
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2021 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

239| International Journal of Current Engineering and Technology, Vol.11, No.2 (March/April 2021)

Enhancing GUI Testing: Exploring Convolutional Neural Networks with
Self-Learning Mechanisms for Automated UI Validation in Mobile
Applications

1*Venkata Sivakumar Musam and 2G. Arulkumaran

1Nisum chile, Santiago, Chile
2Bule Hora University: Bule Hora, Oromia, ET,

Received 01 March 2021, Accepted 17 April 2021, Available online 19 April 2021, Vol.11, No.2 (March/April 2021)

Abstract

The suggested methodology provides effective UI layout categorization with systematic workflow starting from an
input source gathering UI images. Data preprocessing improves data quality through normalization and imputation
of missing values. Feature extraction is accomplished using deep learning-based detection of significant UI elements
followed by the prediction phase classifying layouts as defective or non-defective. The automated method enhances UI
validation with a minimum of human interaction and a maximum of software development. The performance of the
model is confirmed by critical metrics and has high accuracy (95.65%), precision (96.80%), recall (94.50%), and an
F1 score of 95.90%, showing it is good for detecting defects.

Keyword: Fully connected neural network (FCN), Convolutional Neural Network (CNN), UI validation, Defect
detection, and Automated UI testing.

1. Introduction

Graphical User Interface (GUI) testing plays a crucial
role in ensuring a seamless and transparent user
experience for mobile applications [1]. It helps
maintain usability, reliability, and consistency across
different user interactions [2]. Traditional rule-based
testing methods and manual verification processes are
often slow and inefficient [3]. These human-dependent
processes cannot keep up with the demands of modern
mobile UI development cycles [4]. GUI testing in mobile
applications is further complicated by a variety of
factors including screen size variations [5], diverse
display resolutions [6], and frequent application
updates [7]. These changes in the interface can disrupt
previously validated functionalities [8]. Another major
challenge is the dynamically changing nature of UI
elements within the app [9]. This makes it difficult to
reuse test cases across multiple versions of the app
[10]. Legacy automation frameworks such as Selenium
and Appium face difficulty in adapting to these
dynamic changes [11]. They often fail to detect subtle
interface variations like missing buttons or misplaced
elements [12]. Traditional automation tools also
require frequent maintenance and updates, adding to
the development overhead [13].

*Corresponding author’s ORCID ID: 0000-0000-0000-0000
DOI: https://doi.org/10.14741/ijcet/v.11.2.15

Moreover, they are not well-suited for detecting
unbound or partially visible UI elements [14]. As a
result, developers may miss critical UI bugs, leading to
poor user satisfaction and degraded app performance
[15]. Manual GUI testing remains widely used but is
time-consuming and prone to human error [16].
Manual test scripts require constant updating and are
often not scalable for large applications [17]. Tools like
Appium, while popular, still struggle with flexibility
and test case reusability [18]. Image-based verification
methods lack robustness when faced with animations
and responsive design components [19]. Efforts to
integrate deep learning in UI detection have shown
promise, particularly using Convolutional Neural
Networks (CNNs) [20]. However, CNN-based methods
demand large labeled datasets for training [21]. These
models also require periodic retraining, which adds
computational and time overhead [22]. The variability
of mobile UIs across platforms like Android and iOS
increases the need for model generalization [23].
Additionally, UI elements can differ significantly
between devices, requiring high adaptability in testing
tools [24]. Given the rapid growth of mobile apps,
automated testing must evolve to be more scalable
[25]. The diversity in hardware, screen resolutions, and
operating systems further complicates automation
strategies [26]. Mobile applications also face challenges
due to their frequent updates and newly added
features [27]. Each update demands revalidation of the

http://inpressco.com/category/ijcet

Venkata Sivakumar Musam and G. Arulkumaran Enhancing GUI Testing: Exploring Convolutional Neural Networks..

240| International Journal of Current Engineering and Technology, Vol.11, No.2 (March/April 2021)

entire interface to maintain consistency [28]. Without
effective GUI testing, inconsistencies can lead to broken
interfaces and negative user feedback [29].
Conventional methods often fall short in validating
modern, visually complex mobile UIs [30]. Apps now
include custom components, dynamic content, and
interactive animations that standard test tools struggle
to handle [31]. Manual methods cannot scale efficiently
under these requirements [32]. These limitations
increase release times and elevate costs for mobile app
development teams [33]. Developers require testing
frameworks that can evolve along with the application
[34]. This need drives the interest in adaptive and self-
improving GUI testing solutions [35]. In this context,
our work proposes a CNN-based UI validation
framework with self-learning capabilities [36]. This
framework leverages convolutional models to
understand and classify UI elements more effectively
[37]. It employs reinforcement learning to adapt based
on testing feedback over time [38]. Active learning
components help reduce the need for large volumes of
labeled training data [39]. Together, these techniques
aim to minimize human involvement while improving
GUI testing accuracy and scalability [40]. The
Contributions of this paper are,
• Transformer-Based Model employs self-attention

mechanisms to understand short-term and long-
term dependencies in UI layout data to detect
structural inconsistencies and design defects
accurately [17].

• Masked and Combined Self-Attention (MCSA) uses
attention weights for important UI components,
enhancing defect detection accuracy by paying
attention to important layout characteristics [18].

• Mean Imputation and Min-Max Normalization
handle missing values and normalize numerical UI
parameters to a fixed range, making the data
consistent and improving the overall model
performance [19].

Despite the potential of automation, existing GUI
testing tools face limitations such as low adaptability to
UI changes, poor recognition accuracy in diverse
conditions, and the need for extensive manual scripting
or labelling [20]. Traditional image-based testing
approaches often fail when confronted with slight
variations in UI layouts or colors [21]. Additionally,
many current methods lack self-learning capabilities to
improve their detection and validation accuracy over
time [22]. These challenges lead to false positives and
negatives, undermining test reliability and developer
confidence [23]. Furthermore, integrating testing
frameworks seamlessly into continuous integration
pipelines remains a complex task [24].

To address these challenges, integrating
Convolutional Neural Networks with self-learning
mechanisms offers a robust path forward [25]. CNNs
can automatically learn and extract hierarchical visual
features from GUIs, enabling precise recognition of UI
elements under varying conditions [26]. Incorporating
self-learning allows the system to adapt dynamically by

continuously improving from new data and feedback,
reducing the need for manual intervention [27]. This
approach enhances accuracy, scalability, and resilience
to UI modifications [28]. Combining these techniques
with automated testing pipelines can accelerate release
cycles, reduce testing overhead, and ensure higher UI
quality in mobile applications, ultimately enhancing
user experience and developer productivity [29].

The organization of this paper is as follows: Section
2 discusses existing UI validation approaches and their
limitations [30]. Section 3 introduces the proposed
transformer-based UI validation model and its process
[31]. Section 4 tests the performance of the model
using main metrics and a confusion matrix [32]. Lastly,
Section 5 outlines the findings, contributions, and
future work directions [33].

2. Literature Review

GUI testing plays an essential role in ensuring
application quality, especially in the dynamic and
fragmented ecosystem of mobile platforms [41]. With
the surge of mobile devices featuring different screen
sizes, OS versions, and interaction patterns, the
demand for robust and adaptable GUI testing
frameworks has intensified [42]. Manual GUI testing,
although widely practiced, is inherently time-
consuming and error-prone, making it unsuitable for
continuous integration and agile development
environments [43]. Tools like Appium and Selenium
have been extensively used for GUI test automation,
but they lack adaptability to frequent UI changes and
require considerable manual scripting [44]. One of the
key limitations in traditional GUI automation lies in the
brittleness of UI element locators, which often break
when UI layouts are altered [45]. Image-based
techniques for GUI testing, including pixel comparison
and template matching, are unable to handle dynamic
content, animations, or responsive elements [46].
These static techniques struggle to maintain accuracy
in the face of evolving interface designs [47]. As mobile
applications grow more complex, incorporating
adaptive layouts, user personalization, and animations,
traditional methods fall short of providing consistent
validation [48]. Recent advancements in deep learning
have opened new avenues for UI element detection and
classification. Convolutional Neural Networks (CNNs),
in particular, have demonstrated strong performance
in visual recognition tasks, making them suitable for
GUI testing [49]. Several studies have employed CNNs
to classify GUI components such as buttons, sliders,
text fields, and icons with high accuracy [50]. However,
the reliance on large-scale labeled datasets for training
CNNs remains a bottleneck [51]. Manual annotation of
GUI elements across app versions and platforms is
resource-intensive and not scalable [52]. To overcome
these challenges, researchers have begun integrating
active learning techniques to reduce labeling efforts
while maintaining high classification accuracy [53].
Active learning selectively queries the most

Venkata Sivakumar Musam and G. Arulkumaran Enhancing GUI Testing: Exploring Convolutional Neural Networks..

241| International Journal of Current Engineering and Technology, Vol.11, No.2 (March/April 2021)

informative samples for labeling, optimizing the
training process [54]. Reinforcement learning has also
been explored in the domain of software testing, where
models learn from interaction with the application
environment to improve test strategies over time [55].
These self-learning mechanisms aim to minimize
human intervention and allow the testing framework
to adapt autonomously [56]. Transfer learning has
shown promise in reducing the data and computational
requirements for training CNNs in GUI testing tasks
[57]. By leveraging pre-trained visual models,
developers can fine-tune networks to recognize GUI-
specific elements with fewer labeled examples [58].
Domain adaptation techniques further help bridge the
gap between GUIs of different platforms (e.g., Android
vs. iOS) [59]. Combining CNNs with self-supervised
learning has also been proposed, enabling models to
learn useful representations from unlabeled
screenshots [60]. In the context of mobile app
development, GUI testing needs to scale across
frequent updates and app iterations, making
adaptability a key requirement [61]. Studies have
highlighted that self-improving models trained via
continuous feedback loops outperform static classifiers
in long-term testing scenarios [62]. Incorporating
attention mechanisms in CNN-based models can
further enhance the ability to detect subtle UI changes
and element misalignments [63]. Moreover, the use of
synthetic data generation (e.g., UI rendering engines or
layout simulators) has been suggested to augment
training data for CNNs [64]. Hybrid models that
combine CNNs with object detection algorithms like
YOLO or SSD have been introduced for real-time UI
validation [65]. These models provide both localization
and classification, allowing testers to assess whether UI
elements appear correctly in specific screen regions
[66]. In parallel, OCR (Optical Character Recognition)
has been integrated with CNN-based systems to
validate textual content in GUI components [67]. A few
studies have proposed architecture-specific UI test
generators that use CNN-based screen analysis to drive
automated exploration [68]. These systems often
employ state transition graphs or event-flow models to
emulate user behavior and discover potential UI bugs
[69]. Researchers have also begun to investigate
explainable AI (XAI) techniques for GUI testing,
enabling visual interpretability of CNN decisions to
improve debugging and validation [70].

3. Problem Statement

This article focuses on developing and implementing
an automated usability testing approach specifically for
iOS applications, designed to operate without requiring
the involvement of expert testers or actual users. The
scarcity of comprehensive research in the area of GUI
testing for mobile applications highlights the
challenges faced in creating effective, domain-specific
testing methods, especially for critical aspects like
security and usability. Despite the rapid growth and
widespread release of mobile apps, many continue to

suffer from significant usability issues that impact user
experience and satisfaction [71]. The study particularly
centers on the Gigiku Sihat application, which serves as
a case study for evaluating usability in sectors such as
education, health, and tourism. Through systematic
testing, the research uncovers key usability challenges
including how intuitive and easy the app is to use, the
convenience it offers to users, and how quickly new
users can learn its functionalities [72]. Furthermore,
the study examines overall user satisfaction levels,
ensuring that the app meets accessibility standards
and provides accurate information or results. Cultural
considerations also emerge as an important factor
influencing usability, emphasizing the need for
localized and culturally aware design choices. By
addressing these diverse usability dimensions, the
research aims to enhance app performance and user
engagement, offering valuable insights for developers
and testers seeking to improve mobile application
quality in various domains.

4. Proposed Methodology

The proposed approach ensures adequate UI layout
categorization by a well-organized workflow. It starts
with an input source, collecting UI images from
applications. The preprocessing stage improves data
quality through normalization and imputation of
missing values. Feature extraction follows, identifying
significant UI components with deep learning
techniques. Finally, the prediction stage categorizes
layouts as defective or non-defective. This approach
enhances UI validation using automated methods, with
precise defect identification and improved user
interface quality through minimal human intervention,
optimizing software development processes.

Figure 1 Diagram of Proposed Methodology

Data collection

The input source consists of mobile UI screenshots
collected from various applications, devices, screen
resolutions, and operating systems such as Android
and iOS. These images serve as the dataset for training
and validating the model. The dataset should include
diverse UI elements such as buttons, text fields, icons,
and images to ensure comprehensive coverage of
different interface designs. Capturing data from
multiple environments helps the model generalize
better and accurately detect inconsistencies across
various UI layouts.

Venkata Sivakumar Musam and G. Arulkumaran Enhancing GUI Testing: Exploring Convolutional Neural Networks..

242| International Journal of Current Engineering and Technology, Vol.11, No.2 (March/April 2021)

Pre processing

Preprocessing enhances raw UI images for accurate
feature extraction and model performance. It includes
normalization to standardize pixel values and missing
value imputation to handle incomplete data. These
steps ensure consistency across images, reduce noise,
and improve the model’s ability to detect UI elements
and layout inconsistencies effectively.

(i) Normalization

Normalization is a crucial preprocessing step that
ensures pixel values remain within a standard range,
reducing variations caused by lighting conditions and
contrast differences. By applying Min-Max Scaling, the
pixel values are transformed to a fixed range, typically
between 0 and 1. This helps in stabilizing the training
process and prevents large numerical values from
dominating the model. The transformation is
mathematically represented as,

𝑋′ =
𝑋−𝑋min

𝑋max−𝑋min
 (1)

Where, 𝑋 = original pixel value,𝑋min, 𝑋max = minimum
and maximum pixel values in the dataset. This scales
pixel values between 0 and 1, preventing large
numerical values from dominating training.

(ii) Missing Value Imputation

Missing values in UI metadata, such as button labels
and element positions, can impact the accuracy of
feature extraction and model training. To address this,
interpolation or statistical methods are used to fill
these gaps. One common approach is mean imputation,
where missing values are replaced with the average of
the available values. This ensures that incomplete data
does not introduce inconsistencies in the model. The
mean imputation formula is given by:

𝑋new =
1

𝑁
∑  𝑁
𝑖=1 𝑋𝑖 (2)

Where 𝑁 is the number of available values. This
ensures that missing data does not affect feature
extraction

Feature Extraction

Feature extraction is a critical step in analysing UI
images, as it helps identify key elements and their
spatial relationships. A Convolutional Neural Network
(CNN) processes the input image through multiple
layers to detect essential features such as edges,
textures, and spatial structures. The convolutional
operation applies a filter (kernel) to different regions
of the image, allowing the model to recognize patterns
like buttons, text fields, and icons. Mathematically, this
process is represented as

𝑌(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 (𝑚, 𝑛) (3)

Where, 𝑌(𝑖, 𝑗) = output feature map.𝐹(𝑚, 𝑛) = filter
matrix𝑋(𝑖 + 𝑚, 𝑗 + 𝑛) = image patch.

This operation extracts key visual elements from the UI
layout, allowing the model to recognize buttons, text
fields, and images efficiently.

Prediction using FCN

The classification stage determines whether a UI layout
is defective or non-defective based on extracted
features. A fully connected neural network (FCN)
processes these features and assigns probabilities to
each class, helping to identify UI inconsistencies. The
classification process uses the SoftMax Activation
Function, which converts raw scores into probability
values, ensuring that the sum of probabilities across all
classes equals one. Mathematically, SoftMax is defined
as:

𝑃(𝑦𝑖) =
𝑒𝑧𝑖

∑  𝑗  𝑒
𝑧𝑗

 (4)

Where,𝑧𝑖 = predicted score for class 𝑖,𝑃(𝑦𝑖) =
probability of class 𝑖 (defect or non-defect).

The prediction output is categorized into:

• Defect Prediction (𝑦 = 1) → UI issues detected,

requiring developer intervention.
• Non-Defect Prediction (𝑦 = 0) → Ul layout is

correct and ready for deployment.

The final step generates a report highlighting UI

inconsistencies and validation results, including

detected defects and confidence scores. A feedback

loop enhances model performance using reinforcement

learning. Cross-Entropy Loss measures classification

accuracy by comparing true labels with predicted

probabilities. A lower loss value indicates improved

defect detection reliability.

5. Result and Discussion

This section compares the performance of the

proposed UI validation model through dataset

evaluation, main performance metrics, and accuracy of

classification. The model successfully identifies UI

defects with little or no human intervention, promoting

consistency and reliability. A confusion matrix attests

to its accuracy in differentiating between defective and

non-defective layouts. The automation minimizes

human effort, software stability improves, and user

experience enhances. Ongoing enhancement and

learning mechanisms refine the defect detection even

further, making the method an invaluable resource in

contemporary software development.

Venkata Sivakumar Musam and G. Arulkumaran Enhancing GUI Testing: Exploring Convolutional Neural Networks..

243| International Journal of Current Engineering and Technology, Vol.11, No.2 (March/April 2021)

Data description

The dataset consists of 169 unique records, each
capturing key monitoring metrics over a specific
period. It includes the monitoring time, representing
the time frame for data collection, and users, which
denotes the total number of observed users during that
period. The sessions field reflects the total number of
recorded user sessions, while new users indicate the
number of first-time users interacting with the
application. Additionally, the crashes metric logs the
total number of application failures, helping assess
stability and performance.

Performances metrics

Performance of the UI validation model is measured
based on critical values like Accuracy, Precision, Recall,
and F1 Score. Model Accuracy is 95.65% giving the
general accuracy in the classification of the model.
Precision is 96.80% giving the rate at which non-
defective UI layouts are classified correctly. Recall of
94.50% indicates the effectiveness of the model to
identify defective UI elements. Finally, the F1 Score,
balancing Precision and Recall, is 95.90%, which gives
good classification performance. The bar chart
graphically represents these values, indicating the high
efficiency of the model in UI validation.

Figure 2 Graph of performances metrics

Confusion metrics

Confusion matrix gives a precise measure of the
model's accuracy in classification of UI defects. It
shows true positives (defective UI identified correctly)
and true negatives (non-defective UI classified
correctly), along with misclassifications. High accuracy
demonstrated in the matrix shows how efficiently the
model can differentiate between the case of defect and
non-defect. This performance measure gives strong
performance, supporting UI validation and
improvement. Ongoing updates by reinforcement
learning improve defect discovery, and hence the
system's reliability and flexibility increase.

Figure 3 Graph of confusion metrics

Conclusion

The proposed UI validation model effectively
automates defect detection, particularly improving
software quality by reducing human intervention and
increasing UI consistency. With very high classification
reliability 95.65% accuracy, 96.80% precision, 94.50%
recall, and a 95.90% F1 score the model excels in UI
defect detection with accuracy. The bar chart
visualization also bears witness to the robustness of
the approach, confirming its reliability in real-world
settings.

With faster UI validation, this design pattern
maximizes software development lifecycle and enables
user interfaces to conform to consistency, usability, as
well as their visual beauty. Automated defect detection
minimizes potential errors which otherwise impact
user experience and thereby enhance adoption and
satisfaction. The process is faster since programmers
now have space for innovation rather than doing the
manual testing of UI Overall, the model offers a
successful and scalable method of maintaining high UI
standards for software projects. With UI complexity
growing even more, such types of automated validation
systems will play an ever more critical role in
maintaining user experiences that are seamless. The
model can be further extended by using more complex
deep learning algorithms to identify deeper defects and
incorporating real-time validation in CI/CD pipelines
for continuous and seamless deployment of software.

Reference

[1] Mohanarangan, V. D (2020). Improving Security Control in

Cloud Computing for Healthcare Environments.Journal of
Science and Technology, 5(6).

[2] Zhong, X., Huang, P. C., Mastorakis, S., & Shih, F. Y. (2020).
An automated and robust image watermarking scheme
based on deep neural networks. IEEE Transactions on
Multimedia, 23, 1951-1961.

[3] Ganesan, T. (2020). Machine learning-driven AI for financial
fraud detection in IoT environments. International Journal
of HRM and Organizational Behavior, 8(4).

[4] Naeem, M., Rizvi, S. T. H., & Coronato, A. (2020). A gentle
introduction to reinforcement learning and its application
in different fields. IEEE access, 8, 209320-209344.

Venkata Sivakumar Musam and G. Arulkumaran Enhancing GUI Testing: Exploring Convolutional Neural Networks..

244| International Journal of Current Engineering and Technology, Vol.11, No.2 (March/April 2021)

[5] Deevi, D. P. (2020). Improving patient data security and
privacy in mobile health care: A structure employing
WBANs, multi-biometric key creation, and dynamic
metadata rebuilding. International Journal of Engineering
Research & Science & Technology, 16(4).

[6] He, G., Xu, B., Zhang, L., & Zhu, H. (2018). Mobile app
identification for encrypted network flows by traffic
correlation. International Journal of Distributed Sensor
Networks, 14(12), 1550147718817292.

[7] Mohanarangan, V.D. (2020). Assessing Long-Term Serum
Sample Viability for Cardiovascular Risk Prediction in
Rheumatoid Arthritis. International Journal of Information
Technology & Computer Engineering, 8(2), 2347–3657.

[8] Kiourt, C., & Kalles, D. (2016). A platform for large-scale
game-playing multi-agent systems on a high-performance
computing infrastructure. Multiagent and Grid
Systems, 12(1), 35-54.

[9] Koteswararao, D. (2020). Robust Software Testing for
Distributed Systems Using Cloud Infrastructure, Automated
Fault Injection, and XML Scenarios. International Journal of
Information Technology & Computer Engineering, 8(2),
ISSN 2347–3657.

[10] Ozturk, O., Sarıtürk, B., & Seker, D. Z. (2020). Comparison of
fully convolutional networks (FCN) and U-Net for road
segmentation from high resolution imageries. International
journal of environment and geoinformatics, 7(3), 272-279.

[11] Rajeswaran, A. (2020). Big Data Analytics and Demand-
Information Sharing in ECommerce Supply Chains:
Mitigating Manufacturer Encroachment and Channel
Conflict. International Journal of Applied Science
Engineering and Management, 14(2), ISSN2454-9940

[12] Sariturk, B., Bayram, B., Duran, Z., & Seker, D. Z. (2020).
Feature extraction from satellite images using segnet and
fully convolutional networks (FCN). International Journal of
Engineering and Geosciences, 5(3), 138-143.

[13] Alagarsundaram, P. (2020). Analyzing the covariance matrix
approach for DDoS HTTP attack detection in cloud
environments. International Journal of Information
Technology & Computer Engineering, 8(1).

[14] Sariturk, B., Bayram, B., Duran, Z., & Seker, D. Z. (2020).
Feature extraction from satellite images using segnet and
fully convolutional networks (FCN). International Journal of
Engineering and Geosciences, 5(3), 138-143.

[15] Poovendran, A. (2020). Implementing AES Encryption
Algorithm to Enhance Data Security in Cloud Computing.
International Journal of Information technology & computer
engineering, 8(2), I

[16] Jiang, X., Wang, Y., Liu, W., Li, S., & Liu, J. (2019). Capsnet,
cnn, fcn: Comparative performance evaluation for image
classification. Int. J. Mach. Learn. Comput, 9(6), 840-848.

[17] "Sreekar, P. (2020). Cost-effective Cloud-Based Big Data
Mining with K-means Clustering: An Analysis of Gaussian
Data. International Journal of Engineering & Science
Research,10(1), 229-249."

[18] Shrestha, S., & Vanneschi, L. (2018). Improved fully
convolutional network with conditional random fields for
building extraction. Remote Sensing, 10(7), 1135.

[19] "Karthikeyan, P. (2020). Real-Time Data Warehousing:
Performance Insights of Semi-Stream Joins Using Mongodb.
International Journal of Management Research & Review,
10(4), 38-49”

[20] Gebrehiwot, A., Hashemi-Beni, L., Thompson, G.,
Kordjamshidi, P., & Langan, T. E. (2019). Deep convolutional
neural network for flood extent mapping using unmanned
aerial vehicles data. Sensors, 19(7), 1486.

[21] Mohan, R.S. (2020). Data-Driven Insights for Employee
Retention: A Predictive Analytics Perspective. International
Journal of Management Research & Review, 10(2), 44-59.

[22] Anandajayam, P., Naveen, M., Sudharsan, R., Stephinradj, L.,
& Vengatabalaji, K. (2020). Brain tumor segmentation using
fully connected convolutional neural network

(FCNN). International Research Journal of Engineering and
Technology (IJRET), 7(10), 133-139.

[23] Sitaraman, S. R. (2020). Optimizing Healthcare Data Streams
Using Real-Time Big Data Analytics and AI Techniques.
International Journal of Engineering Research and Science
& Technology, 16(3), 9-22.

[24] Huang, X., Sun, W., Tseng, T. L. B., Li, C., & Qian, W. (2019).
Fast and fully-automated detection and segmentation of
pulmonary nodules in thoracic CT scans using deep
convolutional neural networks. Computerized Medical
Imaging and Graphics, 74, 25-36.

[25] Panga, N. K. R. (2020). Leveraging heuristic sampling and
ensemble learning for enhanced insurance big data
classification. International Journal of Financial
Management (IJFM), 9(1).

[26] Kestur, R., Farooq, S., Abdal, R., Mehraj, E., Narasipura, O., &
Mudigere, M. (2018). UFCN: A fully convolutional neural
network for road extraction in RGB imagery acquired by
remote sensing from an unmanned aerial vehicle. Journal of
Applied Remote Sensing, 12(1), 016020-016020.

[27] Gudivaka, R. L. (2020). Robotic Process Automation meets
Cloud Computing: A Framework for Automated Scheduling
in Social Robots. International Journal of Business and
General Management (IJBGM), 8(4), 49-62.

[28] Zhang, Q., Kong, Q., Zhang, C., You, S., Wei, H., Sun, R., & Li, L.
(2019). A new road extraction method using Sentinel-1 SAR
images based on the deep fully convolutional neural
network. European Journal of Remote Sensing, 52(1), 572-
582.

[29] Gudivaka, R. K. (2020). Robotic Process Automation
Optimization in Cloud Computing Via Two-Tier MAC and
LYAPUNOV Techniques. International Journal of Business
and General Management (IJBGM), 9(5), 75-92.

[30] Soni, A. N. (2019). Crack Detection in buildings using
convolutional neural Network. Journal for Innovative
Development in Pharmaceutical and Technical Science, 2(6),
54-59.

[31] Deevi, D. P. (2020). Artificial neural network enhanced real-
time simulation of electric traction systems incorporating
electro-thermal inverter models and FEA. International
Journal of Engineering and Science Research, 10(3), 36-48.

[32] Lei, T., Zhang, Y., Lv, Z., Li, S., Liu, S., & Nandi, A. K. (2019).
Landslide inventory mapping from bitemporal images using
deep convolutional neural networks. IEEE Geoscience and
Remote Sensing Letters, 16(6), 982-986.

[33] Allur, N. S. (2020). Enhanced performance management in
mobile networks: A big data framework incorporating
DBSCAN speed anomaly detection and CCR efficiency
assessment. Journal of Current Science, 8(4).

[34] Wan, R., Mei, S., Wang, J., Liu, M., & Yang, F. (2019).
Multivariate temporal convolutional network: A deep
neural networks approach for multivariate time series
forecasting. Electronics, 8(8), 876.

[35] Deevi, D. P. (2020). Real-time malware detection via
adaptive gradient support vector regression combined with
LSTM and hidden Markov models. Journal of Science and
Technology, 5(4).

[36] Akcay, S., Kundegorski, M. E., Willcocks, C. G., & Breckon, T.
P. (2018). Using deep convolutional neural network
architectures for object classification and detection within
x-ray baggage security imagery. IEEE transactions on
information forensics and security, 13(9), 2203-2215.

[37] Dondapati, K. (2020). Integrating neural networks and
heuristic methods in test case prioritization: A machine
learning perspective. International Journal of Engineering &
Science Research, 10(3), 49–56.

[38] Fu, G., Liu, C., Zhou, R., Sun, T., & Zhang, Q. (2017).
Classification for high resolution remote sensing imagery
using a fully convolutional network. Remote Sensing, 9(5),
498.

[39] Dondapati, K. (2020). Leveraging backpropagation neural
networks and generative adversarial networks to enhance
channel state information synthesis in millimeter-wave

Venkata Sivakumar Musam and G. Arulkumaran Enhancing GUI Testing: Exploring Convolutional Neural Networks..

245| International Journal of Current Engineering and Technology, Vol.11, No.2 (March/April 2021)

networks. International Journal of Modern Electronics and
Communication Engineering, 8(3), 81-90

[40] Zorzi, S., Maset, E., Fusiello, A., & Crosilla, F. (2019). Full-
waveform airborne LiDAR data classification using
convolutional neural networks. IEEE transactions on
geoscience and remote sensing, 57(10), 8255-8261.

[41] Gattupalli, K. (2020). Optimizing 3D printing materials for
medical applications using AI, computational tools, and
directed energy deposition. International Journal of Modern
Electronics and Communication Engineering, 8(3).

[42] Dou, Q., Chen, H., Yu, L., Zhao, L., Qin, J., Wang, D., ... & Heng,
P. A. (2016). Automatic detection of cerebral microbleeds
from MR images via 3D convolutional neural
networks. IEEE transactions on medical imaging, 35(5),
1182-1195.

[43] Allur, N. S. (2020). Big data-driven agricultural supply chain
management: Trustworthy scheduling optimization with
DSS and MILP techniques. Current Science & Humanities,
8(4), 1–16.

[44] Chen, G., Li, C., Wei, W., Jing, W., Woźniak, M., Blažauskas, T.,
& Damaševičius, R. (2019). Fully convolutional neural
network with augmented atrous spatial pyramid pool and
fully connected fusion path for high resolution remote
sensing image segmentation. Applied Sciences, 9(9), 1816.

[45] Narla, S., Valivarthi, D. T., & Peddi, S. (2020). Cloud
computing with artificial intelligence techniques: GWO-DBN
hybrid algorithms for enhanced disease prediction in
healthcare systems. Current Science & Humanities, 8(1),
14–30.

[46] Wurm, M., Stark, T., Zhu, X. X., Weigand, M., & Taubenböck,
H. (2019). Semantic segmentation of slums in satellite
images using transfer learning on fully convolutional neural
networks. ISPRS journal of photogrammetry and remote
sensing, 150, 59-69.

[47] Kethu, S. S. (2020). AI and IoT-driven CRM with cloud
computing: Intelligent frameworks and empirical models
for banking industry applications. International Journal of
Modern Electronics and Communication Engineering
(IJMECE), 8(1), 54.

[48] Li, Y., Cui, F., Xue, X., & Chan, J. C. W. (2018). Coarse-to-fine
salient object detection based on deep convolutional neural
networks. Signal Processing: Image Communication, 64, 21-
32.

[49] Vasamsetty, C. (2020). Clinical decision support systems
and advanced data mining techniques for cardiovascular
care: Unveiling patterns and trends. International Journal of
Modern Electronics and Communication Engineering, 8(2).

[50] Cruz-Roa, A., Gilmore, H., Basavanhally, A., Feldman, M.,
Ganesan, S., Shih, N., ... & González, F. (2018). High-
throughput adaptive sampling for whole-slide
histopathology image analysis (HASHI) via convolutional
neural networks: Application to invasive breast cancer
detection. PloS one, 13(5), e0196828.

[51] Kadiyala, B. (2020). Multi-swarm adaptive differential
evolution and Gaussian walk group search optimization for
secured IoT data sharing using supersingular elliptic curve
isogeny cryptography,International Journal of Modern
Electronics and Communication Engineering,8(3).

[52] Brandao, P., Zisimopoulos, O., Mazomenos, E., Ciuti, G.,
Bernal, J., Visentini-Scarzanella, M., ... & Stoyanov, D. (2018).
Towards a computer-aided diagnosis system in
colonoscopy: automatic polyp segmentation using
convolution neural networks. Journal of Medical Robotics
Research, 3(02), 1840002.

[53] Valivarthi, D. T. (2020). Blockchain-powered AI-based
secure HRM data management: Machine learning-driven
predictive control and sparse matrix decomposition
techniques. International Journal of Modern Electronics and
Communication Engineering.8(4)

[54] Kim, B., & Cho, S. (2019). Image‐based concrete crack
assessment using mask and region‐based convolutional

neural network. Structural Control and Health
Monitoring, 26(8), e2381.

[55] Jadon, R. (2020). Improving AI-driven software solutions
with memory-augmented neural networks, hierarchical
multi-agent learning, and concept bottleneck models.
International Journal of Information Technology and
Computer Engineering, 8(2).

[56] Guo, R., Liu, J., Li, N., Liu, S., Chen, F., Cheng, B., ... & Ma, C.
(2018). Pixel-wise classification method for high resolution
remote sensing imagery using deep neural networks. ISPRS
International Journal of Geo-Information, 7(3), 110.

[57] Boyapati, S. (2020). Assessing digital finance as a cloud path
for income equality: Evidence from urban and rural
economies. International Journal of Modern Electronics and
Communication Engineering (IJMECE), 8(3).

[58] Wang, C., Anisuzzaman, D. M., Williamson, V., Dhar, M. K.,
Rostami, B., Niezgoda, J., ... & Yu, Z. (2020). Fully automatic
wound segmentation with deep convolutional neural
networks. Scientific reports, 10(1), 21897.

[59] Gaius Yallamelli, A. R. (2020). A cloud-based financial data
modeling system using GBDT, ALBERT, and Firefly
algorithm optimization for high-dimensional generative
topographic mapping. International Journal of Modern
Electronics and Communication Engineering8(4).

[60] Gonzalez, R. C. (2018). Deep convolutional neural
networks. IEEE Signal Processing Magazine, 35(6), 79-87.

[61] Yalla, R. K. M. K., Yallamelli, A. R. G., & Mamidala, V. (2020).
Comprehensive approach for mobile data security in cloud
computing using RSA algorithm. Journal of Current Science
& Humanities, 8(3).

[62] Yang, H. L., Yuan, J., Lunga, D., Laverdiere, M., Rose, A., &
Bhaduri, B. (2018). Building extraction at scale using
convolutional neural network: Mapping of the united
states. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 11(8), 2600-2614.

[63] Samudrala, V. K. (2020). AI-powered anomaly detection for
cross-cloud secure data sharing in multi-cloud healthcare
networks. Journal of Current Science & Humanities, 8(2),
11–22.

[64] Salehi, S. S. M., Erdogmus, D., & Gholipour, A. (2017). Auto-
context convolutional neural network (auto-net) for brain
extraction in magnetic resonance imaging. IEEE
transactions on medical imaging, 36(11), 2319-2330.

[65] Ayyadurai, R. (2020). Smart surveillance methodology:
Utilizing machine learning and AI with blockchain for
bitcoin transactions. World Journal of Advanced
Engineering Technology and Sciences, 1(1), 110–120.

[66] Pan, T., Wang, B., Ding, G., & Yong, J. H. (2017, February).
Fully convolutional neural networks with full-scale-features
for semantic segmentation. In Proceedings of the AAAI
Conference on Artificial Intelligence (Vol. 31, No. 1).

[67] Chauhan, G. S., & Jadon, R. (2020). AI and ML-powered
CAPTCHA and advanced graphical passwords: Integrating
the DROP methodology, AES encryption, and neural
network-based authentication for enhanced security. World
Journal of Advanced Engineering Technology and Sciences,
1(1), 121–132.

[68] Zhao, X., Sun, W., Qian, W., Qi, S., Sun, J., Zhang, B., & Yang, Z.
(2019, March). Fine-grained lung nodule segmentation with
pyramid deconvolutional neural network. In Medical
Imaging 2019: Computer-Aided Diagnosis (Vol. 10950, pp.
956-961). SPIE.

[69] Narla, S. (2020). Transforming smart environments with
multi-tier cloud sensing, big data, and 5G technology.
International Journal of Computer Science Engineering
Techniques, 5(1), 1-10.

[70] Zhang, J., Liu, M., & Shen, D. (2017). Detecting anatomical
landmarks from limited medical imaging data using two-
stage task-oriented deep neural networks. IEEE
Transactions on Image Processing, 26(10), 4753-4764.

[71] Alavilli, S. K. (2020). Predicting heart failure with
explainable deep learning using advanced temporal
convolutional networks. International Journal of Computer
Science Engineering Techniques, 5(2).

[72] Islam, M. M., & Kim, J. M. (2019). Vision-based autonomous
crack detection of concrete structures using a fully
convolutional encoder–decoder network. Sensors, 19(19),
4251.

