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Abstract  
  
Industrial Control Systems (ICS) prove more susceptible to cyber threats which makes it necessary to create effective 
threat detection systems. The improvements in cybersecurity fields do not deliver sufficient scalability with real-time 
threat detection functionality. The paper designs an AI-based framework for ICS cybersecurity defense which applies 
deep learning to automate threat discovery along with risk reduction procedures. This research explores machine 
learning While deep learning (DL) models detect cyber threats using CICIDS-2017 dataset information. The testing 
phase included a CNN primary classification model against KNN traditional models and Naïve Bayes (NB) traditional 
models together with Support Vector Machine (SVM) traditional models. The CNN model exhibited the best 
performance by reaching 99.58% accuracy and precision as well as recall and F1-score resulting in its well-
documented superiority in detecting cyber threats. The model achieved verification of its performance by examining 
accuracy curves and loss diagrams together with confusion matrix results. Deep learning has proven its effectiveness 
in industrial control system security by delivering sustainable real-time invasion detection capabilities along with 
risk management solutions. 
 
Keywords: Cybersecurity, Cyber Threats, Industrial Control Systems (ICS), Threat Detection, Risk Mitigation, Deep 
Learning (DL), CICIDS-2017. 
 
 
Introduction 
 
The internet expansion alongside connected devices 

between systems created a transformation of 
industries, which delivers remarkable automation 
capabilities as well as improved efficiency. Digital 

transformation brought extensive cybersecurity risks 
into the space along with its advancements [1]. 

Cybersecurity utilizes technologies along with 
practices and processes to safeguard systems while 
protecting networks and data from digital intruders 

who commit various attacks, including unauthorized 
system entry and targeted service interferences. 

Unprecedented cyber-attacks that grow increasingly 
sophisticated occur more often, thus threatening 
individual safety along with organizational stability 

and industrial operations [2]. The developing dangers 
demand sophisticated, proactive, smart defensive 
strategies because these present the critical necessity 

to defend against these evolving threats 
Digital system vulnerabilities form the basis for 

cyber threats that keep becoming trickier to manage 
with conventional security methods [3][4][5].  

 

*Corresponding author’s ORCID ID: 0000-0000-0000-0000 
DOI:  https://doi.org/10.14741/ijcet/v.13.6.11 

The necessity for cybersecurity systems that can 
quickly identify, halt, and defend against security 
threats during active attacks makes them more 
adaptable. The attacks create devastating effects that 
include monetary loss, together with harm to 
reputation, and threaten public safety [6][7][8]. 
Elements of advanced defense mechanism 
development become essential for businesses and 
organizations to counter the increase of sophisticated 
cyber threats and pre-emptively safeguard against new 
attacks before damage occurs. 

The risk of cyberattacks exists primarily against 
Industrial Control Systems (ICS) since these systems 
control and automate vital industrial operations 
[9][10]. Industrial organizations utilize these systems 
to control their key processes in manufacturing 
industries and both energy generation facilities and 
transportation systems. Multiple cyberattacks threaten 
Industrial Control Systems because organizations 
continue to increase their dependence on internet 
access and cyber-enabled applications [11][12][13]. 
ICS vulnerability to cyber-attacks includes potential 
operation disruptions along with monetary losses and 
increased safety risks to the public. Defending ICS 
infrastructure remains essential for industrial 
operators and is essential to secure both national and 
worldwide infrastructure systems 
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In order to safeguard ICS against expanding 
cyberthreats, automated threat identification and risk 
mitigation techniques are becoming more and more 
important. The detection methods of signature-based 
detection coupled with manual monitoring prove 
inadequate for modern changing security conditions. 
The capacity of ML and DL to analyse enormous 
volumes of real-time data and identify complex 
warning patterns of cyberthreats results in effective 
solutions [14]. ML and DL technology applied to ICS 
systems enables immediate, better threat identification 
that reduces organization response times and shields 
infrastructure from cyber-attack damage. 
 
Motivation and Contribution of the Study 
 
The study addresses the rising cybersecurity threats 
against industrial control systems, particularly those 
important for industrial infrastructure. A cyberattack 
on ICS systems causes major operational disruptions 
and financial losses, together with increased security 
risks. Traditional security has limits in terms of 
scalability and cannot identify threats rapidly, despite 
its positive outcomes. The research develops improved 
DL methods to enhance threat detection along with 
risk reduction in ICS environments because they 
provide increased accuracy and efficiency. The 
following is a list of this study's primary contributions: 
Utilization of the CICIDS-2017 dataset for cyber threat 
industrial control systems detection. 

Preprocess the data to remove inconsistencies and 
handle missing values. 

To determine which characteristics were most 
important for model performance, feature selection 
was done. standardized data using Z-score 
normalisation, rescaling features to have a standard 
deviation of 1 and a mean of 0. 

Employed a CNN as the primary classification 
model, using convolutional layers.  

Model performance was assessed using F1-score, 
AUC-ROC, recall, accuracy, and precision. 
 

Justification and Novelty 
 

The study is justified by the fact that cyberthreats are 
becoming more complicated and frequent, which calls 
for more advanced and dependable detection systems 
than traditional ones. By leveraging the CICIDS-2017 
dataset and employing DL, particularly a CNN, this 
research introduces an effective approach to 
automatically extract hierarchical features for 
improved threat detection. The novelty of the study 
stems from its integrated pre-processing pipeline, 
careful feature selection, and the application of a CNN 
model typically used in image processing adapted for 
cybersecurity, demonstrating enhanced performance 
in detecting sophisticated attack patterns. 
 
Structure of the paper 
 
The following structure of the paper is as follows: 
Section II provides the background study on cyber 

threat detection. Research approach for this study is 
provided in Section III. Section IV provides the 
experiment's findings and a performance analysis of 
the model. Section V offers the study's conclusion and 
next directions. 
 
Literature Review 
 
In this section, the study reviews the literature on 
threat classification and detection. The vast bulk of the 
reviewed literature focused on classification 
techniques.  

Bhure et al. (2022) Detecting and avoiding fake 
components has become a top issue, and several 
techniques have been developed to assess the ICs' 
validity. Many data sets, processing power, and time 
are needed to train machine learning-based models.  
With limited resources, the suggested automated 
model uses a transfer learning approach to detect 
counterfeit ICs from several picture capture modalities, 
yielding more accurate findings. A comparative 
analysis shows that VGG16 produces a prediction with 
80% accuracy that is both resilient and generalized.  In 
addition to the Inception v3 model, the proposed 
method uses a number of pre-trained models, such as 
the VGG16 and VGG19 vision models [15]. 

Wang et al. (2022) Cyberattacks on key 
infrastructures and modern industrial systems are 
becoming more frequent, and if they are not identified 
quickly, they can cause serious operational and 
financial harm.  Seven criteria are used to evaluate the 
models using actual datasets from gas pipeline and 
water storage tank systems (e.g., accuracy, F1-score, 
AUC).  Because of its robustness, overfitting avoidance, 
and feature invariance, XGBoost performs better than 
other methods, making it an effective way to detect 
cyberattacks in industrial networks [16].  

Mubarak et al. (2021) The ICS test kit produced 
industrial datasets that include the industrial 
processes' cyber-physical system. These datasets, 
which comprise a typical baseline and several 
industrial hacking situations, are analyzed for research 
purposes. Metadata is obtained by deep packet 
inspection (DPI) of network packet flow 
characteristics. DPI analysis allows for greater 
understanding of the contents of OT data, contingent 
on communication protocols. After the industrial 
datasets have been profiled and pre-processed, DPI is 
utilized to examine the anomalies. The processed data 
is normalized to facilitate algorithm analysis, and it is 
then modelled for anomaly identification using ML-
based, cutting-edge DL ensemble LSTM algorithms. 
These days, the deep learning method is employed to 
improve OT IDS performance [17]. 

Dutta and Kant (2021) The combination of 
combining ML methods and the Cyber Threat 
Intelligence (CTI) platform with conventional 
protection measures helps us create a secure, reliable, 
and efficient structure for clever gadgets to address all 
present and future security issues. It also aids in the 
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development of an automated, adaptable security 
architecture for IoT devices. With the help of the 
TensorFlow module and the CTI platform, it created a 
TinyML-based framework that uses an NB supervised 
ML classifier to anticipate potential dangers that can 
infect smart gadgets. The end result is a threat 
prediction accuracy of 96.8% and 96.3% for the 
training and test datasets. Modern cybercriminals are 
using improved TTPs to undermine the conventional 
signature-based threat detection method [18]. 

Bulle et al. (2020) assesses SCADA communication 
over time at the OS level, identifies and selects the best 
operating system to employ for intrusion detection 

opportunistically for dependability.  Experiments 
conducted using the front-end of several SCADA 
operating systems demonstrate that OS diversity 
increases detection accuracy by up to eight more attack 
types and expands the scope of intrusion detection. 
Furthermore, their idea may opportunistically select 
the most reliable OS to use for the current environment 
behavior, improving the system accuracy by up to 8% 
on average, in contrast to a single OS method [19]. 

Table I, Limits, and Future Work presents a 
comparative overview of the background research 
based on its findings. 

 
Table 1 Comparative Analysis of Machine Learning Approaches for Cyber Threat Detection 

 
Author Source Methodology Findings Limitation Future Work 

Bhure et al. 
(2022) 

Detection of 
counterfeit 

ICs 

Transfer learning with 
limited resources using 

pre-trained models 
(VGG16, VGG19, Inception 

v3) 

VGG16 model achieved 80% 
accuracy, offering robust and 
generalized predictions for 

detecting counterfeit ICs 

Requires image 
data and may not 
generalize to all 

types of ICs 

Apply the model to 
broader IC types 

and real-time 
industrial 

inspection systems 

Wang et al. 
(2022) 

Cybersecurity 
in industrial 

systems 

Used real datasets (water 
storage, gas pipelines); 

evaluated with 7 metrics; 
XGBoost for detection 

XGBoost fared better than 
the others because of its 

feature invariance, 
robustness, and resistance to 

overfitting. 

May be dataset-
specific; needs 

validation across 
other industrial 

setups 

Expand to 
additional 

industrial domains 
and incorporate 
hybrid models 

Mubarak et 
al. (2021) 

OT traffic 
anomaly 
detection 

Deep Packet Inspection 
(DPI) + metadata profiling 

+ LSTM ensemble deep 
learning model 

Enhanced detection of 
industrial cyberattacks 
through rich OT traffic 

metadata and deep learning 

High computational 
cost and 

dependency on DPI 
tools 

Optimize for real-
time performance 
and reduce model 

complexity 

Dutta and 
Kant 

(2021) 

IoT 
cybersecurity 

CTI + TinyML framework 
using Naive Bayes (NB) in 

TensorFlow for threat 
prediction 

Achieved high accuracy 
(96.8% training, 96.3% test) 

for IoT threat prediction 

TinyML-based 
models may have 

limitations in 
adaptability across 

different IoT 
devices 

Develop a more 
dynamic CTI-

TinyML hybrid 
framework for 
evolving TTPs 

Bulle et al. 
(2020) 

SCADA OS-
level 

intrusion 
detection 

OS-level analysis of SCADA 
communications; 

evaluates multiple OS 
front-ends for intrusion 

detection 

OS diversity improves 
detection accuracy, adding 8 

new attack categories and 
increasing system accuracy 

by 8% 

Limited to SCADA 
environments and 
OS configurations 

Broaden the 
approach to 

heterogeneous ICS 
environments and 
explore adaptive 

OS switching 
strategies 

 
Methodology 
 

This study aims to assess DL and ML models for cyber 
threat identification. The CICIDS-2017 dataset is used 
in the suggested approach for cyber threat detection. 
Then, data pre-processing was performed, which 
included handling missing values using imputation 
techniques, removing inconsistencies and duplicates, 
and applying one-hot encoding for categorical features 
to convert them into numerical representations. After 
selecting the most significant features using feature 
selection, the data was standardised using Z-score 
normalisation, which rescaled the characteristics must 
have a standard deviation of one and a mean of zero. 
Twenty percent was set aside for testing, while 80 
percent of the pre-processed data was kept for 
training.  The primary classification model employed 
was a CNN with convolutional layers.  The model's 
efficacy was evaluated using F1-score and AUC-ROC 
metrics, as well as accuracy tests combined with 
precision and recall. 

 

 
Fig.1 Flowchart of Cyber Threat Detection 

Remove 
inconsistencies 

Missing value 

Data pre-
processing 

Feature selection Z-score 
normalization  

Data splitting  

Training  Testing   
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CNN 

Performance matrix 
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Results  
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One-hot 
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The entire process of the Cyber threat detection Figure 
1 flowchart appears in the diagram below: 
 
Data Collection 
 
The CICIDS2017 dataset exists as a complete 
benchmark dataset specifically developed for IDS 
applications. Its 50,000 samples that contain 80 
features that describe network traffic characteristics. 
This dataset comprises two distinct categories of 
instances, where 25,000 entries belong to the normal 
class and 25,000 instances represent anomalies. The 
dataset functions as the essential base to build and 
validate cyber threat detection systems. The tools for 
visual representation that include heatmaps and pie 
plots show feature distribution patterns and attack 
patterns through graphs as demonstrated in below: 
 

 
 

Fig.2 Heatmap Matrix for Various Features 
 
A heatmap contained in Figure 2 depicts the various 
feature correlations in the dataset through negative 
blues and positive red hues. Strong positive and 
negative feature correlations show themselves through 
darker red and blue square cells, respectively. Self-
correlation produces a line that runs diagonally across 
the heatmap because it has a constant value of 1, while 
the heatmap displays symmetry about this axis. The 
many weak correlations shown in light color help 
uncover relationships between features, which experts 
can use to better defend their cybersecurity systems. 
 
Data Preprocessing 
 
The processing of ML data requires organizers to 
change disorderly, unprocessed information into 
predictable structures that models can utilize. This step 
is essential because raw data often contains missing 
values, inconsistencies, and redundancies. The pre-
processing actions described below are as follows: 
Remove inconsistencies: Data cleaning in threat 
detection removes inconsistencies, duplicates, and 
irrelevant data while preserving critical threat-related 
patterns. This enhances ML model accuracy, enhancing 
real-time threat detection and lowering false positives. 

Missing value: In cyber threat detection, missing 
values can distort are handled using imputation 
techniques to maintain data integrity and improve 
model accuracy. 
 
One-Hot Encoding for Labelling 
 
Data encoding refers to converting the numerical 
representation of categorical data that ML systems may 
utilize. One-hot encoding is basically a feature 
engineering method for nominal categorical data.   
Applying machine learning (ML) to categorical data 
without a tree-based approach requires that the data 
be converted into numerical form. 
 
Feature Selection  
 
Finding the characteristics that have the most influence 
on an issue is known as feature selection. To find the 
most pertinent characteristics, feature selection is 
utilized and is often used due to its performance-
enhancing properties. Determining which attributes 
should be included requires a deep comprehension of 
the facts being utilized. The score of importance 
features is provided in below: 
 

 
 

Fig.3 Importance score of Each Feature 
 
Figure 3 shows a bar graph showing each feature's 

importance score from the CIC-IDS2017 dataset. With 

relevance ratings ranging from 0.00 to 0.07, it draws 

attention to the significance of different elements 

within the dataset. The features on the left side of the 

graph have higher importance scores, indicating they 

are more influential in the context of the dataset. 

 
Z-Score Normalization 
 
The z-score normalization is one of the most popular 
and effective normalization techniques. Z-score 
normalization helps handle features with different 
scales (e.g., packet size, and flow duration) to enhance 
machine learning models' performance. This ensures 
that no single feature dominates. Z-score normalization 
transforms data by rescaling characteristics with a 
standard deviation of Equation (1) and a mean of 0. 
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 𝑍 =
𝑋−𝜇

𝜎
 (1) 

 
Where μ is the feature mean and X is the original data 
point, 𝜎s the standard deviation. 
 
Data Splitting 
 
Two pre-processed data sets are available: one for 
testing and one for training. The remaining 80% of the 
data is used in the testing set to evaluate the model's 
performance, while the remaining 20% is utilized in 
the training set to train the model. 
 
Classification With CNN Model 
 
The first CNN block uses a convolutional layer, then 
Relu activation, max pooling, and dropout to efficiently 
extract and regularise features. The CNN blocks use 
varying kernel sizes to extract diverse features, 
followed by a flattened output passed to an MLP with 
dense layers, L2 regularization, batch normalization, 
Relu activation, and dropout to reduce overfitting and 
improve learning [20]. The final network layer uses the 
proper cross-entropy loss function for optimization, 
sigmoid for multi-class classification using SoftMax, 
and for binary classification using [21]. The input data 
categories are chosen by the attributes. By filtering the 
input data, the convolution operation in CNN layers 
serves as a crucial step in feature extraction. By 
calculating the dot product at each sliding position, the 
convolution kernel's sliding movement over the feature 
map creates a new feature map. Equation (2) provides 
a description of the mathematical formulation of 
convolution processes. 
 
 𝑧𝑖,𝑗 = (𝑋 ∗ 𝐾)𝑖,𝑗 = ∑ ∑ 𝑍𝑖+𝑚,𝑗+𝑛𝑛 𝑘𝑚,𝑛𝑚  (2) 

 
The ReLU activation function is a straightforward yet 
effective nonlinear transformation that is displayed in 
Equation (3). This method improves training speed and 
system performance by sparsely activating 
components, maintaining positive values, preventing 
gradients from disappearing, and producing zero 
outputs for negative inputs. 
 
 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (3) 
 
This max pooling method lowers the input map spatial 
size but maintains key information within it. As a part 
of the operation it extracts the largest value present in 
a defined pooling area to achieve input reduction. 
Equation (4) presents the mathematical representation 
of max pooling operation. 
 

 𝑝𝑖,𝑗 = max (𝑋𝑖:𝑖+𝑝,𝑗:𝑗+𝑞 (4) 

 
One training technique involves the dropout layer 
which enables random zero-filling of p percentage 
input units to prevent model overfitting. The 
application of this method improves model 

generalization because it prevents dependence on 
individual input features according to Equation (5). 
 

 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑥) =  {
𝑥 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1−𝑝

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝
 (5) 

 
The final output layer applies sigmoid activation to 
produce probability values that show the chance of 
instances belonging to the positive category. The 
mathematical representation of this appears in the 
Equation (6). 

                                𝜎(𝑧) =  
1

1+𝑒−𝑧 (6) 

 
The last dense layer produces Z which represents the 
output value. The output layer performs multi-class 
categorization using the SoftMax algorithm. Producing 
probability distributions across different classes 
through the model. This may be expressed 
quantitatively using Equation (7). 
 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
 (7) 

 
where 𝑧𝑖  is the raw score for class j is represented by 
the output for class 𝑖 and 𝑧𝑗 . 

 
Performance Metrics 
 
A collection of assessment criteria, sometimes referred 
to as performance metrics, was employed to assess the 
efficiency of detecting cyber threats. A table illustrating 
the extent to which A classification model, also referred 
to as a "classifier," operates as a confusion matrix 
describes when it is applied to a set of test data for 
which the true values are known.   The ML model's 
predicted values and the actual target values are 
contrasted in the matrix[22]. The final models were 
evaluated using Five evaluation measures were 
employed to evaluate the final models: F1-score, recall, 
accuracy, and precision. TP, FP, TN, and FN are the first 
metrics used by confusion matrices to assess the 
models: 
True positive (TP): An assault sample has been 
appropriately classified as such. 
True negative (TN): It has been accurately 
determined that a normal sample represents typical 
traffic. 
False positive (FP): An attack has been incorrectly 
identified from a typical sample. 
False negative (FN): A sample of an assault was 
mistakenly classified as regular traffic. 
Accuracy: The proportion of all samples with correctly 
recognized classes. In balanced datasets, this statistic is 
commonly used to evaluate the efficacy of an IDS. It is 
expressed in Equation (8): 
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TN + TP

TP + TN + FP + FN
 (8) 

 

Precision: shows how many attack samples were 
completely predicted out of all the expected attack 
samples. It is represented as Equation (9): 
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 Precision =
TP

TP+FP
 (9) 

 
Recall: Recall, also known as sensitivity, is the 
proportion of correctly predicted attack samples to all 
samples that make up an attack. This measurement is 
occasionally called the Detection. It is represented in 
Equation (10): 
 

 Recall =
TP

TP+FN
 (10) 

 
F1-score: The harmonic means of the precision and 

recall parameters. The F1 score provides improved 

system assessment by presenting the gap between 

Precision and Recall to determine solution balance. The 

definition of F1 score consists of the following 

description Equation (11): 

 

 F1 = 2 ∗
(precision∗recall)

precision+recall
 (11) 

 
AUC-ROC: AUC serves as the main evaluation tool for 

the model through its ROC curve's area under one 

measurement. The model output was sorted by 

prediction result, and the samples were labelled 

positive one after another. The TPR and FPR values 

were calculated through a two-axis system where TPR 

went across and FPR went down according to 

Equations (12) and (13): 

 

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (12) 

 𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
 (13) 

 
The AUC value serves as an important measure to 
assess a model which ranges from 0.5 to 1 with high 
scores indicating strong generalization and 
classification accuracy. 
 
Results and Discussion 
 
The project used Python v3.10 on a powerful system 

having an Intel i7 12th-generation processor with 

16GB RAM memory and a 512GB SSD storage device 

with the graphics chip variant of 1050 H to build and 

test the cyber threat detection model. The results of the 

several categorization techniques utilized in this study 

for cyber threat detection are examined in this part. 

Using the CICIDS-2017 dataset, the CNN-based 

suggested model's performance is contrasted with that 

of KNN, NB, and SVM.  The models were assessed using 

key performance indicators such as F1-score, recall, 

accuracy, and precision. Table II shows the efficacy of 

the proposed model. With a F1-score, recall, accuracy, 

and precision of 99.58%, the CNN exhibits remarkable 

performance qualities. These outcomes demonstrate 

how strong and dependable the CNN is for the 

classification task. 

Table 2 Experiment Results of Proposed CNN for 
Cyber Threat Detection 

 
Performance 

Matrix 
Convolutional Neural 

Network (CNN) 
Accuracy 99.58 
precision 99.58 

Recall 99.58 
F1-score 99.58 

 

 
 

Fig.4 Accuracy Graph for CNN 
 
The precision of a CNN's validation and training is seen 
in Figure 4 on the CICIDS 2017 dataset over 25 epochs. 
Both accuracies start around 99% and steadily 
improve, with a brief dip around epoch 9–10 before 
quickly recovering. The accuracy of training is 
somewhat higher than that of validation, but both 
remain closely aligned between 99–99.4%, indicating 
effective learning with minimal overfitting. 
 

 
 

Fig.5 Loss Graph for CNN 

 
On the CICIDS 2017 dataset, Figure 5 shows training 

and validation loss of the CNN during 25 epochs.  While 

validation loss is greater and more erratic, peaking 

around epoch 10 before stabilizing around 0.04, 

training loss gradually drops from around 0.05 to 

about 0.03. The divergence between the two indicates 

mild overfitting, despite overall improvement and high 

accuracy. 

Figure 6's confusion matrix compares real and 

expected labels to show categorization performance. 

While the columns indicate the predicted classes. The 

CNN model identified 5,005 anomaly cases and 4,934 

normal cases properly.  Nevertheless, it incorrectly 

identified 22 anomalous cases as normal FN and 39 

normal cases as anomalies FP. 
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Fig.6 Confusion Matrix for CNN 
 

 
 

Fig.7 ROC curve of CNN 
 
The CNN model's ROC curve, which was evaluated 
using the CICIDS 2017 dataset, is then displayed in 
Figure 7. The FPR is displayed on the x-axis from 0 to 1, 
while the TPR is shown on the y-axis from 0 to 1. Both 
the normal and anomalous classes' ROC curves. 
 

Table 3 Comparative analysis for cyber threat 
detection between existing models' performance 

 
Performance 

Matrix 
Proposed Comparison model 

CNN SVM[23] KNN[24] 
Accuracy 99.58 96.98 94 
precision 99.58 95.78 86 

Recall 99.58 98.30 90 
F1-score 99.58 97.02 88 

 

Table III above presents a comparison of model 
performance. It was seen that CNN reached the highest 
accuracy of 99.58% in this comparison, which is 
greater than other algorithms such as SVM 96.98%, 
KNN 94% and NB 72.96%. The CNN also achieved 
exceptionally high precision, 99.58%, and recall, 
99.58%, which demonstrated the CNN's capability to 
minimize and maximize actual positive detections 
while minimizing false positives. Additionally, SVM and 
KNN also scored well in comparison, with SVM 
attaining a recall of 98.30% and a 95.78% accuracy and 
a somewhat lower 90% recall for KNN. NB was able to 
recall 96.71% of the positive cases, but with a lower 
precision of 65.76%, it cannot be assumed that it will 
be able to find all positive cases. In general, CNN 
performs better than every other model. in terms of all 
the metrics, making it the best in the case of Cyber 
threat detection. 

Conclusion and Future Work 
 
Cyber threats against Industrial Control Systems keep 
becoming more advanced, which means organizations 
need better ways to find and defend against attacks. 
The research showed that DL technology improves 
security systems at ICS facilities. This study shows that 
DL technology, especially CNN, can find cyber dangers 
using the CICIDS-2017 dataset. The CNN model 
consistently outperforms other models in traffic 
categorization, with F1-score, recall, accuracy, and 
precision scores of 99.58%. The graphs display proper 
model training and show small amounts of overfitting 
problems with strong predictive output results. This 
study faces three key constraints related to the 
detection system, including its weakness against 
unknown attacks, demanding processing needs, and 
limited protection for all types of threats. The next 
research needs to include more network security data 
and test multiple DL methods, including RNNS and 
transformers, to create faster and more reliable 
systems that find new hacking patterns automatically. 
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