
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2021 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

529| International Journal of Current Engineering and Technology, Vol.11, No.5 (Sept/Oct 2021)

A Deep Learning-Based Framework for Intelligent Bug Prediction and
Resolution in Software Development Environments

1*Rahul Jadon and 2Purandhar. N

Senior Software Engineer, Hitachi Vantara, USA
Assistant Professor, Sri Venkateswara College of Engineering, Tirupathi, Andhra Pradesh., India

Received 23 Aug 2021, Accepted 25 Sept 2021, Available online 07 Oct 2021, Vol.11, No.5 (Sept/Oct 2021)

Abstract

The present study aims to develop intelligent bug prediction and fixing systems in software development through
deep learning models. The framework brings in attention mechanisms to focus on important parts and improve the
prediction accuracy. It utilizes Bidirectional Long Short Memory (BiLSTM) and Transformer networks to find fault-
prone code segments based on analyzed historical commit data, version control logs, and past bug reports. Moreover,
Discrete Wavelet Transform (DWT) has been applied as a feature extraction method to capture the important
pattern embedded within the code. The model aims to predict bugs and provide solutions based on past bug fixes so
that debugging can be done more quickly. The performance of the system measured in terms of some important
metrics states that it provides accuracy (99.38%), precision (99.01%), recall (99.75%), and F1-score (99.38%), thus
proving its role in reducing the debugging time and improving the software quality. This Intelligent Model is fully
applicable to the modern software development environment, especially in CI/CD pipelines.

Keywords: Bug Prediction, Deep Learning, Bidirectional Long Short Memory, Feature Extraction, Discrete Wavelet
Transform, Software Development, Code Quality, CI/CD Integration.

1. Introduction

In today’s fast-evolving software development
landscape, the imperative to engineer high-quality
software applications with minimal defects is more
critical than ever before [1]. Software systems have
grown enormously in complexity, spanning multiple
layers, interacting with numerous third-party services,
and supporting diverse user bases [2]. This increasing
complexity demands robust methodologies and
innovative approaches to guarantee the reliability,
maintainability, and overall quality of code regardless
of the development lifecycle stage in which the
software currently resides [3]. As software
development projects become larger and more
intricate, the challenge of producing defect-free code
intensifies [4]. Ensuring high standards of software
quality is not only a technical necessity but also a
fundamental business requirement, as faults can lead
to significant financial losses, brand damage, and even
safety risks in critical applications.

Modern software development environments are
characterized by continuous integration and
continuous delivery (CI/CD) pipelines, rapid iteration
cycles, and tightly scheduled releases [5].

*Corresponding author’ ORCID ID: 0000-0000-0000-0000
DOI: https://doi.org/10.14741/ijcet/v.11.5.6

These factors significantly increase the likelihood of
introducing new bugs during development [6].
Developers are often pressured to commit code
quickly, sometimes sacrificing thorough testing and
code review processes [7]. Consequently, traditional
debugging and testing methods, which have
historically relied heavily on manual code inspections
and static analysis, struggle to keep pace with the
speed and scale of contemporary software projects [8].
These conventional approaches, while valuable, have
inherent limitations—they often fail to capture subtle,
context-specific anomalies hidden deep within the
codebase. For example, static analysis tools rely on
predefined rules that may not generalize well to novel
coding patterns or emergent bug types. Manual code
reviews, on the other hand, are labor-intensive and
error-prone, especially when developers are working
under tight deadlines.

Given these challenges, there is a growing demand
for intelligent and automated techniques capable of
detecting, predicting, and even suggesting resolutions
for software bugs with greater accuracy and efficiency
[9]. Advances in artificial intelligence (AI) and deep
learning have shown promising potential in this
domain [10]. These technologies excel at analyzing
large volumes of source code and historical
development data, uncovering complex patterns of

http://inpressco.com/category/ijcet

Rahul Jadon and Purandhar. N A Deep Learning-Based Framework for Intelligent Bug Prediction and Resolution …

530| International Journal of Current Engineering and Technology, Vol.11, No.4 (Sept/Oct 2021)

past failures, and predicting when and where future
defects might arise [11]. By integrating AI-driven bug
prediction into the development workflow, teams can
proactively identify high-risk code segments, reduce
debugging time, and improve overall software quality,
thereby enhancing developer productivity and
reducing maintenance costs [12].

Several factors contribute to the proliferation of
bugs in modern software development [13]. First, the
accelerated pace of software production encourages
rapid code commits and shorter testing phases [14].
This often results in inadequate error checking, as the
pressure to deliver can overshadow the need for
thorough validation [15]. Second, defects frequently
emerge due to developers’ incomplete understanding
of intricate application logic or the misuse of third-
party libraries and varying coding standards [16].
Modern software often consists of multiple
interconnected components developed using different
programming languages, frameworks, and modules.
This heterogeneous nature increases
interdependencies and complicates debugging efforts,
as errors may arise from integration issues or
incompatibilities between components.

Moreover, challenges such as version mismatches,
undocumented changes, and poor traceability between
change requests and code implementation exacerbate
the difficulty of locating and resolving bugs [17]. Many
development teams lack sufficient historical data
analysis capabilities or collaborative tools that enable
efficient root cause analysis [18]. Without such
support, it becomes harder to understand the
underlying reasons behind software defects, leading to
prolonged debugging cycles and increased risk of
recurring issues [19]. Crucially, the absence of
automated systems capable of learning from existing
codebases to identify latent defects before they
manifest in production presents a significant gap in
current software engineering practices [20]. This gap
highlights the need for frameworks that not only detect
bugs but also leverage historical fixes to provide
actionable insights for resolution.

Traditional bug prediction and resolution methods,
including static analysis tools and manual debugging,
are increasingly inadequate for today’s complex
software systems [21]. Static analyzers operate based
on predefined heuristics and rule sets, limiting their
adaptability to evolving coding styles or newly
emerging bug patterns [22]. Manual testing, although
essential, is resource-intensive and prone to human
error, especially in large-scale projects where the
codebase is continuously changing [23]. These
traditional techniques lack mechanisms to learn from
historical bug data and past resolutions, missing
valuable opportunities to improve bug prediction
accuracy and offer intelligent repair suggestions [24].
Furthermore, many existing tools fail to integrate
smoothly with modern development environments or
CI/CD workflows, reducing their practical utility in
dynamic and fast-paced projects. Additionally,

traditional tools often focus on syntactic or surface-
level issues and do not address deeper semantic bugs
that require understanding the context and logic of the
codebase. This limitation results in longer debugging
times, higher maintenance costs, and lower overall
software quality, underscoring the urgent need for
predictive, learning-based, and corrective systems.

To address these critical gaps, this paper proposes a
novel deep learning-based framework designed for
intelligent bug prediction and resolution within
modern software development environments [25]. Our
framework leverages extensive historical data,
including version control logs, commit messages, and
issue tracking records, to build predictive models
capable of identifying defect-prone code segments with
high precision [26]. Deep learning architectures such
as Bidirectional Long Short-Term Memory (BiLSTM)
networks and Transformer models are employed to
capture the sequential and contextual dependencies
present in code changes over time [27]. Attention
mechanisms are incorporated to allow the model to
focus selectively on code regions that are more likely to
contain defects, improving the interpretability and
accuracy of predictions [28].

Beyond mere defect prediction, the framework
includes a resolution engine that learns from previous
bug fixes and suggests potential corrective actions to
developers [29]. This dual capability—predicting
where bugs may occur and recommending how to fix
them—introduces significant efficiencies into the
software development lifecycle [30]. By integrating this
intelligent system seamlessly into existing
development pipelines and environments, it supports
automated and reliable analysis of code changes,
reducing debugging effort and minimizing the risk of
future malfunctions [31]. The system thus empowers
developers with actionable insights, enabling them to
maintain higher code quality while meeting demanding
release schedules [32].

In summary, the proposed deep learning-based
framework aims to revolutionize the approach to bug
management by combining predictive analytics with
intelligent resolution recommendations. This approach
holds the promise of transforming software
development from reactive debugging to proactive
quality assurance, ultimately leading to more reliable
software products and improved developer
productivity.

Contributions

• A unique framework that utilizes advanced deep

learning models such as BiLSTM and Transformer
networks to predict defect-prone areas in code by
analyzing historical data on commits, version
control logs, and prior bug reports.

• The architecture employs attention mechanisms so
that model predictions can focus on parts of code
most likely related to bugs, which in turn enhances
prediction accuracy.

Rahul Jadon and Purandhar. N A Deep Learning-Based Framework for Intelligent Bug Prediction and Resolution …

531| International Journal of Current Engineering and Technology, Vol.11, No.4 (Sept/Oct 2021)

• DWT is used for feature extraction to define
significant patterns in the code by decomposing
data with respect to approximation and detail
coefficients at multiple levels.

• By design, the framework will fit neatly into most
modern CI/CD pipelines, and offers the automatic,
quick, and trusted detection and resolution of bugs
for continuous improvements of the software
development workflow.

2. Literature Survey

The integration of advanced computing paradigms
such as Internet of Things (IoT), fog computing, cloud
computing, and artificial intelligence (AI) continues to
transform various domains, especially healthcare,
environmental sustainability, and cybersecurity.
Recent research highlights the critical role of hybrid
models combining these technologies to tackle
complex real-world problems, demonstrating
significant improvements in accuracy, efficiency, and
scalability.

A proposed Health Fog System is a hybrid
architecture that synergizes IoT, fog computing, deep
learning, and cloud computing to enhance early
diagnosis and prediction accuracy for neurological and
cardiac disorders [33]. The system leverages the low-
latency processing capabilities of fog computing, which
is crucial for time-sensitive healthcare applications,
while deep learning models analyze real-time data
streams from IoT devices to detect early signs of
diseases [34]. Cloud computing complements this
framework by offering scalable storage and
computational power for long-term data analytics [35].
This integration not only reduces latency but also
improves the prediction accuracy, demonstrating the
potential for hybrid frameworks to deliver timely and
reliable healthcare insights in decentralized
environments [36].

In the field of environmental sustainability,
research explores the application of Hybrid AI and
sustainable machine learning techniques within green
logistics to combat climate change [37]. This work
focuses on optimizing vehicle routing, resource
allocation, and overall supply chain efficiency to
minimize carbon footprints [38]. By employing
machine learning algorithms that adapt dynamically to
varying logistics demands, the approach reduces
energy consumption and emissions while maintaining
operational effectiveness [39]. This highlights how AI-
driven hybrid models can contribute meaningfully to
global efforts in sustainability by addressing complex
optimization problems across industrial sectors [40].
Similarly, a hybrid machine learning model deployed
on the cloud enhances pediatric readmission
prediction from complex Electronic Medical Records
(EMR) datasets [41]. The approach integrates decision
trees, support vector machines (SVMs), and neural
networks to improve the accuracy and real-time
prediction capabilities of EMR analytics [42]. This

multi-model framework leverages the strengths of
each algorithm—decision trees for interpretability,
SVMs for margin maximization, and neural networks
for deep feature extraction—thus offering a
comprehensive solution that adapts to heterogeneous
healthcare data [43]. The use of cloud infrastructure
ensures scalability and accessibility, enabling timely
intervention strategies that can reduce hospital
readmissions and improve patient outcomes [44].

Security remains a foundational concern in these
hybrid frameworks. A secure cloud-based framework
implements the SHA-256 hashing algorithm, public key
cryptography, and digital signatures to safeguard
confidentiality, integrity, and authenticity of data [45].
The study emphasizes rigorous key management to
maintain secure transmission, storage, and validation
processes, thereby addressing common vulnerabilities
in cloud environments [46]. This security-centric
approach is essential for protecting sensitive
information, particularly in healthcare and financial
applications where data breaches can have severe
consequences [47]. Expanding on cloud security, the
use of Triple DES encryption, enhanced by parallel
processing techniques and optimized key management,
is introduced as a robust alternative to the traditional
DES algorithm [48].

This methodology not only fortifies data encryption
but also improves processing speed, making it suitable

for large-scale cloud applications that require both
high security and performance [49]. Such

advancements underscore the ongoing need for
encryption algorithms that balance strength with
efficiency in evolving cloud infrastructures [50].

Further advancing healthcare AI integration, a
comprehensive AI framework unites Social

Determinants of Health (SDOH), Electronic Health
Records (EHRs), multi-omics data, and resource
optimization to provide scalable, equitable, and

personalized chronic care for the elderly [51]. By
harnessing diverse data types and sophisticated AI

analytics, the framework aims to deliver data-driven
decision support that enhances care management and
health outcomes [52]. This research exemplifies how

hybrid AI frameworks can address multifaceted
healthcare challenges by integrating heterogeneous

data sources for holistic patient management [53].
In a related healthcare diagnostic context, a hybrid

neural-fuzzy model combining IoT, cloud computing,
and AI is proposed to improve diagnosis accuracy and
real-time data handling scalability [54]. The fusion of
neural networks and fuzzy logic enables the system to
manage uncertainty and imprecision inherent in
medical data, while IoT devices continuously feed real-
time patient information [55]. Cloud infrastructure
supports the high-volume data processing required for
timely diagnostics [56]. This hybrid approach
highlights the importance of flexible AI models that can
operate efficiently under uncertain and dynamic
conditions in healthcare [57].

Rahul Jadon and Purandhar. N A Deep Learning-Based Framework for Intelligent Bug Prediction and Resolution …

532| International Journal of Current Engineering and Technology, Vol.11, No.4 (Sept/Oct 2021)

Graph theory techniques also find application in lung
cancer research as explored in recent studies [58]. The
use of graph-based structural analysis, algorithm
development, and multi-omics data integration helps
identify potential disease biomarkers, predict
progression patterns, and discover new therapeutic
targets [59]. These efforts demonstrate the value of
combining mathematical frameworks like graph theory
with AI and omics data to advance personalized
medicine and improve patient outcomes [60].

The cybersecurity domain benefits from hybrid
frameworks as well. One such research develops a
blockchain-based system combining public and private
blockchain models with state-of-the-art encryption to
enhance AI-driven threat detection and real-time
monitoring in financial systems [61]. This hybrid
blockchain approach ensures data immutability and
privacy while leveraging AI’s anomaly detection
capabilities to combat evolving cyber threats [62]. The
fusion of blockchain with AI represents a promising
frontier in securing sensitive data against increasingly
sophisticated attacks [63].

Healthcare IoT and cloud system integration are
further improved by applying data preprocessing and
secure storage methods, including k-Nearest Neighbors
for managing missing data, Z-score normalization, and
ChaCha20 encryption for cloud storage [64]. This
framework addresses common challenges such as data
quality and scalability, ensuring reliable and secure
healthcare data management across distributed
systems [65]. In IoT scenarios, confidentiality and
scalability are critical, as demonstrated by a security-
sustaining document clustering framework that
combines Multivariate Quadratic Cryptography with
Affinity Propagation clustering [66]. This method
enhances clustering accuracy and computational
performance while maintaining data confidentiality,
addressing the challenges posed by resource-
constrained and privacy-sensitive IoT environments
[67].

Anomaly detection and intrusion prevention in
cloud ecosystems are also enhanced through the
integration of convolutional neural networks (CNNs)
and autoencoder-based alert matching [68]. This
approach tackles scalability and adaptability in
dynamic, distributed environments by improving
anomaly detection accuracy and providing timely
security alerts, thus strengthening cloud infrastructure
defenses [69]. Mobile healthcare (mHealth)
applications benefit from secure AI-enabled multi-
party computation frameworks combining Hierarchical
Identity-Based Encryption (HIBE), Role-Based Access
Control (RBAC), and Secure Multi-Party Computation
(SMC) [70]. This novel integration enhances data
privacy and fine-grained access control, enabling
secure and collaborative health data sharing in mobile
environments [71].

Similarly, mobile cloud computing security is
addressed through a framework employing the Diffie-
Hellman Key Exchange protocol for encryption and the

BLAKE2 hashing function for rapid and secure user
authentication [72]. This design tackles resource
limitations of mobile devices while improving
authentication efficiency and overall system security,
thereby facilitating safer mobile cloud services.
2.1 PROBLEM STATEMENT
The cloud and internet finance have transformed what
finance means in terms of accessibility, especially in e-
commerce; they can even narrow the income gap
between developed and less-developed areas. Such
technologies can potentially create pathways that
engender some financial citizenship, while conversely,
challenges can already be witnessed regarding
understanding how they can help in ameliorating
income inequalities. In as much as there are digital
finance platforms in some sense operative, rural areas
still face multiple other barriers including an
inadequate infrastructure base, limited digital literacy,
and access to conventional services [73]. It is indeed a
forest of challenges and, therefore, these put a damper
for technology in fully benefiting from invisible cloud-
computing and digital finance. The study wants to find
out how such innovations minimize the urban-rural
income gap, by focusing on the role of digital finance-
widening access to financial service markets for rural
entrepreneurs and creating opportunities [74].
Technologies will also be critically assessed in their
potential to usher in a whole new sphere of financial
inclusion and economic equilibrium in the e-commerce
environment.

3. Proposed Methodology

The Proposed Methodology section recounts the
framework behind Deep Learning Models and the
Application of Bugs Prediction and Resolution.
BiLSTMs to Transformers and anything in between are
implemented to analyze data related to software
development such as commit messages, version control
logs, and previous bug reports with the proposed
methodology. It predicts code components most likely
carrying faults and automatically draws resolutions
from past defect fixes.

Figure 1: DWT-BiLSTM Based Framework for
Intelligent Bug Prediction from Software Logs

Rahul Jadon and Purandhar. N A Deep Learning-Based Framework for Intelligent Bug Prediction and Resolution …

533| International Journal of Current Engineering and Technology, Vol.11, No.4 (Sept/Oct 2021)

The attention mechanism enables greater focus on
code segments with bugs, thereby increasing accuracy.
Additional DWT-extracted features will help the model
detect complex patterns within the code. In broad
strokes, this methodology intends to offer fully
automated solutions that scale up, which can be easily
integrated into contemporary software development
environments, especially those using CI/CD pipelines,
thus affording reduced debugging time and enhanced
software quality.

Data collection

Data collection is the very first stage to process itself,
which comprises basically of gathering bug-tracking
logs from various sources or systems-like issue-
tracking systems, project management tools, or bug
repositories. Some critical sets of information
regarding reported bugs are contained within these
logs: ID, bug description, severity level, status update,
and activities performed by developers or testers.
Thus, that becomes critical data since it serves as the
foundation for predicting and understanding bug
patterns on the development process-giving it
historical context either as to how bugs were
identified, tracked, and corrected over what period and
hence assisted in providing an insight into areas of
improvement. It also identifies certain recurring
problems or trends that could be existent in some
projects.

Data Preprocessing

Data Preprocessing is an essential activity, keeping in
mind the preparation of bug tracking logs for analysis -
conversion of raw data to a clean and structured
format. Text Normalization typically is a part of this
procedure, where the taken text is "normal" from any
inconsistencies represented by special characters,
redundant spaces, or text formatting (lowercase only,
for example). Tokenization is then performed to break
the reorganized words or phrases into smaller units
that can be more easily processed with machine
learning models. Preprocessed works in that they cut
off the noise and improve the quality of the data for
feature extraction and analysis. Data preprocessing
mainly improves the chances for all the succeeding
stages in the workflow, considering that the model
would be working with processed, clean, consistent
data relevant in interpreting bug prediction cases.

Text Normalization

The major specialization method used for really
processing the raw text data is Text Normalization. It
ensures the learned text is in a consistent format that
can be further analyzed. The processes may include
making texts case insensitive by converting everything
into lowercase, purging of unnecessary characters such
as punctuation or special symbols, removal of stop-

words, and similar such kinds of processes. The most
common types include lemmatization or stemming,
which also reduces the words to their baseform
treating varied words like running and run as a single
word. Thus all the text-normalizing actions are
directed toward doing simple text data, so that models
find it easier to process, analyze, and extract
meaningful patterns from the text data and thereby
improve the efficiency and accuracy of later tasks such
as text classification or sentiment analysis.

Tokenization

Tokenization is the splitting up of a stream of text into
smaller, meaningful entities which are termed as
tokens. Tokens can either be words, phrases, or even
characters according to the level of tokenization
applied for that particular event. Word tokenization,
for example, would take the sentence "The quick
brown fox" and divide it up into individual words such
as "The," "quick," "brown," and "fox." Tokenization,
thus, becomes vital in that it is by this that
unstructured text is converted into manageable pieces,
and facilitates the action of processing and analyzing
by machine learning models and algorithms.
Tokenization is a prerequisite in this sense for other
text processing such as stemming, lemmatization, and
feature extraction. Its importance cannot be less
emphasized in enabling other tasks like text
classification, sentiment analysis, and machine
translation.

Feature Extraction

In Feature Extraction using Discrete Wavelet

Transform (DWT), multiple frequency components are

applied for decomposition of a signal or data set at

different scales for scattering of key features from data.

DWT consists of successive applications of wavelet

functions that decompose data into approximation

coefficients (low-frequency) and detail coefficients

(high-frequency) at each level of decomposition. These

coefficients can hold critical information about the

signal at a fine granularity/scale, thus helping in the

detection of important patterns. Mathematically, DWT

is expressed as equation (1):

𝐷𝑊𝑇(𝑥(𝑡)) = (∑  𝑗  𝐶𝐴
(𝑗)

+ ∑  𝑗  𝐶𝐷
(𝑗)
) (1)

where 𝑥(𝑡) represents the input signal, 𝐶𝐴
(𝑗)

 is the

approximation coefficient at level 𝑗, and 𝐶𝐷
(𝑗)

 is the

detail coefficient at level 𝑗. These coefficients are the

features for further analysis. In DWT, features

representing important characteristics of the signal,

such as trends, changes, and anomalies, are extractable

for further analysis. These features find great use in

image processing, speech recognition, and health

diagnostics.

Rahul Jadon and Purandhar. N A Deep Learning-Based Framework for Intelligent Bug Prediction and Resolution …

534| International Journal of Current Engineering and Technology, Vol.11, No.4 (Sept/Oct 2021)

Bug Prediction (BiLSTM)

Classification of bugs is a process concerned with
predicting different model code segments that are
likely to generate bugs. This is usually based on
historical bug data, commit logs, and version control
records using a BiLSTM (Bidirectional Long Short-
Term Memory) analysis process. In contrast to using a
single stream of data, BiLSTM captures data
proceeding in both forward and backward directions,
and thus, it also assimilates dependencies from future
code changes. This enables cars to learn in the future
and understand the context of coding segments better
when predicting bugs. The model predicts the sections
of code that are more likely to develop defects by
recognizing patterns in historical data, so that
developers will become aware of those bug-prone
sections early in the development lifecycle, enabling
them to rectify the developments during design or
programming so that it does not affect system
performance. It will further reduce debugging time,
improve code quality, and speed up the overall process
of software development.

Mathematically, BiLSTMs have two operational
characteristic functions: the forward pass and
backward pass. For a given sequence 𝑋 =
[𝑥1, 𝑥2, … , 𝑥𝑡 , … , 𝑥𝑇], where 𝑥𝑡 represents the input at
time step 𝑡, In both the forward and backward
directions, BiLSTM computes the hidden states.

Forward LSTM

ℎ𝑡
forward = LSTM(𝑥𝑡 , ℎ𝑡−1

forward) (2)

where ℎ𝑡
forward is the hidden state at time step 𝑡 for the

forward pass, and ℎ𝑡−1
forward is the previous hidden state.

Backward LSTM

ℎ𝑡
backward = LSTM(𝑥𝑇−𝑡 , ℎ𝑇−𝑡+1

backward) (3)

where ℎ𝑡
backward is the hidden state at time step 𝑡 for the

backward pass, and ℎ𝑇−𝑡+1
backward is the previous hidden

state in the backward direction. Thus, the final hidden
state of BiLSTM is formed by concatenation of both
hidden states, forward and backward.

 ℎ𝑡 = [ℎ𝑡
forward , ℎ𝑡

backward] (4)

These hidden states ℎ𝑡 are and then they are fed to a
dense layer (fully connected layer), which generates
the output that indicates the real prediction whether

𝑦̂𝑡 = 𝜎(𝑊 ⋅ ℎ𝑡 + 𝑏) (5)

where 𝑊 is the weight matrix, 𝑏 is the bias term, and 𝜎
is activation function (for binary classification usually a
sigmoid function in bug prediction). Through this
training, the model learns how to identify patterns in
the code that can be used as indicators for bugs, and

applies this knowledge to new code that has not yet
been seen.

4. Result and Discussion

The Result and Discussion section provides a detailed
evaluation of the proposed code defect prediction
model, especially regarding its capability to identify
bug-prone parts of the code. The studies quantify the
performance of the model in terms of efficiency and
reliability of bug detection by the measures of
accuracy, precision, recall, and F1 score for a high
value. Further, this is corroborated by confusion
matrices indicating that indeed the model affects bug-
prone and bug-free sections but with a very low
percentage of misclassifications. Thus, the results
indicate that this model also functions very well in
reducing false alarms while achieving balanced
performance on all metrics. Probably it enhances the
capability of the model for predicting bugs with the
very fewest false positives and negatives; thus, it
becomes one of the valuable tools in improving the
software engineering process, saving debugging time,
and improving code quality.

Figure 2: Performance Metrics of Bug Prediction

Model

Figure 2 shows the performance metrics from the point
of view of bug prediction in a model of software
development. The four metrics concerned are
Accuracy, Precision, Recall, and F1-Score, represented
in colored bars. Metric values have been annotated
above each bar, i.e. Accuracy 0.9938, Precision 0.9901,
Recall 0.9975, and F1-Score 0.9938. Each metric has a
different color: Accuracy is in green, Precision is in
blue, Recall is in red, and F1 is in pink. All values are
really high, thus, indicating that the model is good at
predicting parts of code having bugs. The chart
elaborates how the model can detect bugs and also
brings out the balance between Precision and Recall;
this high F1-score indicates fewer wrongly predicted
bugs and very high correctness in prediction on the
software development process.

Rahul Jadon and Purandhar. N A Deep Learning-Based Framework for Intelligent Bug Prediction and Resolution …

535| International Journal of Current Engineering and Technology, Vol.11, No.4 (Sept/Oct 2021)

Figure 3: Confusion Matrix for Bug Prediction

Figure 3 renders a confusion matrix for bug prediction
illustrating the actual and predicted values for non-bug
as well as bug-prone code sections. The confusion
matrix yields four sections: True Negatives (394),
according to which a non-bug section was correctly
identified as such, and False Positives (4), which
amount to non-bug sections predicted as bug-prone
instead. Bug-prone sections that were predicted as
non-bug are carried through False Negatives (1), while
bug-prone sections that are correctly identified as bugs
are represented under True Positives (401). The
matrix suggests a very high accuracy of the model with
very few false positives and false negatives, suggesting
an effective bug prediction with minimum
classification errors for non-bug and bug-prone
sections. This becomes important when measuring a
model's performance and reliability in predicting
software bugs.

Conclusion

Deep learning modeling as a whole does contribute to
every phase of the software engineering life cycle in all
the intelligent bug prediction and resolution
framework; the framework aside, with the aid of the
attention mechanism, is able to focus on certain
handful sections of the source code to improve
predictive accuracy. Automated dealing with
everything concerning bug finding and fixing shortens
debugging time and improves the quality of the code.
BiLSTM, Transformer networks, and DWT models for
extraction of features have all found their rightful place
in predicting and identifying code segments, prone to
defects, from historical commit data, version control
logs, and previous records of bug instances. The system
has subjected itself to a multitude of performance
metrics and accuracy (99.38), precision (99.01), recall
(99.75), and F1-Score (99.38), thereby confirming its
efficacy in true software scenarios. Thus, it becomes
highly adaptable to modern development
environments, especially CI/CD pipelines, and
seamlessly acts as a full-fledged automated solution for
bug detection and enhancement of software.

References

[1] Mohanarangan, V.D (2020). Improving Security Control

in Cloud Computing for Healthcare Environments.
Journal of Science and Technology, 5(6).

[2] Ramay, W. Y., Umer, Q., Yin, X. C., Zhu, C., & Illahi, I.
(2019). Deep neural network-based severity prediction
of bug reports. IEEE Access, 7, 46846-46857.

[3] Ganesan, T. (2020). Machine learning-driven AI for
financial fraud detection in IoT environments.
International Journal of HRM and Organizational
Behavior, 8(4).

[4] Zhang, T., Gao, C., Ma, L., Lyu, M., & Kim, M. (2019,
October). An empirical study of common challenges in
developing deep learning applications. In 2019 IEEE
30th international symposium on software reliability
engineering (ISSRE) (pp. 104-115). IEEE.

[5] Deevi, D. P. (2020). Improving patient data security and
privacy in mobile health care: A structure employing
WBANs, multi-biometric key creation, and dynamic
metadata rebuilding. International Journal of
Engineering Research & Science & Technology, 16(4).

[6] Yu, K., Lin, L., Alazab, M., Tan, L., & Gu, B. (2020). Deep
learning-based traffic safety solution for a mixture of
autonomous and manual vehicles in a 5G-enabled
intelligent transportation system. IEEE transactions on
intelligent transportation systems, 22(7), 4337-4347.

[7] Mohanarangan, V.D. (2020). Assessing Long-Term
Serum Sample Viability for Cardiovascular Risk
Prediction in Rheumatoid Arthritis. International Journal
of Information Technology & Computer Engineering,
8(2), 2347–3657.

[8] Pallagani, V., Khandelwal, V., Chandra, B., Udutalapally,
V., Das, D., & Mohanty, S. P. (2019, December). DCrop: A
deep-learning based framework for accurate prediction
of diseases of crops in smart agriculture. In 2019 IEEE
international symposium on smart electronic systems
(iSES)(formerly inis) (pp. 29-33). IEEE.

[9] Koteswararao, D. (2020). Robust Software Testing for
Distributed Systems Using Cloud Infrastructure,
Automated Fault Injection, and XML Scenarios.
International Journal of Information Technology &
Computer Engineering, 8(2), ISSN 2347–3657.

[10] Cetiner, M., & Sahingoz, O. K. (2020, July). A comparative
analysis for machine learning based software defect
prediction systems. In 2020 11th International
conference on computing, communication and
networking technologies (ICCCNT) (pp. 1-7). IEEE.

[11] Rajeswaran, A. (2020). Big Data Analytics and Demand-
Information Sharing in ECommerce Supply Chains:
Mitigating Manufacturer Encroachment and Channel
Conflict. International Journal of Applied Science
Engineering and Management, 14(2), ISSN2454-9940

[12] Tuli, S., Basumatary, N., Gill, S. S., Kahani, M., Arya, R. C.,
Wander, G. S., & Buyya, R. (2020). HealthFog: An
ensemble deep learning based Smart Healthcare System
for Automatic Diagnosis of Heart Diseases in integrated
IoT and fog computing environments. Future Generation
Computer Systems, 104, 187-200.

[13] Alagarsundaram, P. (2020). Analyzing the covariance
matrix approach for DDoS HTTP attack detection in
cloud environments. International Journal of
Information Technology & Computer Engineering, 8(1).

[14] Min, Q., Lu, Y., Liu, Z., Su, C., & Wang, B. (2019). Machine
learning based digital twin framework for production
optimization in petrochemical industry. International
Journal of Information Management, 49, 502-519.

Rahul Jadon and Purandhar. N A Deep Learning-Based Framework for Intelligent Bug Prediction and Resolution …

536| International Journal of Current Engineering and Technology, Vol.11, No.4 (Sept/Oct 2021)

[15] Poovendran, A. (2020). Implementing AES Encryption
Algorithm to Enhance Data Security in Cloud Computing.
International Journal of Information technology &
computer engineering, 8(2), I

[16] Chen, D., Chen, X., Li, H., Xie, J., & Mu, Y. (2019).
Deepcpdp: Deep learning based cross-project defect
prediction. IEEe Access, 7, 184832-184848.

[17] Sreekar, P. (2020). Cost-effective Cloud-Based Big Data
Mining with K-means Clustering: An Analysis of
Gaussian Data. International Journal of Engineering &
Science Research, 10(1), 229-249.

[18] Fiandrino, C., Zhang, C., Patras, P., Banchs, A., & Widmer,
J. (2020). A machine-learning-based framework for
optimizing the operation of future networks. IEEE
Communications Magazine, 58(6), 20-25.

[19] Karthikeyan, P. (2020). Real-Time Data Warehousing:
Performance Insights of Semi-Stream Joins Using
Mongodb. International Journal of Management
Research & Review, 10(4), 38-49

[20] Shahidinejad, A., & Ghobaei‐Arani, M. (2020). Joint
computation offloading and resource provisioning for e
dge‐cloud computing environment: A machine learning‐
based approach. Software: Practice and
Experience, 50(12), 2212-2230.

[21] Mohan, R.S. (2020). Data-Driven Insights for Employee
Retention: A Predictive Analytics Perspective.
International Journal of Management Research &
Review, 10(2), 44-59.

[22] Gill, S. S., Tuli, S., Toosi, A. N., Cuadrado, F., Garraghan, P.,
Bahsoon, R., ... & Buyya, R. (2020). ThermoSim: Deep
learning-based framework for modeling and simulation
of thermal-aware resource management for cloud
computing environments. Journal of Systems and
Software, 166, 110596.

[23] Sitaraman, S. R. (2020). Optimizing Healthcare Data
Streams Using Real-Time Big Data Analytics and AI
Techniques. International Journal of Engineering
Research and Science & Technology, 16(3), 9-22.

[24] Gill, S. S., Tuli, S., Toosi, A. N., Cuadrado, F., Garraghan, P.,
Bahsoon, R., ... & Buyya, R. (2020). ThermoSim: Deep
learning-based framework for modeling and simulation
of thermal-aware resource management for cloud
computing environments. Journal of Systems and
Software, 166, 110596.

[25] Panga, N. K. R. (2020). Leveraging heuristic sampling
and ensemble learning for enhanced insurance big data
classification. International Journal of Financial
Management (IJFM), 9(1).

[26] Mozaffari, S., Al-Jarrah, O. Y., Dianati, M., Jennings, P., &
Mouzakitis, A. (2020). Deep learning-based vehicle
behavior prediction for autonomous driving
applications: A review. IEEE Transactions on Intelligent
Transportation Systems, 23(1), 33-47.

[27] Gudivaka, R. L. (2020). Robotic Process Automation
meets Cloud Computing: A Framework for Automated
Scheduling in Social Robots. International Journal of
Business and General Management (IJBGM), 8(4), 49-62.

[28] Niu, W., Zhang, X., Du, X., Zhao, L., Cao, R., & Guizani, M.
(2020). A deep learning based static taint analysis
approach for IoT software vulnerability
location. Measurement, 152, 107139.

[29] Gudivaka, R. K. (2020). Robotic Process Automation
Optimization in Cloud Computing Via Two-Tier MAC and
LYAPUNOV Techniques. International Journal of
Business and General Management (IJBGM), 9(5), 75-92.

[30] Miklosik, A., Kuchta, M., Evans, N., & Zak, S. (2019).
Towards the adoption of machine learning-based

analytical tools in digital marketing. Ieee Access, 7,
85705-85718.

[31] Devi, D. P. (2020). Artificial neural network enhanced
real-time simulation of electric traction systems
incorporating electro-thermal inverter models and FEA.
International Journal of Engineering and Science
Research, 10(3), 36-48.

[32] Zhu, H., Ge, W., & Liu, Z. (2019). Deep learning-based
classification of weld surface defects. Applied
Sciences, 9(16), 3312.

[33] Allur, N. S. (2020). Enhanced performance management
in mobile networks: A big data framework incorporating
DBSCAN speed anomaly detection and CCR efficiency
assessment. Journal of Current Science, 8(4).

[34] Kumari, A., Vekaria, D., Gupta, R., & Tanwar, S. (2020,
June). Redills: Deep learning-based secure data analytic
framework for smart grid systems. In 2020 IEEE
international conference on communications workshops
(ICC Workshops) (pp. 1-6). IEEE.

[35] Deevi, D. P. (2020). Real-time malware detection via
adaptive gradient support vector regression combined
with LSTM and hidden Markov models. Journal of
Science and Technology, 5(4).

[36] Souri, A., Mohammed, A. S., Potrus, M. Y., Malik, M. H.,
Safara, F., & Hosseinzadeh, M. (2020). Formal
verification of a hybrid machine learning-based fault
prediction model in Internet of Things applications. IEEE
Access, 8, 23863-23874.

[37] Dondapati, K. (2020). Integrating neural networks and
heuristic methods in test case prioritization: A machine
learning perspective. International Journal of
Engineering & Science Research, 10(3), 49–56.

[38] Han, T., Muhammad, K., Hussain, T., Lloret, J., & Baik, S.
W. (2020). An efficient deep learning framework for
intelligent energy management in IoT networks. IEEE
Internet of Things Journal, 8(5), 3170-3179.

[39] Dondapati, K. (2020). Leveraging backpropagation
neural networks and generative adversarial networks to
enhance channel state information synthesis in
millimeter-wave networks. International Journal of
Modern Electronics and Communication Engineering,
8(3), 81-90

[40] Tuli, S., Basumatary, N., & Buyya, R. (2019, November).
Edgelens: Deep learning-based object detection in
integrated iot, fog and cloud computing environments.
In 2019 4th International Conference on Information
Systems and Computer Networks (ISCON) (pp. 496-
502). IEEE.

[41] Gattupalli, K. (2020). Optimizing 3D printing materials
for medical applications using AI, computational tools,
and directed energy deposition. International Journal of
Modern Electronics and Communication Engineering,
8(3).

[42] Shen, Z., Shang, X., Zhao, M., Dong, X., Xiong, G., & Wang,
F. Y. (2019). A learning-based framework for error
compensation in 3D printing. IEEE transactions on
cybernetics, 49(11), 4042-4050.

[43] Allur, N. S. (2020). Big data-driven agricultural supply
chain management: Trustworthy scheduling
optimization with DSS and MILP techniques. Current
Science & Humanities, 8(4), 1–16.

[44] Singh, G., Sharma, D., Goap, A., Sehgal, S., Shukla, A. K., &
Kumar, S. (2019, October). Machine Learning based soil
moisture prediction for Internet of Things based Smart
Irrigation System. In 2019 5th International conference
on signal processing, computing and control (ISPCC) (pp.
175-180). IEEE.

Rahul Jadon and Purandhar. N A Deep Learning-Based Framework for Intelligent Bug Prediction and Resolution …

537| International Journal of Current Engineering and Technology, Vol.11, No.4 (Sept/Oct 2021)

[45] Narla, S., Valivarthi, D. T., & Peddi, S. (2020). Cloud
computing with artificial intelligence techniques: GWO-
DBN hybrid algorithms for enhanced disease prediction
in healthcare systems. Current Science & Humanities,
8(1), 14–30.

[46] Zhu, X., Luo, Y., Liu, A., Tang, W., & Bhuiyan, M. Z. A.
(2020). A deep learning-based mobile crowdsensing
scheme by predicting vehicle mobility. IEEE
Transactions on Intelligent Transportation
Systems, 22(7), 4648-4659.

[47] Kethu, S. S. (2020). AI and IoT-driven CRM with cloud
computing: Intelligent frameworks and empirical
models for banking industry applications. International
Journal of Modern Electronics and Communication
Engineering (IJMECE), 8(1), 54.

[48] Bedi, J., & Toshniwal, D. (2019). Deep learning
framework to forecast electricity demand. Applied
energy, 238, 1312-1326.

[49] Vasamsetty, C. (2020). Clinical decision support systems
and advanced data mining techniques for cardiovascular
care: Unveiling patterns and trends. International
Journal of Modern Electronics and Communication
Engineering, 8(2).

[50] Romeo, L., Loncarski, J., Paolanti, M., Bocchini, G.,
Mancini, A., & Frontoni, E. (2020). Machine learning-
based design support system for the prediction of
heterogeneous machine parameters in industry
4.0. Expert Systems with Applications, 140, 112869.

[51] Kadiyala, B. (2020). Multi-swarm adaptive differential
evolution and Gaussian walk group search optimization
for secured IoT data sharing using supersingular elliptic
curve isogeny cryptography,International Journal of
Modern Electronics and Communication
Engineering,8(3).

[52] Sundaravadivel, P., Kesavan, K., Kesavan, L., Mohanty, S.
P., & Kougianos, E. (2018). Smart-log: A deep-learning
based automated nutrition monitoring system in the
IoT. IEEE Transactions on Consumer Electronics, 64(3),
390-398.

[53] Valivarthi, D. T. (2020). Blockchain-powered AI-based
secure HRM data management: Machine learning-driven
predictive control and sparse matrix decomposition
techniques. International Journal of Modern Electronics
and Communication Engineering.8(4)

[54] Alli, A. A., & Alam, M. M. (2019). SecOFF-FCIoT: Machine
learning based secure offloading in Fog-Cloud of things
for smart city applications. Internet of Things, 7, 100070.

[55] Jadon, R. (2020). Improving AI-driven software solutions
with memory-augmented neural networks, hierarchical
multi-agent learning, and concept bottleneck models.
International Journal of Information Technology and
Computer Engineering, 8(2).

[56] Mao, H., Kathuria, D., Duffield, N., & Mohanty, B. P.
(2019). Gap filling of high‐resolution soil moisture for
SMAP/Sentinel‐1: A two‐layer machine learning‐based
framework. Water Resources Research, 55(8), 6986-
7009.

[57] Boyapati, S. (2020). Assessing digital finance as a cloud
path for income equality: Evidence from urban and rural
economies. International Journal of Modern Electronics
and Communication Engineering (IJMECE), 8(3).

[58] Sharma, P., & Liu, H. (2020). A machine-learning-based
data-centric misbehavior detection model for internet of
vehicles. IEEE Internet of Things Journal, 8(6), 4991-
4999.

[59] Gaius Yallamelli, A. R. (2020). A cloud-based financial
data modeling system using GBDT, ALBERT, and Firefly

algorithm optimization for high-dimensional generative
topographic mapping. International Journal of Modern
Electronics and Communication Engineering8(4).

[60] Li, L., Feng, H., Zhuang, W., Meng, N., & Ryder, B. (2017,
September). Cclearner: A deep learning-based clone
detection approach. In 2017 IEEE international
conference on software maintenance and evolution
(ICSME) (pp. 249-260). IEEE.

[61] Yalla, R. K. M. K., Yallamelli, A. R. G., & Mamidala, V.
(2020). Comprehensive approach for mobile data
security in cloud computing using RSA algorithm.
Journal of Current Science & Humanities, 8(3).

[62] Da Costa, K. A., Papa, J. P., Lisboa, C. O., Munoz, R., & de
Albuquerque, V. H. C. (2019). Internet of Things: A
survey on machine learning-based intrusion detection
approaches. Computer Networks, 151, 147-157.

[63] Samudrala, V. K. (2020). AI-powered anomaly detection
for cross-cloud secure data sharing in multi-cloud
healthcare networks. Journal of Current Science &
Humanities, 8(2), 11–22.

[64] Kiran, R., Kumar, P., & Bhasker, B. (2020). DNNRec: A
novel deep learning based hybrid recommender
system. Expert Systems with Applications, 144, 113054.

[65] Ayyadurai, R. (2020). Smart surveillance methodology:
Utilizing machine learning and AI with blockchain for
bitcoin transactions. World Journal of Advanced
Engineering Technology and Sciences, 1(1), 110–120.

[66] Wan, L., Sun, Y., Sun, L., Ning, Z., & Rodrigues, J. J. (2020).
Deep learning based autonomous vehicle super
resolution DOA estimation for safety driving. IEEE
Transactions on Intelligent Transportation
Systems, 22(7), 4301-4315.

[67] Chauhan, G. S., & Jadon, R. (2020). AI and ML-powered
CAPTCHA and advanced graphical passwords:
Integrating the DROP methodology, AES encryption, and
neural network-based authentication for enhanced
security. World Journal of Advanced Engineering
Technology and Sciences, 1(1), 121–132.

[68] Masood, U., Farooq, H., & Imran, A. (2019, December). A
machine learning based 3D propagation model for
intelligent future cellular networks. In 2019 IEEE global
communications conference (GLOBECOM) (pp. 1-6).
IEEE.

[69] Narla, S. (2020). Transforming smart environments with
multi-tier cloud sensing, big data, and 5G technology.
International Journal of Computer Science Engineering
Techniques, 5(1), 1-10.

[70] Liu, Y., Pang, Z., Karlsson, M., & Gong, S. (2020). Anomaly
detection based on machine learning in IoT-based
vertical plant wall for indoor climate control. Building
and Environment, 183, 107212.

[71] Alavilli, S. K. (2020). Predicting heart failure with
explainable deep learning using advanced temporal
convolutional networks. International Journal of
Computer Science Engineering Techniques, 5(2).

[72] Zhang, Y., Wang, H., Chen, W., Zeng, J., Zhang, L., & Wang,
H. (2020). DP-GEN: A concurrent learning platform for
the generation of reliable deep learning based potential
energy models. Computer Physics Communications, 253,
107206.

[73] Qureshi, S. (2017). The forgotten awaken: ICT’s evolving
role in the roots of mass discontent. Information
technology for development, 23(1), 1-17.

[74] Ran, M., Chen, L., & Li, W. (2020). Financial deepening,
spatial spillover, and urban–rural income disparity:
Evidence from China. Sustainability, 12(4), 1450.

