection 
aspect with better scalability. But there are still 
problems like complex system architecture, 
interoperability issues, and performance consistency.  
Kushala & Rathna, (2018) [56] Predicting customer 

churn with AI and ML methods like Random Forest and 

ANN enhances CRM. Some important methods include 

feature engineering and model evaluation, even though 

interpretability, data quality, and continuous 

monitoring pose challenges. This type of initiative was 

suggested by Patocchi et al., (2020) [57]. ML has 

improved HRM by enhancing hires and retraining via 

predictive analytics and case-based methods. 

Additionally, it gives HR units empirical tools for more 

strategic decision making. Some of these issues include 

HR data literacy, model transparency, and possible bias 

[58]. 
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3. Problem Statement  
 
Despite a growing trend of adopting technologies such 
as AI, ML, and blockchain across different domains, 
including recruitment, HRM, cybersecurity, mHealth, 
and CRM, organizations are still facing serious 
limitations in terms of scalability, privacy, 
interoperability, and model transparency [59]. 
Advanced techniques like federated learning, 
predictive analytics, secure access control, etc., are 
usually restricted by reasons such as very high 
computational costs, algorithmic bias, and system 
complexity [60]. This ends up restricting the real-life 
applicability and generalizability of intelligent 
frameworks [61]. 

There is a need for optimized AI systems which 
should be securely interpretable and could function 
well in such a distributed and dynamic ecosystem [62]. 
Data privacy, standardization, and workforce 
adaptability all need to be considered to leverage the 
full potential of these upcoming technologies. Their 
achievement will determine the scalability and 
sustainability of successful intelligent decision-support 
systems in the future [63]. 

 
4. Proposed Framework of Autoencoder–XGBoost-
based Plant Classification System 
 
The model pipeline is designed for a machine learning-
based classification system that can learn from plant 
data which has been described in Figure 1. It starts 
with data collection for analysing a wide range of plant 
species or traits. The next step would involve 
preprocessing the data. Also referred to as horizontal 
concatenation, it is done as a part of data fusion for 
early fusion of multi-source data (e.g., genomic and 
phenotypic). A comprehensive feature integration is 
established so that the model is enabled to capture 
complex relationships between different types of data. 
A unified dataset is then fed into the feature extraction 
and classification stage using a hybrid Autoencoder–
XGBoost model. The Autoencoder performs 
unsupervised dimensionality reduction, extracting 
deep feature representations adopted for model 
learning, while XGBoost handles the classification task-
defined accuracy and interpretability is shown in 
Figure (1), 
 

 
 

Figure 1: Block Diagram of Autoencoder–XGBoost-
Based Plant Classification System 

Bayesian optimization can be applied to optimize the 
hyperparameters of the hybrid model and thus can 
lead to improvements in the learning efficiency of the 
models while decreasing the demands of manual 
tuning. This would also help in the search for the best 
configuration and leaves the accuracy of the model 
intact. Finally, a performance evaluation of the system 
can be done through metrics like accuracy, precision, 
recall, and F1-score. Therefore, such a model is truly 
reliable and generalized well so that it suits the real-
world scenarios of classification in plants, predicting 
disease resistance, and other tasks in plant science-by 
completing the end-to-end model development cycle. 
 
4.1 Data Collection 
 
The 1000 Cannabis Genomes Project creates a public-
access data set that includes genomic and 
transcriptomic information of over 1000 cannabis 
samples. The samples were collected from around 850 
strains. The data, coming from several research 
institutions, includes sample metadata, reference 
sequences, variant calls, and transcriptomic profiles. 
Hosted on Google Big Query and Cloud Storage, it 
enables the research of genetic diversity, traits of 
strains, and gene expression in Cannabis sativa. Thus, it 
also becomes important as evidence of research in 
genomics and breeding.  
 
Dataset Link: https: // www.kaggle.com/ datasets/ 
bigquery / genomics- cannabis 
 
4.2 Data Preprocessing with Horizontal 
Concatenation for Early Fusion 
 
This is where input data preprocessing comes-in with 
respect to early fusion-it integrates different kinds of 
features like genomic (SNPs) and their phenotypic 
traits-into one synthetic feature input matrix before 
the actual training of the machine learning model. This 
is achieved far along the lines of horizontal 
concatenation so that each individual feature type is 
pre-processed independently and then combined 
alongside across the same sample axis. 
 
4.2.1 Encode Genomic Data 
 
The first stage in preprocessing data about early fusion 
consists of transforming genomic data-those of Single 
Nucleotide Polymorphisms (SNP)-from categorical 
genotype formats into numerical values compatible 
with machine learning models. The encoding for each 
SNP has been set as follows: AA (homozygous 
reference) 0, AG (heterozygous) 1, GG (homozygous 
alternate) 2. Therefore, this transformation leads to a 
numerical matrix defined as in Eq. (1),  
 

Xgeno ∈ ℝ𝑛×𝑚            (1) 

 
Where, n is the number of plant samples and mmm is 
the total number of SNP features. Thus, with this 
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encoding, downstream evaluations would be clearer 
since the model quantitatively implements genetic 
variations, which helps the model in effectively 
recognizing patterns during training.  
 
4.2.2 Normalize Phenotypic Data 
 
For standardization of phenotypic traits like plant 
height, leaf area, or resistance index, together we group 
all features with Z-score normalization. This is 
extremely necessary since raw phenotypic values could 
differ in the units and magnitudes; otherwise, they may 
have an adverse impact on the learning of the model. 
The Z-score normalization formula is given by in Eq. 
(2), 
 

𝑥′ =
𝑥−𝜇

𝜎
              (2) 

 
Where, x corresponds to the original value, μ signifies 
the mean, and the standard deviation is denoted by σ of 
that feature. Thus, after this transformation, the 
features will have a mean of 0 and a standard deviation 
of 1; hence, they can be fairly compared across 
different traits. On passing through normalization, the 
matrix of phenotypic data is categorized as expressed 
in Eq. (3), 
 
Xpheno ∈ ℝ𝑛×𝑝            (3) 

 
Where n is the number of samples and p is the number 
of phenotypic traits. Thus, in this step, the phenotypic 
data are now ready for better integration with genomic 
data during early fusion. 
 
4.2.3 Horizontal Concatenation (Early Fusion) 
 
Early fusion refers to horizontally concatenating pre-
processed genomic and phenotypic data matrices. This 
way, SNP-based molecular information is consolidated 
with visible plant traits for each sample. The outcome 
is a comprehensive feature set representing genetic 
and phenotypic variance as per Eq. (4), 
 

Xcombined = [Xgeno ∣ Xpheno ] ∈ ℝ𝑛×(𝑚+𝑝)m   (4) 

 
This fused dataset becomes the input for downstream 
models, including autoencoders for dimensionality 
reduction and XGBoost for classification. Joint learning 
from both data types will give more insights into the 
disease-resistance patterns for the prediction of 
Fusarium wilt. 
 

4.3 Feature Extraction & Classification using 
Hybrid AE + XGBOOST 
 

The joint dataset is finally passed through an 
Autoencoder to effect unsupervised feature extraction 
and dimensionality reduction. The AE learns a 
compressed representation of input data, which helps 
it reduce noise and capture complex, nonlinear 
relationships-very important in genomic data. 

4.3.1 Feature Extraction with Autoencoder 
 
The Feature Extraction step using an AE seeks to 
reduce the dimensionality of the fused dataset with as 
little loss as possible in the meaningful biological 
patterns captured in the data. An autoencoder consists 
of two main functions: an encoder fθ, which 
compresses the high-dimensional input data Combined 
∈ Rn×d (where d=m+p) into a lower-dimensional latent 
representation Z ∈ Rn×k, and a decoder gϕ, which 
reconstructs the input from the latent space. The 
encoding process is defined as Eq. (5), 
 
Z = 𝑓𝜃(Xcombined ),  with  𝑘 ≪ 𝑑       (5) 
 
The decoder attempts to reconstruct the original input 
is mentioned as Eq. (6), 
 

X̂ = 𝑔𝜙(Z),  such that  X̂ ≈ Xcombined       (6) 

 
There is typically loss incurred for reconstruction as 
measured by MSE as shown in Eq. (7), 
 

ℒAE =
1

𝑛
∑  𝑛

𝑖=1 ‖X𝑖 − X̂𝑖‖
2

         (7) 

 
This process produces a compressed latent 
representation Z which filters out noise and retains the 
essential features, thus making it ideal input for 
downstream classifiers such as XGBoost. 
 
4.3.2 Classification with XGBoost 
 
In the classification stage, the latent characteristics Z, 
drawn from the Autoencoder, are input for XGBoost- a 
superior-class gradient boosting decision tree classifier 
in the structured data locus. The XGBoost ensemble 
comprises a number of decision trees for making 
predictions. The model receives input Z and 
corresponding target labels y. Below is the prediction 
function of XGBoost defined, in Eq. (8). 
 
𝑦̂ = ∑  𝑇

𝑡=1 𝑓𝑡(Z), 𝑓𝑡 ∈ ℱ          (8) 
 
Where T is the number of trees, ft is the t-th regression 
tree, and F is the space of all possible trees. The model 
is trained by minimizing the regularized objective 
function is mentioned as Eq. (9), 
 
ℒXGB = ∑  𝑛

𝑖=1 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑  𝑇
𝑡=1 Ω(𝑓𝑡)      (9) 

 
where 𝑙(𝑦𝑖 , 𝑦̂𝑖) is the loss function (e.g., logistic loss for 
classification), and the regularization term Ω(f) defined 
as in Eq. (10), in such a way that 

 
Ω(𝑓) = 𝛾𝑇 +

1

2
𝜆 ∑  𝑗 𝑤𝑗

2          (10) 

 
This makes controlled overfitting by leaving a penalty 
for the model complexity involved in it. This is how the 
compressed latent features and gradient-boosted trees 
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in XGBoost are combined to ensure that it delivers a 
very high accuracy in predicting resistance to Fusarium 
wilt. 
 
4.4 Bayesian Optimization for Hyperparameter 
Tuning 
 
Bayesian Optimization stands as an eminent 
optimization process for the hyperparameter selection 
of XGBoost since it develops a surrogate model to 
model the objective function f(θ), which would either 
be a Gaussian Process or any other variant. The 
recommended hyperparameter set θ is then chosen 
according to an acquisition function that maximizes 
expected improvement of f(θ), as in Eq. (11),  
 
𝜃𝑡+1 = arg max

𝜃
 𝔼[max(𝑓best − 𝑓(𝜃),0)]     (11) 

 
Where, fbest is the current best observed value. It 
explores a trade-off between exploration of uncertain 
areas and exploitation of promising regions, ultimately 
resulting in the parameter optimization of XGBoost as a 
function of the amount of classification loss, defined in 
Eq. (12),  
 
ℒXGB = ∑  𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑  Ω(𝑓𝑡)        (12) 
 
The latter optimization would enhance the predictive 
capacity of Fusarium wilt resistance classification from 
the AE-extracted latent features. 
 
5. Results and Discussion 
 
The suggested Hybrid Autoencoder-XGBoost model 
presented in this section is employed for the 
classification of Fusarium wilt resistance on the 
CRISPR-based genetic and phenotypic data. The 
procedure follows data pre-processing, dimensionality 
reduction, and classification, followed by evaluations 
based on accuracy, precision, recall, and F1-score 
measures. The model's excellent predictive ability and 
balanced classification of diseased and not-diseased 
cases are demonstrated through text by confusion 
matrices and bar plots. Therefore, these results 
confirm this model's applicability in integrating 
genomic and phenotypic traits for disease prediction 
and also lend support to crop improvement and 
disease resistance research. 
 
5.1 Confusion Matrix Analysis for Fusarium Wilt 
Resistance Classification 
 
The confusion matrix depicted above represents the 
classification power of the proposed hybrid 
Autoencoder-XGBoost model embodying CRISPR-
derived genomic and phenotypic information for the 
prediction of resistance to Fusarium wilt. It involves a 
binary classification procedure, showing "0" for 
resistant (non-disease) and "1" for susceptible 
(disease) samples. The matrix depicts a perfect 

classification ability in that five resistant and five 
susceptible samples were classified correctly. No false 
positives nor false negatives coincide with the matrix, 
therefore achieving 100% accuracy, precision, recall, 
and F1-score is displayed in Figure (2), 
 

 
 

Figure 2: Confusion Matrix Assessment for Fusarium 
Wilt Classification 

 
This superior performance evidences both the capacity 
of the model to extract informative latent features via 
the autoencoder and to classify effectively using 
XGBoost, while the introduction of CRISPR-derived 
genomic variations adds relative biological importance 
to increase the model's predictive power. In effect, 
these findings suggest the potential applicability of the 
model in disease resistance studies and genomics-
assisted crop improvement, but further validation 
across heterogeneous datasets would be needed to 
establish its robustness and scalability. 
 
5.2 Bar Graph Analysis of Disease vs. No Disease 
Prediction in Fusarium Wilt Classification 
 

The bar plot represents the outcome classifications 
from the model applied to the plant samples for the 
detection of resistance to Fusarium wilt based on 
CRISPR genomic data.  

 
 

Figure 3: Visualization of Classification Results: 
Disease vs. No Disease in Plants 
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The two bars represent the number of samples 
predicted as "Disease" and "No Disease." Each class-
Disease (red) and No Disease (green)-has an equal 
number of 5 samples, thus indicating a perfectly 
balanced prediction outcome across the dataset. This 
also means the model has successfully learned to 
discern between infected and healthy plants is shown 
in Figure (3). 

Therefore, not only does the prediction count 
confirms the robustness of the classifier in handling 
both classes without bias, but it also confirms that the 
genomic and phenotypic input features have been duly 
processed and fused. This graphical representation 
plays an important role in performance evaluation by 
allowing the class-wise prediction distribution to be 
easily tracked in complement to other metrics, 
including accuracy, precision, recall, and the confusion 
matrix. Such plot aids are paramount during 
biomedical classification tasks, especially when 
ensuring equitable prediction rates for disease 
resistance in agricultural applications. 
 
Conclusion and Future Works 
 
That is the novel development of a hybrid deep 
learning–machine learning model into an AE coupled 
with an XGBoost model for Fusarium wilt resistance 
prediction based on CRISPR-derived genomic and 
phenotypic data. The introduced methodology removes 
the bottlenecks associated with classical plant disease 
prediction techniques, as it does dimensionality 
reduction to eliminate noise and nonlinear feature 
learning through AE then robustly classifies it using 
XGBoost. Genomic and phenotypic features have been 
fused early to ensure complete learning of data from 
both molecular and trait levels. The CRISPR-tagged 
genomic information was effectively embedded in the 
model to advance its biological interpretation so as to 
be able to pinpoint confidence-patterns associated 
with disease resistance precisely. Classification 
performance, scalability, and interpretability have been 
some characteristics of this model that have suited it to 
modern plant breeding and contemporary strategies 
on disease management.  

Many different paths could be followed in future 
work to improve this framework. For instance, 
multiclass disease resistance levels or pathogens could 
be included in classification. Furthermore, temporal 
and environmental parameters could also be included 
to put the model to test under various field conditions. 
Another advancement of deep learning architectures 
has been demonstrated by the use of transformers or 
GNNs. More important will be validating the evidence 
from actual datasets across different crop species and 
environments to ordinary deployment. Last but not the 
least, the development of a user-friendly decision 
support system or mobile application will be a great 
boon for breeders, researchers, and farmers alike in 
adopting timely and accurate interventions for plant 
health. 
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