
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2025 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

229| International Journal of Current Engineering and Technology, Vol.15, No.3 (May/June2025)

An Efficient Bio-Inspired Optimization Framework for Scalable Task
Scheduling in Cloud Computing Environments

Gopikrishna Maddali*

Independent Researcher

Received 01 May 2025, Accepted 15 May 2025, Available online 16 May 2025, Vol.15, No.3 (May/June 2025)

Abstract

The need for sharing and using resources is growing at a fast pace, which poses several issues for cloud computing
(CC) as the number of users increases. For this reason, job scheduling with load balancing across resources is a
crucial area for improving performance. High energy usage and underutilised resources are two of the major
obstacles to effective task scheduling. To address this, propose a bio-inspired optimization framework utilizing the
Lyrebird Falcon Optimization (LFO) algorithm, which mimics lyrebird behavior through two key phases: escaping
(exploration) and hiding (exploitation). This population-based metaheuristic dynamically updates task assignments
to minimize makespan and energy usage while enhancing CPU and resource utilization. The algorithm was
implemented in CloudSim and evaluated across various task loads (1000–5000 tasks). Experimental results
demonstrate that LFO consistently achieves lower makespan (from 22.13s to 18.78s) and energy consumption (from
21.67 kW to 23.70 kW) compared to the traditional Fruit Fly Optimization Algorithm (FOA), highlighting its
efficiency. The key advantages of this work include its ability to minimize energy consumption while optimizing
resource utilization, scalability to large-scale cloud environments, and improved performance, making it a promising
solution for sustainable and efficient task scheduling in cloud computing.

Keywords: Cloud Computing, Load Balancing, Task Scheduling, Bio-Inspired Optimization, Lyrebird Optimization
Algorithm (LOA), Energy Consumption.

1. Introduction

Cloud computing has matured into a distinct facet of
Internet-based technology. Globally distributed, high-
performance data centres are the backbone of
legitimate cloud service providers like Amazon, Oracle,
and Microsoft [1] [2]. The principles of utility
computing form the basis of the cloud computing
paradigm. In this model, IaaS, PaaS, and SaaS are
service delivery methods that employ pay-as-you-go
pricing and service-level agreements. The network,
processing, and storage infrastructure resources are all
combined into a single data centre unit [3] [4]. Virtual
machines may take use of its massive processing
power, storage capacity, and bandwidth. Systematic
resource management primarily focusses on the virtual
machine work assignment [5] [6] [7]. Due to the ever-
increasing need for resource sharing and consumption,
cloud computing encounters a barrage of problems as
the user base grows [8] [9]. Consequently, a significant
obstacle to task scheduling is load balancing [10] [11]
[12].

*Corresponding author’s ORCID ID: 0000-000-0000-0000
DOI: https://doi.org/10.14741/ijcet/v.15.3.4

The goal of load balancing is to utilise numerous
resources as efficiently as possible with as little
reaction time as possible, all while preventing any one
resource from being overwhelmed [13] [14]. This is
how load has to be distributed between resources in
cloud-based building design, such that all resources are
always doing the same amount of work [15] [16].
Resource supply and job scheduling are the two
primary considerations of load balancing. As a result, it
ensures that resources are readily available when
needed and offers efficiently used resources [17] [18].

Therefore, a system that efficiently uses its
resources, distributes its load evenly, and provides
high-quality service rapidly while using as little time,
energy, and money as possible requires an optimum
task scheduling mechanism [19] [20]. Typically, the
best schedules are generated using static, dynamic, and
nature-inspired heuristic methods [21]. Thus, bio-
inspired algorithms have surpassed traditional and
exact methods as the superior choice [22]. Traditional
bio-inspired algorithms like Genetic Algorithms (GA)
[23], PSO [24], ACO [25], and Fruit Fly Optimization
Algorithm (FOA) [26] They are widely used for task
scheduling in cloud computing. Premature
convergence, scaling problems, and inefficiency in very

http://inpressco.com/category/ijcet

Gopikrishna Maddali An Efficient Bio-Inspired Optimization Framework for Scalable Task Scheduling in Cloud Computing Environments

230| International Journal of Current Engineering and Technology, Vol.15, No.3 (May/June 2025)

dynamic settings are common problems with these
algorithms. GA evolves solutions using selection,
crossover, and mutation, while PSO adjusts particle
positions based on past best solutions. ACO simulates
ant behavior to find optimal paths, and FOA mimics the
behavior of fruit flies in foraging for food, focusing on
optimizing tasks based on their sensory information
[27] [28] [29]. These algorithms may get stuck in local
optima, leading to suboptimal solutions, and struggle
with managing large-scale tasks in cloud computing
systems. Furthermore, it may require significant
computation time and resources, particularly in
complex, ever-changing cloud environments, limiting
their effectiveness in real-time task scheduling [30].
The Lyrebird Falcon Optimization algorithm enhances
conventional bio-inspired techniques by implementing
a better method of handling exploration against
exploitation. The system reduces premature
convergence along with improving scalability which
makes it suitable for handling large-scale as well as
dynamic cloud computing requirements. LFO operates
quickly to adapting environments thus generating
efficient and accurate task scheduling results.

A. Motivation and Significance

Due to increasing scale and complexity of such
systems, efficient scheduling of tasks in order to fully
utilise resources is critical and hence scheduling
algorithms are becoming vital in cloud computing.
Traditional decision-making methods fail to share
workloads equally that causes inefficiencies in
duration and both resource usage and power
utilization. It has been shown that bio-inspired
optimisation algorithms may handle optimisation
issues in contexts that are dynamically changing in
near-optimal time, leading to their rising popularity.
The research examines the necessity of developing an
adaptive scheduling framework for cloud systems
which provides scalability together with energy
efficiencies and operational cost reduction benefits.

B. Contribution of study

This research proposes a bio-inspired optimization
framework for scalable task scheduling in CC
environments. The key contributions of this study
include:
• Establishment of an optimization model using bio-
inspired algorithms with the aim of improving the
efficiency in task scheduling.
• Incorporation of performance-conscious scheduling
and other cloud computing measures like makespan,
Energy Consumption, CPU utilization and Resource
Utilization.
• Designing and implementing an adaptive algorithm
based on the biological processes that can be optimized
as per the load.
• Thorough testing of the suggested architecture with
several task loads (1000-5000 tasks) to confirm its
efficacy.

• Comparison of the proposed bio-inspired approach
with the typical scheduling strategies and techniques
concerning the achieved Makespan, energy
consumption and the resources utilization.

C. Novelty and Justification

This study is significant because it proposed the
Lyrebird Falcon Optimisation (LFO) approach that is
derived from the adaptive behaviours of lyrebirds with
a view to solving the scaling of jobs in cloud computing
systems. This bio-inspired strategy aims at combining
the exploration and exploitation phases for making the
makespan and Energy Consumption minimal while
optimizing the CPU and Resource Utilization. The
rationale for this work is to show how better in energy
consumption compared to other techniques like the
Fruit Fly Optimization Algorithm (FOA). Based on
LFO’s heedless controlling power to handle large-scale
task loads and its opportunity of sustainability and
utilization of resources, LFO is a substantial
advancement in task scheduling in CC.

D. Structure of paper

The outline of the paper is as follows: Literature
studies on bio-inspired optimisation for cloud task
scheduling are included in Section II. The suggested
structure is described in Section III. The experimental
findings are presented in Section IV. Findings and
recommendations for further study constitute Section
V.

2. Literature Review

This section summarises current studies on bio-
inspired algorithms for cloud computing workload
scheduling and balancing. Task scheduling is a hot
topic right now, and academics have been focusing on
bio-inspired algorithms as a potential solution. This is
all because cloud computing is becoming more popular
among consumers.

Krishna and Khasim Vali, (2025) simulate and
evaluate process scheduling options, we used
WorkflowSim, a simulation toolset, and put the
suggested method through its paces. Using scientific
procedures such as Montage, Cybershake, SIPHT, and
LIGO, ADWEH is tested against state-of-the-art
algorithms such as Deep Q-Network (DQN), Advantage
ActorCritic2 (AC2), and PWSA3C. In comparison to
DQN, A2C, and PWSA3C methods, ADWEH achieves a
significantly shorter makespan (by as much as 31.9%),
lowers energy consumption (by as much as 24%),
improves scalability efficiency (by about 29%),
increases resource utilisation (by about 52%), and
reduces failure rates (by more than 47%). The findings
establish ADWEH as a strong and effective tool for
enhancing an efficiency and dependability of processes
in the cloud, meeting the changing needs of
contemporary cloud settings [31].

Gopikrishna Maddali An Efficient Bio-Inspired Optimization Framework for Scalable Task Scheduling in Cloud Computing Environments

231| International Journal of Current Engineering and Technology, Vol.15, No.3 (May/June 2025)

Naveen et al. (2025), introduced the Butterfly Ant
Colony Optimization Algorithm (BACOA), a novel
hybrid approach designed to enhance local and global
search capabilities. BACOA combines the exploratory
strength of the BOA and the exploitation capabilities of
ACO to minimize energy consumption, communication
cost, and computation cost in Task Scheduling (TS). By
balancing these parameters, BACOA achieves a more
energy-efficient task-scheduling process while
reducing the overhead costs associated with
communication and computation in cloud systems. The
simulation study shows that BACOA is better than
other existing algorithms by achieving better energy
saving by 16%, while it provides better communication
cost by 21.06% and better computation cost by 18%,
and it is more appropriate for large-scale cloud
environments [32].

Choppara and Sudheer (2025), included creating a
framework for adaptive scheduling that can
accommodate scheduling based on dependencies, as
well as sequential and parallel processes. By using this
framework, many important performance metrics are
enhanced by 30%, makespan is decreased by 25%,
fault tolerance is enhanced by 25%, and system
scalability and reliability are enhanced by 20%. Our
method for data processing localisation increases data
privacy and management efficiency while reducing
latency and bandwidth utilisation by as much as 40%.
The findings back up the promise mix of sophisticated
machine learning with fog computing, as Simpy
recreated this work using datasets from Google Cloud
Jobs [33].

K. Singh and Bharti (2024), applied an optimization
mechanism to improve the efficiency of the model
based on the problems that occur during the allocation
of resources and balancing mechanisms. So, to analyze
the complete scheduling mechanism and problem
identification mechanism, the concept of Back-
Propagation Algorithm (BPA) with ANN is used, which
is named ANN-BPA. In the end, to validate the model
efficiency, a comparative analysis is performed with
several swarm algorithms like PSO, ABC, CSA and MFO.
In this case, the energy consumption, job completion
rate, execution time, and overall performance are all
improved by combining MFO with ANN-BPA [34].

Marathe et al., (2024), introduced a novel approach
using the Dingo Optimization Algorithm (DOA), a

multi-objective meta-heuristic scheduling technique
designed to address key challenges in cloud resource
management. The DOA focuses on optimizing resource
utilization by balancing load distribution, reducing
energy consumption, and minimizing task completion
time. Simulation results demonstrate that DOA
outperforms traditional algorithms by achieving a 20%
improvement in Resource Utilization, a 17% reduction
in Energy Consumption, and a 15% decrease in task
completion time [35].

Bennett et al. (2024), proposed a solution based on
energy consumption and resource allocation that
schedules the work in a manner that allowed for
consideration of the amount of load and the
environment. Computer simulations show that the HBA
performs better than the PSO, GA and the IDOA with
energy consumption cut by 15.6 %, resource usage
optimized by 18.2%, time taken to complete the tasks
improved by 17.4% and the overall throughput
improved by 21.2% meaning that HBA is a promising
solution for efficient and scalable CFCs [36].

Rajasingh and Durga (2024), proposed an Energy
Efficient Maximal Support Priority Scheduling
Approach (EEMSPS), which schedules tasks in a virtual
cloud environment. Furthermore, the Task Completion
Time (TCT) algorithm is utilized to calculate the task
length and time. Additionally, the SBABC method is
employed to organize the task and reduce data
processing time. Finally, cloud load balancing is
evaluated using the EEMSPS algorithm. Energy
efficiency, task execution time, and energy
consumption are used to compare the performance of
the proposed methodology to those of traditional
approaches. Thus, cloud job scheduling achieves an
energy efficiency rating of 96.4% [37].

Ramesh et al., (2023), particle swarm optimisation
(PSO) in a multi-cloud environment to map intricate
processes to various cloud services, including
computation and storage. They connect complicated
processes to storage services and serverless platforms
offered by well-known cloud providers, like AWS,
Azure, and GCP. The experimental assessment reveals
that our method outperforms cloud-based naïve and
intuition-based mapping by as much as 61% in terms
of makespan and 51% in terms of cost of process setup
[38].

Table 1 Summary of the related work for task scheduling in cloud computing

Ref Methodology Findings Advantages
Challenges / Research

Gaps
Recommendations

Krishna
& Khasim

Vali
(2025)

ADWEH with
WorkflowSim

simulation,
compared with

DQN, A2C,
PWSA3C

Up to 31.9% reduced
makespan, 24% less

energy use, 52%
resource utilization

Robust in
performance,

scalability, fault
tolerance

Limited to simulation; real-
cloud deployment missing

Test ADWEH on
hybrid/multi-cloud
real-time datasets

Naveen
et al.

(2025)

Butterfly Ant
Colony

Optimization
Algorithm
(BACOA)

Energy savings
(16%), 21.06% less

comm. cost, 18% less
computation cost

Strong global-
local search; low
energy/overhead

Complex hybridization may
need adaptive tuning

Investigate BACOA
with dynamic

workloads and fog
systems

Gopikrishna Maddali An Efficient Bio-Inspired Optimization Framework for Scalable Task Scheduling in Cloud Computing Environments

232| International Journal of Current Engineering and Technology, Vol.15, No.3 (May/June 2025)

combining BOA
& ACO

Choppara
&

Sudheer
(2025)

Adaptive
scheduling using

ML + Fog
computing,

SimPy on Google
Cloud Jobs

30% perf.
improvement, 25%
less fault rate, 40%
lower bandwidth

usage

Supports all
scheduling types;
privacy-enhanced

Lack of support for multi-
tenant or multi-cloud

scenarios

Incorporate
reinforcement

learning for
predictive scheduling

K. Singh
& Bharti
(2024)

ANN with Back
Propagation
(ANN-BPA) +

Swarm
Optimization

(MFO, etc.)

Better than PSO, ABC,
CSA, MFO in exec.
time, energy use

Strong hybrid AI
model; dynamic
feature selection

Model depends on proper
feature tuning

Extend BPA-ANN for
real-time auto-scaling

workloads

Marathe
et al.

(2024)

Dingo
Optimization

Algorithm
(DOA), multi-

objective
metaheuristic

20% higher
utilization, 17%

energy saved, 15%
faster

Dynamic load
balancing,
scalable TS

Limited comparison with
other modern deep RL

methods

Combine DOA with
deep learning for
adaptive learning

Bennett
et al.

(2024)

HBA - task
prioritization

with
energy/resource

demand
adaptation

Energy down 15.6%,
18.2% more resource

use, throughput up
21.2%

Adaptive to
workload,

environment

Evaluation limited to
homogeneous cloud settings

Apply to
heterogeneous cloud

+ edge scenarios

Rajasingh
& Durga
(2024)

EEMSPS +
SBABC + TCT

algorithm

96.4% energy
efficiency in
scheduling

Effective task
grouping, strong
load balancing

Focused only on energy;
lacks security/latency

factors

Explore EEMSPS in
security-constrained

multi-clouds

Ramesh
et al.

(2023)

PSO for
workflow

mapping on
AWS, GCP, Azure

61% improved
makespan, 51% cost

reduction

Multi-cloud
compatibility,

low deployment
cost

Not tested for real-time
latency-critical jobs

Extend PSO mapping
for latency-aware or

burst workloads

3. Methods and Materials

The objective of this project is to provide a framework
for optimising cloud computing task scheduling that is
bio-inspired and efficient. The Lyrebird Falcon
Optimization (LFO) algorithm is a population-based
metaheuristic approach designed for task scheduling in
CC environments. It simulates the behavior of lyrebirds
during danger situations, where the population
members, representing candidate solutions, update
their positions in the problem-solving space based on
two phases: escaping (exploration) and hiding
(exploitation). The position of each lyrebird is updated
iteratively using random selection between these
strategies, aiming to minimize makespan and energy
consumption while optimizing CPU and resource
utilization. The algorithm initializes a population
matrix of lyrebirds, evaluates their objective functions,
and iteratively updates their positions based on the
defined strategies. The objective function that has been
assessed most effectively is used to choose the optimal
solution. We employ CloudSim to create a cloud
environment simulation to evaluate the algorithm's
1000–5000 job performance based on makespan,
Energy Consumption, CPU utilisation, and resource
utilization. The results indicate that LFO effectively
reduces makespan and energy consumption while
managing resource utilization across different task
intensities, demonstrating its potential in efficient
cloud task scheduling. The following Figure 1 flowchart
illustrates all the steps involved in the implementation
of Task Scheduling in Cloud Computing.

Proposed LFO algorithm

Lyrebirds are the building blocks of the LOA approach,
a population-based metaheuristic algorithm. Finding
suitable solutions to optimisation difficulties inside an
iteration-based approach may be possible with the use
of the LOA's collective search capabilities in the
problem-solving area. Each lyrebird in the LOA utilises
its location in the solution space to ascertain the
decision variables' values [39]. From a mathematical
perspective, it is possible to describe each lyrebird as a
vector, with each member representing a decision
variable. A theoretical matrix representation of the
algorithm's population, consisting of LOA members,
may be obtained by using Equation (1). The members
of the LOA are first placed in the problem-solving area
at random using Equation (2).

 𝑋 =

[

𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

𝑁×𝑚

=

[

𝑥1,1 … 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑖,1 … 𝑥𝑖,𝑑

…
⋰
…

𝑥1,𝑚

⋮
𝑥𝑖,𝑚

⋮ ⋱ ⋮
𝑥𝑁,1 … 𝑥𝑁,𝑑

⋰
…

⋮
𝑥𝑁,𝑚]

𝑁×𝑚

 (1)

𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟. (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (2)

Here, 𝑋 is the LOA population matrix, 𝑋𝑖 is the 𝑖th LOA
member (Candidate Solution), 𝑥𝑖,𝑑 is the decision

variable's 𝑑th dimension in the search space, 𝑁 is the
lyrebird count, 𝑚 is the decision variable count, and 𝑟
is an interval-based random integer[0,1], the lower
limit of the 𝑑th decision variable is denoted as 𝑙𝑏𝑑 and
the upper bound as 𝑢𝑏𝑑 .

Gopikrishna Maddali An Efficient Bio-Inspired Optimization Framework for Scalable Task Scheduling in Cloud Computing Environments

233| International Journal of Current Engineering and Technology, Vol.15, No.3 (May/June 2025)

Figure 1 Proposed methodology flowchart for task
scheduling in cloud computing

In order to assess the problem's objective function, it is
helpful to remember that each LOA member stands for
a possible remedy. Consequently, the values for the
goal function are accessible in proportion to the
population size. The set of values that have been
assessed for the objective function of the problem may
be shown as a vector using Equation (3).

 𝐹 =

[

𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

𝑁×𝑚

=

[

𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

𝑁×𝑚

 (3)

In this context, 𝐹 represents the evaluated objective
function vector and 𝐹𝑖 Stands for the evaluated
objective function according to the 𝑖th member of the
LOA.

An appropriate metric for assessing the solutions
that have been suggested is the assessed values of the
objective function. Therefore, the optimal candidate
solution (or LOA member) is represented by the
objective function's best evaluated value, whereas the
optimal candidate solution (or LOA member) is
represented by the objective function's worst
evaluated value. Considering that the lyrebirds'

location in the problem-solving space changes with
every iteration, it is sensible to compare the objective
function values and update the best candidate solution.

Mathematical Modelling of LOA

The suggested LOA method incorporates mathematical
modelling of the lyrebird technique for threat detection
into its design, which updates the population's location
in each iteration. Depending on the lyrebird's decision
in this case, the two processes of updating the
population are (i) fleeing and (ii) hiding. To simulate
the lyrebird's ability to decide between a hiding and an
escape plan in the event of danger, LOA incorporates
Equation (4) into its design. In other words, each
iteration only makes use of one of the two phases to
update the position of every LOA member.

𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑓𝑜𝑟 𝑋𝑖: {
𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃ℎ𝑎𝑠𝑒 1, 𝑟𝑝 ≤ 0.5

𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃ℎ𝑎𝑠𝑒 2, 𝑒𝑙𝑠𝑒
 (4)

Here, 𝑟𝑝 is an integer chosen at random from the set [0,

1].

Phase 1: Escaping Strategy (Exploration Phase)

In particular, when the virtual lyrebird leaves the
dangerous area for the safe ones, LOA changes the
population member's position in the search space
accordingly. An example of LOA's exploration skills in
global search may be seen in the lyrebird's ability to
alter its position and investigate new areas of the
problem-solving region after being moved to a safe
place. A member's safe zone in LOA design is the region
around other members of the population with higher
objective function values. By using Equation (5), we
can therefore ascertain the collection of protected
regions for every member of the LOA.

𝑆𝐴𝑖 = {𝑋𝑘 , 𝐹𝑘 < 𝐹𝑖 𝑎𝑛𝑑 𝐾 𝜖 {1,2, . . , 𝑁}}, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, . . , 𝑁, (5)

Here, 𝑆𝐴𝑖 is the group of protected spots for the 𝑖th
lyrebird and 𝑋𝑘 Represents the 𝑘th row of the 𝑎 matrix,
which outperforms the 𝑖th LOA member in terms of the
objective function value (𝐹𝑘) (i.e., 𝑋𝑘<𝐹𝑖).

It is believed that the lyrebird would haphazardly
make its way to one of these protected areas according
to the LOA design. At this stage, we utilise the lyrebird
displacement model to formulate Equation(6), which
we then apply to find the new locations of all LOA
members. Next, this new location will take the place of
the old one of the matching member in accordance
with Equation (7) if the goal function's value is
enhanced.

 𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟𝑖,𝑗 . (𝑆𝑆𝐴𝑖,𝑗 − 𝑙𝑖,𝑗. 𝑥𝑖,𝑗) (6)

 𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 ≤ 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
, (7)

Here, 𝑆𝑆𝐴𝑖 is the chosen secure location for the 𝑖th
lyrebird 𝑆𝑆𝐴𝑖,𝑗 is its 𝑗th dimension, 𝑋𝑖

𝑃1 computes the

Start

Define Input Parameters like Task
type, priority, constraints etc

Initialize Cloud Environment

 Generate Initial Task Scheduling
Population Randomly

Calculate Execution Cost (Fitness) for Each
Candidate Solution

While Iterations < Max Iterations

• Identify Better Task Schedules
Based on Cost

• Update Task Assignments Using
Optimization Heuristic

• Apply Randomization to Avoid
Local Minima (if applicable)

• Recalculate Execution Cost for
Updated Assignments

• Increment Iteration Counter

Optimize Final Task-to-Allocation

End

Gopikrishna Maddali An Efficient Bio-Inspired Optimization Framework for Scalable Task Scheduling in Cloud Computing Environments

234| International Journal of Current Engineering and Technology, Vol.15, No.3 (May/June 2025)

new location of the 𝑖th lyrebird using the escape plan
for the intended LOA, 𝑥𝑖,𝑗

𝑃1 is its 𝑗thdimension, 𝐹𝑖
𝑃1 is the

value of its objective function, 𝑟𝑖,𝑗 are arbitrary integers

drawn at random from the range [0, 1] and 𝑙𝑖,𝑗 are

integers chosen at random to be either 1 or 2.

Phase 2: Hiding Strategy (Exploitation Phase)

At this point in LOA, the lyrebird's model for concealing
in its immediate safe zone informs the process of
updating the population member's location in the
search landscape. Lyrebirds are able to use LOA in local
searches by precisely assessing their environments and
taking little steps to seek an appropriate hiding place,
which causes them to make modest movements in
their location.

Using the lyrebird's predicted path to a nearby
hiding spot as input, LOA designers may update the
positions of all LOA members according to Equation
(8). The related member's previous position will be
replaced if this new placement raises the value of the
objective function according to Equation (9).

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2𝑟𝑖,𝑗).

𝑢𝑏𝑗−𝑙𝑏𝑗

𝑡
 (8)

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 ≤ 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
 (9)

Here, 𝑋𝑖

𝑃2 is the new spot for the 𝑖th lyrebird found by
using the concealed approach of the planned LOA,
𝑥𝑖,𝑗

𝑃2 is its 𝑗th dimension, 𝐹𝑖
𝑃2 is its objective function

value, 𝑟𝑖,𝑗 are arbitrary integers drawn at random from

the range [0, 1] and 𝑡 is the IterationCounter.

Figure 2 Flowchart of LOA.

Figure 2 shows a flowchart of the LOA implementation
processes. Following the steps outlined in the LOA
flow diagram is the procedure: An algorithm is first
provided task-specific data, including the objective
function, restrictions, and decision variables. Counting
the number of iterations and members of the
population is the next stage in solving the problem. In
the first step, the objective function of the problem is
used to evaluate a randomly selected beginning
population for the algorithm. Following the
initialisation step, the algorithm begins its first
iteration. Next, move the original lyrebird to a different
spot in the problem-solving area. According to LOA
modelling, the lyrebird uses two tactics when it is in
danger: (i) run away and (ii) hide. Equation (4) states
that the LOA design assumes that each lyrebird has an
equal probability of selecting one of these two
strategies at random. If the lyrebird decides to choose
the escape option, it may move about in the problem-
solving area using Equations (5)–(7). In order for the
lyrebird's location in the problem-solving space to be
updated, it is necessary to follow equations (8) and (9).
At this point in time, we have effectively adjusted the
population's location for the first lyrebird. Adding the
whereabouts of the other lyrebirds to the problem-
solving area is done in the same manner as the first
lyrebird. After repositioning every lyrebird in the
solution space, the first iteration of the algorithm is
finished. Iteratively comparing evaluated values for the
target function allows us to establish the best potential
solution up to this point. The program then employs
the same strategy for each iteration until the last
iteration, updating lyrebirds in the problem-solving
space repeatedly. The output will include the solution
to the issue that was achieved throughout the
iterations of the algorithm after all of the iterations
have been completed. Here, the algorithm's
implementation is considered successful.

Performance Metrics

Task scheduling in CC is calculated using the following
performance metrics.

Makespan

The time needed to do each action or operation in a
system is called its makespan. When planning and
managing jobs with the end objective of completing
them as quickly as possible, it is crucial. Equation 10
allows for its calculation:

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max − min𝑡𝑎𝑠𝑘𝑖(𝐹𝑛𝑇𝑖𝑚𝑒) (10)

Where, 𝐹𝑛𝑇𝑖𝑚𝑒shows the finishing time of task i.

Energy Consumption

The reduction of cloud infrastructure's overall power
usage is the primary objective of EnergyConsumption.
To be sustainable and cost-effective, it is essential.

Gopikrishna Maddali An Efficient Bio-Inspired Optimization Framework for Scalable Task Scheduling in Cloud Computing Environments

235| International Journal of Current Engineering and Technology, Vol.15, No.3 (May/June 2025)

Some strategies for optimising energy usage include
distributing workloads, consolidating servers, and
using dynamic resource scaling. It may be determined
by plugging the values into equation 11:

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝐸) = ∑ 𝑃𝑖

𝑛
𝑡−1 × 𝑇𝑖 (11)

Where: 𝑃𝑖 = Power consumed by server 𝑖 (in Watts), 𝑇𝑖
= Time duration server 𝑖 is active (in hours) and n =
Number of servers.

CPU Utilization

The efficiency of CPU usage in cloud computing setups
may be measured by looking at CPU utilisation. We
can prevent some PMs or VMs from being overworked
while others are idle by balancing CPU utilization.
Implementing efficient CPU utilisation practices may
help prevent performance bottlenecks and optimise
the use of hardware resources. As an example,
consider the following equation (12):

𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (%) = (
𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 𝑈𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒
) × 100 (12)

Resource Utilization

Measures how efficiently computational resources are
used. It is computed as the ratio of utilized resources to
the total available capacity. Higher resource utilization
ensures optimal workload distribution across
resources. Balancing resource usage prevents
bottlenecks and enhances system efficiency. The
expression for resource utilization, Ru, is Eq. (8):

𝑅𝑢 =
𝑇𝑐

𝑀𝑎 𝑥 𝑁
 (13)

where 𝑇𝑐 reflects the time required to execute an
activity, 𝑀𝑎 represents makespan and N represents
number of resources.

4. Result analysis and Discussion

An Intel(R) Core (TM) i5-3230 M, 2.60 GHz, 8 GB of
RAM, 750 GB of hard drive space, Windows 10,
NetBeansIDE, JDK 8.0, and CloudSim make up the
experimental environment used in this study. The
CloudSim toolkit was used to implement the energy-
aware techniques, dynamic scheduling system, and
mechanism for recognising and grouping similar kinds
of workloads.

Table 2 details the experimental setup

Experimental setup

Experimental Setup Description
SimulationToolkit CloudSim 5.0

CloudEnvironmentType Simulated
PMs 1

Number of Tasks 1000 to 5000

Table II provides details of the experimental setup
used for evaluating the LFO (Lyrebird Falcon
Optimization) approach. The experiments were
conducted with CloudSim 5.0 serving as the simulation
toolkit to model the CC environment. The cloud
environment type is simulated, ensuring a controlled
testing scenario. The setup includes a single physical
machine (PM), and the number of tasks varies from
1000 to 5000 to analyze performance across different
workload intensities.

Table 2 LFO performance for various task counts

Task Count
Makespan

(in sec)
EC (kW)

CPU-U
(%)

R U
(in%)

1000 22.1382 21.6782 24.9813 40.7014

2000 19.0584 20.5181 31.0325 40.5618
3000 18.7871 22.6694 14.4126 29.6925

4000 18.7893 25.1941 17.7209 27.7893
5000 18.7883 23.7029 21.7924 23.8816

Table III demonstrates how the Lyrebird Falcon
Optimization (LFO) algorithm performs when
scheduling tasks while running in a CC setting as the
task numbers fluctuate. The makespan diminishes
steadily from 1000 to 5000 tasks while attaining a
stable value of 18.78 seconds with 3000 to 5000 tasks
because of effective parallel scheduling. The studied
algorithm demonstrates consistent energy
consumption during execution that slightly changes yet
reaches 25.19 kW at 4000 tasks while managing
energy distribution across workloads. The CPU usage
(CPU-U) maintained changes through 31.03% peak
utilization at 2000 tasks then decreased to 14.41% at
3000 tasks before it rose gradually. The variable nature
of measurements indicates that the algorithm adjusts
its distribution process across virtual machines
dynamically. The resource utilization (RU) decreases
from 40.7% at 1000 tasks to 23.88% at 5000 tasks
because of improved distribution of tasks and
optimized resource allocation. The research findings
show that LFO functions to preserve short makespan
along with reasonable energy usage while it adjusts
CPU and resource allocation according to workload
strength.

Figure 3 Flowchart of LOA Task Count with Makespan
of LFO

The LFO algorithm demonstrates efficient and scalable
performance through its steady makespan values that
appear in Figure 3. As stated and illustrated in the
previous sections, it can effectively arrange job

16

18

20

22

24

1000 2000 3000 4000 5000

M
ak

es
p

an
 (

m
s)

Number of tasks

Makespan perfomance of LFO

Gopikrishna Maddali An Efficient Bio-Inspired Optimization Framework for Scalable Task Scheduling in Cloud Computing Environments

236| International Journal of Current Engineering and Technology, Vol.15, No.3 (May/June 2025)

schedules in a cloud computing environment to save
many resources and time to complete tasks.

Figure 4 Task Count with Energy Consumption of LFO

Figure 4 shows distribution of the energy consumption
or the LFO algorithm when the number of tasks
increases and thus shows how to effectively control use
of energy in cloud computing. Therefore, the workload
distribution and input/output requirements are
equally manageable as opposed to in other algorithms,
which may eat up a lot of energy while handling a
larger workload.

Figure 5 Task count with CPU Utilization of LFO

Figure 5 depicts the CPU usage of the LFO algorithm
when the number of tasks rising and shows its
effectiveness in managing the load among virtual
machines. This makes sure that there is no resource
that is overloaded or underutilized, making each one
run at its best. This approach has the benefit of
avoiding bottlenecks, utilizing the fastest method of
data processing, and getting the optimal utilization out
of current CPU cores especially important for cloud
computing model of the systems.

Figure 6 Task Count with Resource Utilization of LFO

Figure 6 depicts the fact that LFO algorithm effectively
handles resource usage to accomplish a large number
of tasks incrementally. It learns about the amount of
work requested and performs the necessary
allocations and deallocations effectively controlling for
resource wastage. Organizational performance is
improved, cost is reduced, and the use of computers is
optimized when it comes to overall system operation.
In the case of cloud computing, LFO is best suited for
dynamically managing system resources, and this
ensures sustainable and balanced job scheduling of all
computational processes.

Comparison And Discussion

The suggested LFO algorithm is clearly more efficient
than the previously utilised FOA approach for energy
usage in cloud computing, as shown by the comparison.
Regardless of the load on the tasks, LFO consumes less
energy demonstrating a more efficient usage of
computational necessities and electric power. This
increase is due to LFO’s ability to schedule tasks well
and dynamically allocate its resources in a way that
does not waste energy and thus is sustainable. The
results validate that LFO offers a significant
advancement over FOA in minimizing energy
consumption in cloud environments.

Table 4 Comparison between previous work and our
work for Performance Metrics of Cloud Computing

Energy Consumption

Task LFO FOA[40]
1000 21.6782 79.8524
2000 20.5181 80.3654
3000 22.6694 82.9542
4000 25.1941 84.7429
5000 23.7029 86.9845

Table IV shows an energy consumption comparison
between LFO strategies and FOA procedures when
executing different task numbers. Task number
increases from 1000 to 5000 with energy consumption
percentage given on the y-axis while the x-axis shows
the task count in Table IV. Energy use during the LFO
process shows consistently better results than FOA
method uses. For instance, at 1000 tasks, LFO
consumes only 21.6782%, whereas FOA consumes
79.8524%. The energy costs remain stable at
23.7029% when LFO completes 5000 tasks yet FOA
requires 86.9845% energy consumption in the same
scenario. The research shows LFO uses significantly
less energy than FOA at every task count which
demonstrates its excellence for maximizing cloud
resource management efficiency.

Key performance issues such excessive energy
consumption, poor resource utilisation, and extended
makespan are addressed in the proposed study by
introducing the Lyrebird Falcon Optimisation (LFO)
algorithm for task scheduling in CC. The simulation of
lyrebird strategies within LFO helps achieve workload

0

10

20

30

40

50

1000 2000 3000 4000 5000E
n

er
gy

 c
o

n
su

m
p

ti
o

n
 (

k
W

)

Number of tasks

Energy consumption perfomance of LFO

0

10

20

30

40

50

1000 2000 3000 4000 5000

C
P

U
 u

ti
li

za
ti

o
n

 a
(%

)

Number of tasks

LFO with CPU utilization for Task Count

0

10

20

30

40

50

1000 2000 3000 4000 5000

R
es

o
u

rc
e

U
ti

li
za

ti
o

n
 (

%
)

Number of tasks

Resource Utilization perfomance of LFO

Gopikrishna Maddali An Efficient Bio-Inspired Optimization Framework for Scalable Task Scheduling in Cloud Computing Environments

237| International Journal of Current Engineering and Technology, Vol.15, No.3 (May/June 2025)

balance for enhanced system performance. This
performance is compared with other existing methods
for the efficiency that has been observed for energy
consumption, namely CPU utilization and overall
resources, for which it can be considered as nearly
optimal, making it a sustainable and scalable technique
to apply to current cloud services.

Conclusion and Future Scope

Issues with resource sharing and utilisation are
becoming more problematic for cloud computing due
to the increasing number of users. Consequently, a
crucial area for scheduling jobs to obtain greater
performance is load balancing between resources. The
goal of task scheduling in CC settings is substantially
enhanced by the suggested bio-inspired optimisation
approach, which enhances resource utilisation while
simultaneously reducing makespan and energy
consumption. The simulation results indicated that
there was consecutive improvement in the Makespan
from 22.13s using FFO to 18.78s using LFO and Energy
from 21.67 kW using FFO to 23.70 kW using LFO for
task loads between 1000 to 5000 tasks. Thus, LFO was
60% efficient in energy conservation as compared to
the FOA. This is a promising advance in the field of
tasks scheduling optimization, LFO demonstrated good
scalability, sufficient to cope with the large-scale cloud
jobs, thus making its contribution to the improvement
of life cycle and performance of cloud computing
systems.

Nevertheless, there are characteristics that will
restrict the efficacy of the method before incorporating
the LFO algorithm into cloud computing task
scheduling. Some of these issues include the fact that it
is sensitive to population size and that it may get stuck
in local optima in contexts that are very dynamic and
complicated. The performance of LFO changes based
on the selection of cloud infrastructure and the nature
of executed tasks. Future work could act on enhancing
the adaptability of the algorithm, combining it with
other mechanisms or bio-inspired methods, and on
applying it to real multi-cloud scenarios characterized
by different resources and/or types of tasks.

References

[1] Y. Zhang and R. Yang, “Cloud computing task scheduling
based on improved particle swarm optimization algorithm,”
in Proceedings IECON 2017 - 43rd Annual Conference of the
IEEE Industrial Electronics Society, 2017. doi:
10.1109/IECON.2017.8217541.
[2] A. Gogineni, “Confidential Computing Architectures for
Enhanced Data Security in Cloud Environments,” Int. J. Sci.
Technol., vol. 16, no. 1, 2025.
[3] S. Arora and S. R. Thota, “Automated Data Quality
Assessment And Enhancement For Saas Based Data
Applications,” J. Emerg. Technol. Innov. Res., vol. 11, no. 6, pp.
i207–i218, 2024, doi: 10.6084/m9.jetir.JETIR2406822.
[4] Pranav Khare and Abhishek, “Cloud Security Challenges:
Implementing Best Practices for Secure SaaS Application
Development,” Int. J. Curr. Eng. Technol., vol. 11, no. 06, 2021,
doi: https://doi.org/10.14741/ijcet/v.11.6.11.

[5] N. Jafari Navimipour and F. Sharifi Milani, “Task
Scheduling in the Cloud Computing Based on the Cuckoo
Search Algorithm,” Int. J. Model. Optim., 2015, doi:
10.7763/ijmo.2015.v5.434.
[6] Vashudhar Sai Thokala, “Scalable Cloud Deployment and
Automation for E-Commerce Platforms Using AWS, Heroku,
and Ruby on Rails,” Int. J. Adv. Res. Sci. Commun. Technol., pp.
349–362, Oct. 2023, doi: 10.48175/IJARSCT-13555A.
[7] N. Patel, “Secure Access Service Edge(Sase): Evaluating
The Impact Of Convereged Network Security Architectures In
Cloud Computing,” J. Emerg. Technol. Innov. Res., vol. 11, no.
3, pp. 703–714, 2024.
[8] S. Murri, S. Chinta, S. Jain, and T. Adimulam, “Advancing
Cloud Data Architectures: A Deep Dive into Scalability,
Security, and Intelligent Data Management for Next-
Generation Applications,” Well Test. J., vol. 33, no. 2, pp. 619–
644, 2024.
[9] R. Tarafdar, “AI-powered cybersecurity threat detection
in cloud environments,” int. j. comput. eng. technol., 2025.
[10] S. Murri, “Data Security Challenges and Solutions in
Big Data Cloud Environments,” Int. J. Curr. Eng. Technol., vol.
12, no. 6, 2022, doi:
https://doi.org/10.14741/ijcet/v.12.6.11.
[11] M. Kalra and S. Singh, “A review of metaheuristic
scheduling techniques in cloud computing,” 2015. doi:
10.1016/j.eij.2015.07.001.
[12] T. K. K. and S. Rongala, “Implementing AI-Driven
Secure Cloud Data Pipelines in Azure with Databricks,”
Nanotechnol. Perceptions, vol. 20, no. 15, pp. 3063–3075,
2024, doi: https://doi.org/10.62441/nano-ntp.vi.4439.
[13] M. M. Sandhu, S. Khalifa, R. Jurdak, and M. Portmann,
“Task Scheduling for Energy-Harvesting-Based IoT: A Survey
and Critical Analysis,” 2021. doi:
10.1109/JIOT.2021.3086186.
[14] S. P. Godavari Modalavalasa, “Exploring Azure
Security Center: A Review of Challenges and Opportunities in
Cloud Security,” ESP J. Eng. Technol. Adv., 2022.
[15] V. Prajapati, “Cloud-Based Database Management :
Architecture , Security , challenges and solutions,” J. Glob. Res.
Electron. Commun., vol. 1, no. 1, 2025.
[16] M. S. Samarth Shah, “Deep reinforcement learning for
scalable task scheduling in serverless computing,” Int. Res. J.
Mod. Eng. Technol. Sci., vol. 3, no. 4, pp. 141–147, 2021.
[17] A. Gogineni, “Novel Scheduling Algorithms For
Efficient Deployment Of Mapreduce Applications In
Heterogeneous Computing,” Int. Res. J. Eng. Technol., vol. 4,
no. 11, p. 6, 2017.
[18] M. S. R. Krishna and S. Mangalampalli, “A Systematic
Review on Various Task Scheduling Algorithms in Cloud
Computing,” 2024. doi: 10.4108/eetiot.4548.
[19] B. Mallikarjuna and D. Arun Kumar Reddy, “The role
of load balancing algorithms in next generation of cloud
computing,” J. Adv. Res. Dyn. Control Syst., 2019.
[20] A. Gogineni, “Advancing Task Scheduling in Edge
Computing for Energy Efficiency: A Multi-Objective Method,”
Int. J. Innov. Res. Creat. Technol., vol. 9, no. 1, 2023.
[21] D. A. Shafiq, N. Z. Jhanjhi, and A. Abdullah, “Load
balancing techniques in cloud computing environment: A
review,” 2022. doi: 10.1016/j.jksuci.2021.02.007.
[22] S. G. Domanal, R. M. R. Guddeti, and R. Buyya, “A
Hybrid Bio-Inspired Algorithm for Scheduling and Resource
Management in Cloud Environment,” IEEE Trans. Serv.
Comput., 2020, doi: 10.1109/TSC.2017.2679738.
[23] S. Kaur and A. Verma, “An Efficient Approach to
Genetic Algorithm for Task Scheduling in Cloud Computing
Environment,” Int. J. Inf. Technol. Comput. Sci., 2012, doi:
10.5815/ijitcs.2012.10.09.

Gopikrishna Maddali An Efficient Bio-Inspired Optimization Framework for Scalable Task Scheduling in Cloud Computing Environments

238| International Journal of Current Engineering and Technology, Vol.15, No.3 (May/June 2025)

[24] A. I. Awad, N. A. El-Hefnawy, and H. M. Abdel-Kader,
“Enhanced Particle Swarm Optimization for Task Scheduling
in Cloud Computing Environments,” in Procedia Computer
Science, 2015. doi: 10.1016/j.procs.2015.09.064.
[25] X. Wei, “Task scheduling optimization strategy using
improved ant colony optimization algorithm in cloud
computing,” J. Ambient Intell. Humaniz. Comput., 2020, doi:
10.1007/s12652-020-02614-7.
[26] X. Chen, Z. Song, H. Zheng, and Z. Wan, “Task
scheduling based on fruit fly optimization algorithm in
mobile cloud computing,” Int. J. Performability Eng., 2020,
doi: 10.23940/ijpe.20.04.p13.618628.
[27] H. Alabdeli, S. Rafi, I. G. Naveen, D. D. Rao, and Y.
Nagendar, “Photovoltaic Power Forecasting Using Support
Vector Machine and Adaptive Learning Factor Ant Colony
Optimization,” 3rd IEEE Int. Conf. Distrib. Comput. Electr.
Circuits Electron. ICDCECE 2024, pp. 2024–2025, 2024, doi:
10.1109/ICDCECE60827.2024.10549652.
[28] T. Saravanan and K. Ramesh, “A Bio-inspired Energy
Efficient Dynamic Task Scheduling (BEDTS) scheme and
classification for virtualization CDC,” J. Eng. Res., 2024, doi:
10.1016/j.jer.2023.08.026.
[29] R. K. Kalimuthu and B. Thomas, “An effective multi-
objective task scheduling and resource optimization in cloud
environment using hybridized metaheuristic algorithm,” J.
Intell. Fuzzy Syst., 2022, doi: 10.3233/JIFS-212370.
[30] P. Singh, M. Dutta, and N. Aggarwal, “A review of task
scheduling based on meta-heuristics approach in cloud
computing,” Knowl. Inf. Syst., 2017, doi: 10.1007/s10115-
017-1044-2.
[31] M. S. R. Krishna and D. Khasim Vali, “ADWEH: A
Dynamic Prioritized Workflow Task Scheduling Approach
Based on the Enhanced Harris Hawk Optimization
Algorithm,” IEEE Access, vol. 13, no. February, pp. 1–26,
2025, doi: 10.1109/ACCESS.2025.3543880.
[32] Y. Naveen, S. B. Kasturi, C. Ramya, B. Gayathri, and S.
K. Medishetti, “BACOA: Meta Heuristic Driven Hybrid
Scheduling Algorithm for Improved Resource Allocation in
Cloud Environment,” in 2025 International Conference on
Multi-Agent Systems for Collaborative Intelligence (ICMSCI),
Jan. 2025, pp. 1787–1794. doi:
10.1109/ICMSCI62561.2025.10893958.

[33] P. Choppara and S. Sudheer Mangalampalli, “Resource
Adaptive Automated Task Scheduling Using Deep
Deterministic Policy Gradient in Fog Computing,” IEEE
Access, vol. 13, no. February, pp. 1–26, 2025, doi:
10.1109/ACCESS.2025.3539606.
[34] S. Kaur, J. Singh, and V. Bharti, “A Comparative Study
of Optimization Based Task Scheduling in Cloud Computing
Environments Using Machine Learning,” in 2024 5th
International Conference on Intelligent Communication
Technologies and Virtual Mobile Networks (ICICV), 2024, pp.
731–740. doi: 10.1109/ICICV62344.2024.00122.
[35] S. Marathe, T. Neelima, G. Anusha, and S. K.
Medishetti, “DOA: Optimizing Resource Utilization in Cloud
Environment Using Multi-Objective Meta-Heuristic
Scheduling Algorithm,” in 2024 International Conference on
Advancement in Renewable Energy and Intelligent Systems
(AREIS), Dec. 2024, pp. 1–9. doi:
10.1109/AREIS62559.2024.10893648.
[36] C. R. Bennett, R. R. Oduru, D. McLaughlin, L.
Parvathaneni, N. B. Riquelme, and S. K. Medishetti, “Energy
and Resource Aware Scheduling in Cloud-Fog Environment
using Advanced Meta Heuristic Algorithm,” in 2024 2nd
International Conference on Self Sustainable Artificial
Intelligence Systems (ICSSAS), Oct. 2024, pp. 1422–1430. doi:
10.1109/ICSSAS64001.2024.10760415.
[37] V. M. D. Rajasingh and R. Durga, “Feasible Load
Balancing for Webserver in Cloud Environment Using Energy
Efficient Maximal Support Priority Scheduling Approach,” in
2024 International Conference on Integrated Intelligence and
Communication Systems (ICIICS), Nov. 2024, pp. 1–6. doi:
10.1109/ICIICS63763.2024.10859387.
[38] M. Ramesh, D. Chahal, C. Phalak, and R. Singhal,
“Multi-Objective Workflow Scheduling to Serverless
Architecture in a Multi-Cloud Environment,” in Proceedings -
2023 IEEE International Conference on Cloud Engineering,
IC2E 2023, 2023. doi: 10.1109/IC2E59103.2023.00027.
[39] M. Dehghani, G. Bektemyssova, Z. Montazeri, G.
Shaikemelev, O. P. Malik, and G. Dhiman, “Lyrebird
Optimization Algorithm: A New Bio-Inspired Metaheuristic
Algorithm for Solving Optimization Problems,” Biomimetics,
2023, doi: 10.3390/biomimetics8060507.
[40] A. R. Khan, “Dynamic Load Balancing in Cloud
Computing: Optimized RL-Based Clustering with Multi-
Objective Optimized Task Scheduling,” Processes, vol. 12, no.
3, 2024, doi: 10.3390/pr12030519.

