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Abstract  
  
The need for sharing and using resources is growing at a fast pace, which poses several issues for cloud computing 
(CC) as the number of users increases.  For this reason, job scheduling with load balancing across resources is a 
crucial area for improving performance. High energy usage and underutilised resources are two of the major 
obstacles to effective task scheduling. To address this, propose a bio-inspired optimization framework utilizing the 
Lyrebird Falcon Optimization (LFO) algorithm, which mimics lyrebird behavior through two key phases: escaping 
(exploration) and hiding (exploitation). This population-based metaheuristic dynamically updates task assignments 
to minimize makespan and energy usage while enhancing CPU and resource utilization. The algorithm was 
implemented in CloudSim and evaluated across various task loads (1000–5000 tasks). Experimental results 
demonstrate that LFO consistently achieves lower makespan (from 22.13s to 18.78s) and energy consumption (from 
21.67 kW to 23.70 kW) compared to the traditional Fruit Fly Optimization Algorithm (FOA), highlighting its 
efficiency. The key advantages of this work include its ability to minimize energy consumption while optimizing 
resource utilization, scalability to large-scale cloud environments, and improved performance, making it a promising 
solution for sustainable and efficient task scheduling in cloud computing. 
 
Keywords: Cloud Computing, Load Balancing, Task Scheduling, Bio-Inspired Optimization, Lyrebird Optimization 
Algorithm (LOA), Energy Consumption. 
 
 
1. Introduction 
 
Cloud computing has matured into a distinct facet of 
Internet-based technology.  Globally distributed, high-
performance data centres are the backbone of 
legitimate cloud service providers like Amazon, Oracle, 
and Microsoft  [1] [2]. The principles of utility 
computing form the basis of the cloud computing 
paradigm. In this model, IaaS, PaaS, and SaaS are 
service delivery methods that employ pay-as-you-go 
pricing and service-level agreements. The network, 
processing, and storage infrastructure resources are all 
combined into a single data centre unit  [3]  [4]. Virtual 
machines may take use of its massive processing 
power, storage capacity, and bandwidth.  Systematic 
resource management primarily focusses on the virtual 
machine work assignment  [5] [6] [7].  Due to the ever-
increasing need for resource sharing and consumption, 
cloud computing encounters a barrage of problems as 
the user base grows  [8] [9]. Consequently, a significant 
obstacle to task scheduling is load balancing  [10] [11] 
[12].  
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The goal of load balancing is to utilise numerous 
resources as efficiently as possible with as little 
reaction time as possible, all while preventing any one 
resource from being overwhelmed  [13] [14]. This is 
how load has to be distributed between resources in 
cloud-based building design, such that all resources are 
always doing the same amount of work  [15] [16]. 
Resource supply and job scheduling are the two 
primary considerations of load balancing.  As a result, it 
ensures that resources are readily available when 
needed and offers efficiently used resources  [17] [18].  
 

Therefore, a system that efficiently uses its 
resources, distributes its load evenly, and provides 
high-quality service rapidly while using as little time, 
energy, and money as possible requires an optimum 
task scheduling mechanism  [19] [20]. Typically, the 
best schedules are generated using static, dynamic, and 
nature-inspired heuristic methods  [21]. Thus, bio-
inspired algorithms have surpassed traditional and 
exact methods as the superior choice  [22]. Traditional 
bio-inspired algorithms like Genetic Algorithms (GA)  
[23], PSO  [24], ACO  [25], and Fruit Fly Optimization 
Algorithm (FOA)  [26] They are widely used for task 
scheduling in cloud computing. Premature 
convergence, scaling problems, and inefficiency in very 
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dynamic settings are common problems with these 
algorithms. GA evolves solutions using selection, 
crossover, and mutation, while PSO adjusts particle 
positions based on past best solutions. ACO simulates 
ant behavior to find optimal paths, and FOA mimics the 
behavior of fruit flies in foraging for food, focusing on 
optimizing tasks based on their sensory information 
[27] [28] [29]. These algorithms may get stuck in local 
optima, leading to suboptimal solutions, and struggle 
with managing large-scale tasks in cloud computing 
systems. Furthermore, it may require significant 
computation time and resources, particularly in 
complex, ever-changing cloud environments, limiting 
their effectiveness in real-time task scheduling [30]. 
The Lyrebird Falcon Optimization algorithm enhances 
conventional bio-inspired techniques by implementing 
a better method of handling exploration against 
exploitation. The system reduces premature 
convergence along with improving scalability which 
makes it suitable for handling large-scale as well as 
dynamic cloud computing requirements. LFO operates 
quickly to adapting environments thus generating 
efficient and accurate task scheduling results. 
 
A. Motivation and Significance  
 
Due to increasing scale and complexity of such 
systems, efficient scheduling of tasks in order to fully 
utilise resources is critical and hence scheduling 
algorithms are becoming vital in cloud computing. 
Traditional decision-making methods fail to share 
workloads equally that causes inefficiencies in 
duration and both resource usage and power 
utilization. It has been shown that bio-inspired 
optimisation algorithms may handle optimisation 
issues in contexts that are dynamically changing in 
near-optimal time, leading to their rising popularity. 
The research examines the necessity of developing an 
adaptive scheduling framework for cloud systems 
which provides scalability together with energy 
efficiencies and operational cost reduction benefits. 
 

B. Contribution of study 
 

This research proposes a bio-inspired optimization 
framework for scalable task scheduling in CC 
environments. The key contributions of this study 
include: 
• Establishment of an optimization model using bio-
inspired algorithms with the aim of improving the 
efficiency in task scheduling. 
• Incorporation of performance-conscious scheduling 
and other cloud computing measures like makespan, 
Energy Consumption, CPU utilization and Resource 
Utilization. 
• Designing and implementing an adaptive algorithm 
based on the biological processes that can be optimized 
as per the load. 
• Thorough testing of the suggested architecture with 
several task loads (1000-5000 tasks) to confirm its 
efficacy. 

• Comparison of the proposed bio-inspired approach 
with the typical scheduling strategies and techniques 
concerning the achieved Makespan, energy 
consumption and the resources utilization. 
 
C. Novelty and Justification 
 
This study is significant because it proposed the 
Lyrebird Falcon Optimisation (LFO) approach that is 
derived from the adaptive behaviours of lyrebirds with 
a view to solving the scaling of jobs in cloud computing 
systems. This bio-inspired strategy aims at combining 
the exploration and exploitation phases for making the 
makespan and Energy Consumption minimal while 
optimizing the CPU and Resource Utilization. The 
rationale for this work is to show how better in energy 
consumption compared to other techniques like the 
Fruit Fly Optimization Algorithm (FOA). Based on 
LFO’s heedless controlling power to handle large-scale 
task loads and its opportunity of sustainability and 
utilization of resources, LFO is a substantial 
advancement in task scheduling in CC. 
 
D. Structure of paper 
 
The outline of the paper is as follows: Literature 
studies on bio-inspired optimisation for cloud task 
scheduling are included in Section II. The suggested 
structure is described in Section III.  The experimental 
findings are presented in Section IV.  Findings and 
recommendations for further study constitute Section 
V. 

 
2. Literature Review 

 
This section summarises current studies on bio-
inspired algorithms for cloud computing workload 
scheduling and balancing. Task scheduling is a hot 
topic right now, and academics have been focusing on 
bio-inspired algorithms as a potential solution. This is 
all because cloud computing is becoming more popular 
among consumers. 

Krishna and Khasim Vali, (2025) simulate and 
evaluate process scheduling options, we used 
WorkflowSim, a simulation toolset, and put the 
suggested method through its paces.  Using scientific 
procedures such as Montage, Cybershake, SIPHT, and 
LIGO, ADWEH is tested against state-of-the-art 
algorithms such as Deep Q-Network (DQN), Advantage 
ActorCritic2 (AC2), and PWSA3C. In comparison to 
DQN, A2C, and PWSA3C methods, ADWEH achieves a 
significantly shorter makespan (by as much as 31.9%), 
lowers energy consumption (by as much as 24%), 
improves scalability efficiency (by about 29%), 
increases resource utilisation (by about 52%), and 
reduces failure rates (by more than 47%).  The findings 
establish ADWEH as a strong and effective tool for 
enhancing an efficiency and dependability of processes 
in the cloud, meeting the changing needs of 
contemporary cloud settings [31]. 
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Naveen et al. (2025), introduced the Butterfly Ant 
Colony Optimization Algorithm (BACOA), a novel 
hybrid approach designed to enhance local and global 
search capabilities. BACOA combines the exploratory 
strength of the BOA and the exploitation capabilities of 
ACO to minimize energy consumption, communication 
cost, and computation cost in Task Scheduling (TS). By 
balancing these parameters, BACOA achieves a more 
energy-efficient task-scheduling process while 
reducing the overhead costs associated with 
communication and computation in cloud systems. The 
simulation study shows that BACOA is better than 
other existing algorithms by achieving better energy 
saving by 16%, while it provides better communication 
cost by 21.06% and better computation cost by 18%, 
and it is more appropriate for large-scale cloud 
environments [32]. 

Choppara and Sudheer (2025), included creating a 
framework for adaptive scheduling that can 
accommodate scheduling based on dependencies, as 
well as sequential and parallel processes.  By using this 
framework, many important performance metrics are 
enhanced by 30%, makespan is decreased by 25%, 
fault tolerance is enhanced by 25%, and system 
scalability and reliability are enhanced by 20%. Our 
method for data processing localisation increases data 
privacy and management efficiency while reducing 
latency and bandwidth utilisation by as much as 40%.  
The findings back up the promise mix of sophisticated 
machine learning with fog computing, as Simpy 
recreated this work using datasets from Google Cloud 
Jobs [33]. 

K. Singh and Bharti (2024), applied an optimization 
mechanism to improve the efficiency of the model 
based on the problems that occur during the allocation 
of resources and balancing mechanisms. So, to analyze 
the complete scheduling mechanism and problem 
identification mechanism, the concept of Back-
Propagation Algorithm (BPA) with ANN is used, which 
is named ANN-BPA. In the end, to validate the model 
efficiency, a comparative analysis is performed with 
several swarm algorithms like PSO, ABC, CSA and MFO. 
In this case, the energy consumption, job completion 
rate, execution time, and overall performance are all 
improved by combining MFO with ANN-BPA [34]. 

Marathe et al., (2024), introduced a novel approach 
using the Dingo Optimization Algorithm (DOA), a 

multi-objective meta-heuristic scheduling technique 
designed to address key challenges in cloud resource 
management. The DOA focuses on optimizing resource 
utilization by balancing load distribution, reducing 
energy consumption, and minimizing task completion 
time. Simulation results demonstrate that DOA 
outperforms traditional algorithms by achieving a 20% 
improvement in Resource Utilization, a 17% reduction 
in Energy Consumption, and a 15% decrease in task 
completion time [35]. 

Bennett et al. (2024), proposed a solution based on 
energy consumption and resource allocation that 
schedules the work in a manner that allowed for 
consideration of the amount of load and the 
environment. Computer simulations show that the HBA 
performs better than the PSO, GA and the IDOA with 
energy consumption cut by 15.6 %, resource usage 
optimized by 18.2%, time taken to complete the tasks 
improved by 17.4% and the overall throughput 
improved by 21.2% meaning that HBA is a promising 
solution for efficient and scalable CFCs [36]. 

Rajasingh and Durga (2024), proposed an Energy 
Efficient Maximal Support Priority Scheduling 
Approach (EEMSPS), which schedules tasks in a virtual 
cloud environment. Furthermore, the Task Completion 
Time (TCT) algorithm is utilized to calculate the task 
length and time. Additionally, the SBABC method is 
employed to organize the task and reduce data 
processing time. Finally, cloud load balancing is 
evaluated using the EEMSPS algorithm.  Energy 
efficiency, task execution time, and energy 
consumption are used to compare the performance of 
the proposed methodology to those of traditional 
approaches. Thus, cloud job scheduling achieves an 
energy efficiency rating of 96.4% [37]. 

Ramesh et al., (2023), particle swarm optimisation 
(PSO) in a multi-cloud environment to map intricate 
processes to various cloud services, including 
computation and storage.  They connect complicated 
processes to storage services and serverless platforms 
offered by well-known cloud providers, like AWS, 
Azure, and GCP. The experimental assessment reveals 
that our method outperforms cloud-based naïve and 
intuition-based mapping by as much as 61% in terms 
of makespan and 51% in terms of cost of process setup 
[38]. 

 
Table 1 Summary of the related work for task scheduling in cloud computing 

 

Ref Methodology Findings Advantages 
Challenges / Research 

Gaps 
Recommendations 

Krishna 
& Khasim 

Vali 
(2025) 

ADWEH with 
WorkflowSim 

simulation, 
compared with 

DQN, A2C, 
PWSA3C 

Up to 31.9% reduced 
makespan, 24% less 

energy use, 52% 
resource utilization 

Robust in 
performance, 

scalability, fault 
tolerance 

Limited to simulation; real-
cloud deployment missing 

Test ADWEH on 
hybrid/multi-cloud 
real-time datasets 

Naveen 
et al. 

(2025) 

Butterfly Ant 
Colony 

Optimization 
Algorithm 
(BACOA) 

Energy savings 
(16%), 21.06% less 

comm. cost, 18% less 
computation cost 

Strong global-
local search; low 
energy/overhead 

Complex hybridization may 
need adaptive tuning 

Investigate BACOA 
with dynamic 

workloads and fog 
systems 
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combining BOA 
& ACO 

Choppara 
& 

Sudheer 
(2025) 

Adaptive 
scheduling using 

ML + Fog 
computing, 

SimPy on Google 
Cloud Jobs 

30% perf. 
improvement, 25% 
less fault rate, 40% 
lower bandwidth 

usage 

Supports all 
scheduling types; 
privacy-enhanced 

Lack of support for multi-
tenant or multi-cloud 

scenarios 

Incorporate 
reinforcement 

learning for 
predictive scheduling 

K. Singh 
& Bharti 
(2024) 

ANN with Back 
Propagation 
(ANN-BPA) + 

Swarm 
Optimization 

(MFO, etc.) 

Better than PSO, ABC, 
CSA, MFO in exec. 
time, energy use 

Strong hybrid AI 
model; dynamic 
feature selection 

Model depends on proper 
feature tuning 

Extend BPA-ANN for 
real-time auto-scaling 

workloads 

Marathe 
et al. 

(2024) 

Dingo 
Optimization 

Algorithm 
(DOA), multi-

objective 
metaheuristic 

20% higher 
utilization, 17% 

energy saved, 15% 
faster 

Dynamic load 
balancing, 
scalable TS 

Limited comparison with 
other modern deep RL 

methods 

Combine DOA with 
deep learning for 
adaptive learning 

Bennett 
et al. 

(2024) 

HBA - task 
prioritization 

with 
energy/resource 

demand 
adaptation 

Energy down 15.6%, 
18.2% more resource 

use, throughput up 
21.2% 

Adaptive to 
workload, 

environment 

Evaluation limited to 
homogeneous cloud settings 

Apply to 
heterogeneous cloud 

+ edge scenarios 

Rajasingh 
& Durga 
(2024) 

EEMSPS + 
SBABC + TCT 

algorithm 

96.4% energy 
efficiency in 
scheduling 

Effective task 
grouping, strong 
load balancing 

Focused only on energy; 
lacks security/latency 

factors 

Explore EEMSPS in 
security-constrained 

multi-clouds 

Ramesh 
et al. 

(2023) 

PSO for 
workflow 

mapping on 
AWS, GCP, Azure 

61% improved 
makespan, 51% cost 

reduction 

Multi-cloud 
compatibility, 

low deployment 
cost 

Not tested for real-time 
latency-critical jobs 

Extend PSO mapping 
for latency-aware or 

burst workloads 

 
3. Methods and Materials  
 

The objective of this project is to provide a framework 
for optimising cloud computing task scheduling that is 
bio-inspired and efficient. The Lyrebird Falcon 
Optimization (LFO) algorithm is a population-based 
metaheuristic approach designed for task scheduling in 
CC environments. It simulates the behavior of lyrebirds 
during danger situations, where the population 
members, representing candidate solutions, update 
their positions in the problem-solving space based on 
two phases: escaping (exploration) and hiding 
(exploitation). The position of each lyrebird is updated 
iteratively using random selection between these 
strategies, aiming to minimize makespan and energy 
consumption while optimizing CPU and resource 
utilization. The algorithm initializes a population 
matrix of lyrebirds, evaluates their objective functions, 
and iteratively updates their positions based on the 
defined strategies. The objective function that has been 
assessed most effectively is used to choose the optimal 
solution.  We employ CloudSim to create a cloud 
environment simulation to evaluate the algorithm's 
1000–5000 job performance based on makespan, 
Energy Consumption, CPU utilisation, and resource 
utilization. The results indicate that LFO effectively 
reduces makespan and energy consumption while 
managing resource utilization across different task 
intensities, demonstrating its potential in efficient 
cloud task scheduling. The following Figure 1 flowchart 
illustrates all the steps involved in the implementation 
of Task Scheduling in Cloud Computing. 

Proposed LFO algorithm 
 
Lyrebirds are the building blocks of the LOA approach, 
a population-based metaheuristic algorithm.   Finding 
suitable solutions to optimisation difficulties inside an 
iteration-based approach may be possible with the use 
of the LOA's collective search capabilities in the 
problem-solving area.  Each lyrebird in the LOA utilises 
its location in the solution space to ascertain the 
decision variables' values [39]. From a mathematical 
perspective, it is possible to describe each lyrebird as a 
vector, with each member representing a decision 
variable. A theoretical matrix representation of the 
algorithm's population, consisting of LOA members, 
may be obtained by using Equation (1). The members 
of the LOA are first placed in the problem-solving area 
at random using Equation (2). 
 

 𝑋 =  

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑥1,1 … 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑖,1 … 𝑥𝑖,𝑑

…
⋰
…

𝑥1,𝑚

⋮
𝑥𝑖,𝑚

⋮ ⋱ ⋮
𝑥𝑁,1 … 𝑥𝑁,𝑑

⋰
…

⋮
𝑥𝑁,𝑚]

 
 
 
 

𝑁×𝑚

 (1) 

 
𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟. (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (2) 

 
Here, 𝑋 is the LOA population matrix, 𝑋𝑖  is the 𝑖th LOA 
member (Candidate Solution), 𝑥𝑖,𝑑  is the decision 

variable's 𝑑th dimension in the search space, 𝑁 is the 
lyrebird count, 𝑚 is the decision variable count, and 𝑟 
is an interval-based random integer[0,1], the lower 
limit of the 𝑑th decision variable is denoted as 𝑙𝑏𝑑  and 
the upper bound as 𝑢𝑏𝑑 . 
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Figure 1 Proposed methodology flowchart for task 
scheduling in cloud computing 

 
In order to assess the problem's objective function, it is 
helpful to remember that each LOA member stands for 
a possible remedy. Consequently, the values for the 
goal function are accessible in proportion to the 
population size.  The set of values that have been 
assessed for the objective function of the problem may 
be shown as a vector using Equation (3). 
 

 𝐹 =  

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×𝑚

          (3) 

 
In this context, 𝐹 represents the evaluated objective 
function vector and 𝐹𝑖  Stands for the evaluated 
objective function according to the 𝑖th member of the 
LOA. 

An appropriate metric for assessing the solutions 
that have been suggested is the assessed values of the 
objective function.    Therefore, the optimal candidate 
solution (or LOA member) is represented by the 
objective function's best evaluated value, whereas the 
optimal candidate solution (or LOA member) is 
represented by the objective function's worst 
evaluated value. Considering that the lyrebirds' 

location in the problem-solving space changes with 
every iteration, it is sensible to compare the objective 
function values and update the best candidate solution. 
 
Mathematical Modelling of LOA 
 
The suggested LOA method incorporates mathematical 
modelling of the lyrebird technique for threat detection 
into its design, which updates the population's location 
in each iteration.  Depending on the lyrebird's decision 
in this case, the two processes of updating the 
population are (i) fleeing and (ii) hiding.  To simulate 
the lyrebird's ability to decide between a hiding and an 
escape plan in the event of danger, LOA incorporates 
Equation (4) into its design.   In other words, each 
iteration only makes use of one of the two phases to 
update the position of every LOA member. 
 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑓𝑜𝑟 𝑋𝑖: {
𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃ℎ𝑎𝑠𝑒 1, 𝑟𝑝 ≤ 0.5

𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃ℎ𝑎𝑠𝑒 2, 𝑒𝑙𝑠𝑒 
           (4) 

 
Here, 𝑟𝑝  is an integer chosen at random from the set [0, 

1]. 
 
Phase 1: Escaping Strategy (Exploration Phase) 
 
In particular, when the virtual lyrebird leaves the 
dangerous area for the safe ones, LOA changes the 
population member's position in the search space 
accordingly. An example of LOA's exploration skills in 
global search may be seen in the lyrebird's ability to 
alter its position and investigate new areas of the 
problem-solving region after being moved to a safe 
place. A member's safe zone in LOA design is the region 
around other members of the population with higher 
objective function values.  By using Equation (5), we 
can therefore ascertain the collection of protected 
regions for every member of the LOA. 
 
𝑆𝐴𝑖 = {𝑋𝑘 , 𝐹𝑘 < 𝐹𝑖  𝑎𝑛𝑑 𝐾 𝜖 {1,2, . . , 𝑁}},   𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, . . , 𝑁,  (5) 
 
Here, 𝑆𝐴𝑖   is the group of protected spots for the 𝑖th 
lyrebird and 𝑋𝑘  Represents the 𝑘th row of the 𝑎 matrix, 
which outperforms the 𝑖th LOA member in terms of the 
objective function value (𝐹𝑘) (i.e., 𝑋𝑘<𝐹𝑖). 

It is believed that the lyrebird would haphazardly 
make its way to one of these protected areas according 
to the LOA design.  At this stage, we utilise the lyrebird 
displacement model to formulate Equation(6), which 
we then apply to find the new locations of all LOA 
members. Next, this new location will take the place of 
the old one of the matching member in accordance 
with Equation (7) if the goal function's value is 
enhanced. 

 

 𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟𝑖,𝑗 . (𝑆𝑆𝐴𝑖,𝑗 − 𝑙𝑖,𝑗. 𝑥𝑖,𝑗) (6) 

 𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 ≤ 𝐹𝑖   

𝑋𝑖 , 𝑒𝑙𝑠𝑒
,           (7) 

 

Here, 𝑆𝑆𝐴𝑖  is the chosen secure location for the 𝑖th 
lyrebird 𝑆𝑆𝐴𝑖,𝑗  is its 𝑗th dimension,  𝑋𝑖

𝑃1 computes the 

Start 

Define Input Parameters like Task 
type, priority, constraints etc 

Initialize Cloud Environment 

 Generate Initial Task Scheduling 
Population Randomly 

   

Calculate Execution Cost (Fitness) for Each 
Candidate Solution   

While Iterations < Max Iterations 
 
 
 
 
 
 
 
 
 
 
 
 

• Identify Better Task Schedules 
Based on Cost 

• Update Task Assignments Using 
Optimization Heuristic 

• Apply Randomization to Avoid 
Local Minima (if applicable) 

• Recalculate Execution Cost for 
Updated Assignments 

• Increment Iteration Counter 
 

Optimize Final Task-to-Allocation  

End 
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new location of the 𝑖th lyrebird using the escape plan 
for the intended LOA, 𝑥𝑖,𝑗

𝑃1 is its 𝑗thdimension, 𝐹𝑖
𝑃1 is the 

value of its objective function, 𝑟𝑖,𝑗  are arbitrary integers 

drawn at random from the range [0, 1] and 𝑙𝑖,𝑗  are 

integers chosen at random to be either 1 or 2. 
 
Phase 2: Hiding Strategy (Exploitation Phase) 
 
At this point in LOA, the lyrebird's model for concealing 
in its immediate safe zone informs the process of 
updating the population member's location in the 
search landscape. Lyrebirds are able to use LOA in local 
searches by precisely assessing their environments and 
taking little steps to seek an appropriate hiding place, 
which causes them to make modest movements in 
their location. 

Using the lyrebird's predicted path to a nearby 
hiding spot as input, LOA designers may update the 
positions of all LOA members according to Equation 
(8).  The related member's previous position will be 
replaced if this new placement raises the value of the 
objective function according to Equation (9). 

 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2𝑟𝑖,𝑗).

𝑢𝑏𝑗−𝑙𝑏𝑗

𝑡
       (8) 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 ≤ 𝐹𝑖   

𝑋𝑖 , 𝑒𝑙𝑠𝑒
         (9) 

 
Here, 𝑋𝑖

𝑃2 is the new spot for the 𝑖th lyrebird found by 
using the concealed approach of the planned LOA, 
𝑥𝑖,𝑗

𝑃2 is its 𝑗th dimension, 𝐹𝑖
𝑃2 is its objective function 

value, 𝑟𝑖,𝑗  are arbitrary integers drawn at random from 

the range [0, 1] and 𝑡 is the IterationCounter. 
 

 
 

Figure 2 Flowchart of LOA. 

Figure 2 shows a flowchart of the LOA implementation 
processes.  Following the steps outlined in the LOA 
flow diagram is the procedure:   An algorithm is first 
provided task-specific data, including the objective 
function, restrictions, and decision variables. Counting 
the number of iterations and members of the 
population is the next stage in solving the problem.  In 
the first step, the objective function of the problem is 
used to evaluate a randomly selected beginning 
population for the algorithm. Following the 
initialisation step, the algorithm begins its first 
iteration. Next, move the original lyrebird to a different 
spot in the problem-solving area.  According to LOA 
modelling, the lyrebird uses two tactics when it is in 
danger: (i) run away and (ii) hide.   Equation (4) states 
that the LOA design assumes that each lyrebird has an 
equal probability of selecting one of these two 
strategies at random. If the lyrebird decides to choose 
the escape option, it may move about in the problem-
solving area using Equations (5)–(7). In order for the 
lyrebird's location in the problem-solving space to be 
updated, it is necessary to follow equations (8) and (9).    
At this point in time, we have effectively adjusted the 
population's location for the first lyrebird. Adding the 
whereabouts of the other lyrebirds to the problem-
solving area is done in the same manner as the first 
lyrebird.  After repositioning every lyrebird in the 
solution space, the first iteration of the algorithm is 
finished. Iteratively comparing evaluated values for the 
target function allows us to establish the best potential 
solution up to this point.   The program then employs 
the same strategy for each iteration until the last 
iteration, updating lyrebirds in the problem-solving 
space repeatedly. The output will include the solution 
to the issue that was achieved throughout the 
iterations of the algorithm after all of the iterations 
have been completed.  Here, the algorithm's 
implementation is considered successful. 
 
Performance Metrics 
 
Task scheduling in CC is calculated using the following 
performance metrics. 
 
Makespan 
 
The time needed to do each action or operation in a 
system is called its makespan.  When planning and 
managing jobs with the end objective of completing 
them as quickly as possible, it is crucial.  Equation 10 
allows for its calculation: 
 
𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max − min𝑡𝑎𝑠𝑘𝑖(𝐹𝑛𝑇𝑖𝑚𝑒)    (10) 
 
Where, 𝐹𝑛𝑇𝑖𝑚𝑒shows the finishing time of task i. 
 

Energy Consumption 
 
The reduction of cloud infrastructure's overall power 
usage is the primary objective of EnergyConsumption. 
To be sustainable and cost-effective, it is essential.  
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Some strategies for optimising energy usage include 
distributing workloads, consolidating servers, and 
using dynamic resource scaling.  It may be determined 
by plugging the values into equation 11: 
 
𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝐸) = ∑ 𝑃𝑖

𝑛
𝑡−1 × 𝑇𝑖               (11) 

 
Where: 𝑃𝑖   = Power consumed by server 𝑖 (in Watts), 𝑇𝑖   
= Time duration server 𝑖 is active (in hours) and n = 
Number of servers. 
 
CPU Utilization 
 
The efficiency of CPU usage in cloud computing setups 
may be measured by looking at CPU utilisation.   We 
can prevent some PMs or VMs from being overworked 
while others are idle by balancing CPU utilization. 
Implementing efficient CPU utilisation practices may 
help prevent performance bottlenecks and optimise 
the use of hardware resources.  As an example, 
consider the following equation (12): 
 

𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (%) = (
𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 𝑈𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒
) × 100        (12) 

 
Resource Utilization 
 
Measures how efficiently computational resources are 
used. It is computed as the ratio of utilized resources to 
the total available capacity. Higher resource utilization 
ensures optimal workload distribution across 
resources. Balancing resource usage prevents 
bottlenecks and enhances system efficiency. The 
expression for resource utilization, Ru, is Eq. (8): 
 

𝑅𝑢 =
𝑇𝑐

𝑀𝑎 𝑥 𝑁
            (13) 

 
where 𝑇𝑐  reflects the time required to execute an 
activity, 𝑀𝑎 represents makespan and N represents 
number of resources. 
 
4. Result analysis and Discussion 
 
An Intel(R) Core (TM) i5-3230 M, 2.60 GHz, 8 GB of 
RAM, 750 GB of hard drive space, Windows 10, 
NetBeansIDE, JDK 8.0, and CloudSim make up the 
experimental environment used in this study.  The 
CloudSim toolkit was used to implement the energy-
aware techniques, dynamic scheduling system, and 
mechanism for recognising and grouping similar kinds 
of workloads.   
 

Table 2 details the experimental setup 
 

Experimental setup 
 

Experimental Setup Description 
SimulationToolkit CloudSim 5.0 

CloudEnvironmentType Simulated 
PMs 1 

Number of Tasks 1000 to 5000 

Table II provides details of the experimental setup 
used for evaluating the LFO (Lyrebird Falcon 
Optimization) approach. The experiments were 
conducted with CloudSim 5.0 serving as the simulation 
toolkit to model the CC environment. The cloud 
environment type is simulated, ensuring a controlled 
testing scenario. The setup includes a single physical 
machine (PM), and the number of tasks varies from 
1000 to 5000 to analyze performance across different 
workload intensities. 
 

Table 2 LFO performance for various task counts 
 

Task Count 
Makespan 

(in sec) 
EC (kW) 

CPU-U 
(%) 

R U 
(in%) 

1000 22.1382 21.6782 24.9813 40.7014 

2000 19.0584 20.5181 31.0325 40.5618 
3000 18.7871 22.6694 14.4126 29.6925 

4000 18.7893 25.1941 17.7209 27.7893 
5000 18.7883 23.7029 21.7924 23.8816 

 
Table III demonstrates how the Lyrebird Falcon 
Optimization (LFO) algorithm performs when 
scheduling tasks while running in a CC setting as the 
task numbers fluctuate. The makespan diminishes 
steadily from 1000 to 5000 tasks while attaining a 
stable value of 18.78 seconds with 3000 to 5000 tasks 
because of effective parallel scheduling. The studied 
algorithm demonstrates consistent energy 
consumption during execution that slightly changes yet 
reaches 25.19 kW at 4000 tasks while managing 
energy distribution across workloads. The CPU usage 
(CPU-U) maintained changes through 31.03% peak 
utilization at 2000 tasks then decreased to 14.41% at 
3000 tasks before it rose gradually. The variable nature 
of measurements indicates that the algorithm adjusts 
its distribution process across virtual machines 
dynamically. The resource utilization (RU) decreases 
from 40.7% at 1000 tasks to 23.88% at 5000 tasks 
because of improved distribution of tasks and 
optimized resource allocation. The research findings 
show that LFO functions to preserve short makespan 
along with reasonable energy usage while it adjusts 
CPU and resource allocation according to workload 
strength. 
 

 
 

Figure 3 Flowchart of LOA Task Count with Makespan 
of LFO 

 
The LFO algorithm demonstrates efficient and scalable 
performance through its steady makespan values that 
appear in Figure 3. As stated and illustrated in the 
previous sections, it can effectively arrange job 
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schedules in a cloud computing environment to save 
many resources and time to complete tasks. 
 

 
 
Figure 4 Task Count with Energy Consumption of LFO 

 
Figure 4 shows distribution of the energy consumption 
or the LFO algorithm when the number of tasks 
increases and thus shows how to effectively control use 
of energy in cloud computing. Therefore, the workload 
distribution and input/output requirements are 
equally manageable as opposed to in other algorithms, 
which may eat up a lot of energy while handling a 
larger workload. 
 

 
 

Figure 5 Task count with CPU Utilization of LFO 
 
Figure 5 depicts the CPU usage of the LFO algorithm 
when the number of tasks rising and shows its 
effectiveness in managing the load among virtual 
machines. This makes sure that there is no resource 
that is overloaded or underutilized, making each one 
run at its best. This approach has the benefit of 
avoiding bottlenecks, utilizing the fastest method of 
data processing, and getting the optimal utilization out 
of current CPU cores especially important for cloud 
computing model of the systems. 
 

 
 
Figure 6 Task Count with Resource Utilization of LFO 

Figure 6 depicts the fact that LFO algorithm effectively 
handles resource usage to accomplish a large number 
of tasks incrementally. It learns about the amount of 
work requested and performs the necessary 
allocations and deallocations effectively controlling for 
resource wastage. Organizational performance is 
improved, cost is reduced, and the use of computers is 
optimized when it comes to overall system operation.  
In the case of cloud computing, LFO is best suited for 
dynamically managing system resources, and this 
ensures sustainable and balanced job scheduling of all 
computational processes. 
 
Comparison And Discussion  
 
The suggested LFO algorithm is clearly more efficient 
than the previously utilised FOA approach for energy 
usage in cloud computing, as shown by the comparison. 
Regardless of the load on the tasks, LFO consumes less 
energy demonstrating a more efficient usage of 
computational necessities and electric power. This 
increase is due to LFO’s ability to schedule tasks well 
and dynamically allocate its resources in a way that 
does not waste energy and thus is sustainable. The 
results validate that LFO offers a significant 
advancement over FOA in minimizing energy 
consumption in cloud environments. 
 

Table 4 Comparison between previous work and our 
work for Performance Metrics of Cloud Computing 

 
Energy Consumption 

Task LFO FOA[40] 
1000 21.6782 79.8524 
2000 20.5181 80.3654 
3000 22.6694 82.9542 
4000 25.1941 84.7429 
5000 23.7029 86.9845 

 
Table IV shows an energy consumption comparison 
between LFO strategies and FOA procedures when 
executing different task numbers. Task number 
increases from 1000 to 5000 with energy consumption 
percentage given on the y-axis while the x-axis shows 
the task count in Table IV. Energy use during the LFO 
process shows consistently better results than FOA 
method uses. For instance, at 1000 tasks, LFO 
consumes only 21.6782%, whereas FOA consumes 
79.8524%. The energy costs remain stable at 
23.7029% when LFO completes 5000 tasks yet FOA 
requires 86.9845% energy consumption in the same 
scenario. The research shows LFO uses significantly 
less energy than FOA at every task count which 
demonstrates its excellence for maximizing cloud 
resource management efficiency. 

Key performance issues such excessive energy 
consumption, poor resource utilisation, and extended 
makespan are addressed in the proposed study by 
introducing the Lyrebird Falcon Optimisation (LFO) 
algorithm for task scheduling in CC. The simulation of 
lyrebird strategies within LFO helps achieve workload 
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balance for enhanced system performance. This 
performance is compared with other existing methods 
for the efficiency that has been observed for energy 
consumption, namely CPU utilization and overall 
resources, for which it can be considered as nearly 
optimal, making it a sustainable and scalable technique 
to apply to current cloud services. 
 
Conclusion and Future Scope 
 
Issues with resource sharing and utilisation are 
becoming more problematic for cloud computing due 
to the increasing number of users. Consequently, a 
crucial area for scheduling jobs to obtain greater 
performance is load balancing between resources. The 
goal of task scheduling in CC settings is substantially 
enhanced by the suggested bio-inspired optimisation 
approach, which enhances resource utilisation while 
simultaneously reducing makespan and energy 
consumption. The simulation results indicated that 
there was consecutive improvement in the Makespan 
from 22.13s using FFO to 18.78s using LFO and Energy 
from 21.67 kW using FFO to 23.70 kW using LFO for 
task loads between 1000 to 5000 tasks. Thus, LFO was 
60% efficient in energy conservation as compared to 
the FOA. This is a promising advance in the field of 
tasks scheduling optimization, LFO demonstrated good 
scalability, sufficient to cope with the large-scale cloud 
jobs, thus making its contribution to the improvement 
of life cycle and performance of cloud computing 
systems. 

Nevertheless, there are characteristics that will 
restrict the efficacy of the method before incorporating 
the LFO algorithm into cloud computing task 
scheduling.  Some of these issues include the fact that it 
is sensitive to population size and that it may get stuck 
in local optima in contexts that are very dynamic and 
complicated. The performance of LFO changes based 
on the selection of cloud infrastructure and the nature 
of executed tasks. Future work could act on enhancing 
the adaptability of the algorithm, combining it with 
other mechanisms or bio-inspired methods, and on 
applying it to real multi-cloud scenarios characterized 
by different resources and/or types of tasks. 
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