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Abstract  
  
The suggested methodology provides effective UI layout categorization with systematic workflow starting from an 
input source gathering UI images. Data preprocessing improves data quality through normalization and imputation 
of missing values. Feature extraction is accomplished using deep learning-based detection of significant UI elements 
followed by the prediction phase classifying layouts as defective or non-defective. The automated method enhances UI 
validation with a minimum of human interaction and a maximum of software development. The performance of the 
model is confirmed by critical metrics and has high accuracy (95.65%), precision (96.80%), recall (94.50%), and an 
F1 score of 95.90%, showing it is good for detecting defects. 
 
Keyword: Fully connected neural network (FCN), Convolutional Neural Network (CNN), UI validation, Defect 
detection, and Automated UI testing. 
 
 
1. Introduction 
 
Graphical User Interface (GUI) testing plays a crucial 
role in ensuring a seamless and transparent user 
experience for mobile applications [1]. It helps 
maintain usability, reliability, and consistency across 
different user interactions [2]. Traditional rule-based 
testing methods and manual verification processes are 
often slow and inefficient [3]. These human-dependent 
processes cannot keep up with the demands of modern 
mobile UI development cycles [4]. GUI testing in mobile 
applications is further complicated by a variety of 
factors including screen size variations [5], diverse 
display resolutions [6], and frequent application 
updates [7]. These changes in the interface can disrupt 
previously validated functionalities [8]. Another major 
challenge is the dynamically changing nature of UI 
elements within the app [9]. This makes it difficult to 
reuse test cases across multiple versions of the app 
[10]. Legacy automation frameworks such as Selenium 
and Appium face difficulty in adapting to these 
dynamic changes [11]. They often fail to detect subtle 
interface variations like missing buttons or misplaced 
elements [12]. Traditional automation tools also 
require frequent maintenance and updates, adding to 
the development overhead [13].  
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Moreover, they are not well-suited for detecting 
unbound or partially visible UI elements [14]. As a 
result, developers may miss critical UI bugs, leading to 
poor user satisfaction and degraded app performance 
[15]. Manual GUI testing remains widely used but is 
time-consuming and prone to human error [16]. 
Manual test scripts require constant updating and are 
often not scalable for large applications [17]. Tools like 
Appium, while popular, still struggle with flexibility 
and test case reusability [18]. Image-based verification 
methods lack robustness when faced with animations 
and responsive design components [19]. Efforts to 
integrate deep learning in UI detection have shown 
promise, particularly using Convolutional Neural 
Networks (CNNs) [20]. However, CNN-based methods 
demand large labeled datasets for training [21]. These 
models also require periodic retraining, which adds 
computational and time overhead [22]. The variability 
of mobile UIs across platforms like Android and iOS 
increases the need for model generalization [23]. 
Additionally, UI elements can differ significantly 
between devices, requiring high adaptability in testing 
tools [24]. Given the rapid growth of mobile apps, 
automated testing must evolve to be more scalable 
[25]. The diversity in hardware, screen resolutions, and 
operating systems further complicates automation 
strategies [26]. Mobile applications also face challenges 
due to their frequent updates and newly added 
features [27]. Each update demands revalidation of the 
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entire interface to maintain consistency [28]. Without 
effective GUI testing, inconsistencies can lead to broken 
interfaces and negative user feedback [29]. 
Conventional methods often fall short in validating 
modern, visually complex mobile UIs [30]. Apps now 
include custom components, dynamic content, and 
interactive animations that standard test tools struggle 
to handle [31]. Manual methods cannot scale efficiently 
under these requirements [32]. These limitations 
increase release times and elevate costs for mobile app 
development teams [33]. Developers require testing 
frameworks that can evolve along with the application 
[34]. This need drives the interest in adaptive and self-
improving GUI testing solutions [35]. In this context, 
our work proposes a CNN-based UI validation 
framework with self-learning capabilities [36]. This 
framework leverages convolutional models to 
understand and classify UI elements more effectively 
[37]. It employs reinforcement learning to adapt based 
on testing feedback over time [38]. Active learning 
components help reduce the need for large volumes of 
labeled training data [39]. Together, these techniques 
aim to minimize human involvement while improving 
GUI testing accuracy and scalability [40]. The 
Contributions of this paper are, 
• Transformer-Based Model employs self-attention 

mechanisms to understand short-term and long-
term dependencies in UI layout data to detect 
structural inconsistencies and design defects 
accurately [17]. 

• Masked and Combined Self-Attention (MCSA) uses 
attention weights for important UI components, 
enhancing defect detection accuracy by paying 
attention to important layout characteristics [18]. 

• Mean Imputation and Min-Max Normalization 
handle missing values and normalize numerical UI 
parameters to a fixed range, making the data 
consistent and improving the overall model 
performance [19]. 

Despite the potential of automation, existing GUI 
testing tools face limitations such as low adaptability to 
UI changes, poor recognition accuracy in diverse 
conditions, and the need for extensive manual scripting 
or labelling [20]. Traditional image-based testing 
approaches often fail when confronted with slight 
variations in UI layouts or colors [21]. Additionally, 
many current methods lack self-learning capabilities to 
improve their detection and validation accuracy over 
time [22]. These challenges lead to false positives and 
negatives, undermining test reliability and developer 
confidence [23]. Furthermore, integrating testing 
frameworks seamlessly into continuous integration 
pipelines remains a complex task [24]. 

To address these challenges, integrating 
Convolutional Neural Networks with self-learning 
mechanisms offers a robust path forward [25]. CNNs 
can automatically learn and extract hierarchical visual 
features from GUIs, enabling precise recognition of UI 
elements under varying conditions [26]. Incorporating 
self-learning allows the system to adapt dynamically by 

continuously improving from new data and feedback, 
reducing the need for manual intervention [27]. This 
approach enhances accuracy, scalability, and resilience 
to UI modifications [28]. Combining these techniques 
with automated testing pipelines can accelerate release 
cycles, reduce testing overhead, and ensure higher UI 
quality in mobile applications, ultimately enhancing 
user experience and developer productivity [29]. 

The organization of this paper is as follows: Section 
2 discusses existing UI validation approaches and their 
limitations [30]. Section 3 introduces the proposed 
transformer-based UI validation model and its process 
[31]. Section 4 tests the performance of the model 
using main metrics and a confusion matrix [32]. Lastly, 
Section 5 outlines the findings, contributions, and 
future work directions [33]. 

 
2. Literature Review  
 
GUI testing plays an essential role in ensuring 
application quality, especially in the dynamic and 
fragmented ecosystem of mobile platforms [41]. With 
the surge of mobile devices featuring different screen 
sizes, OS versions, and interaction patterns, the 
demand for robust and adaptable GUI testing 
frameworks has intensified [42]. Manual GUI testing, 
although widely practiced, is inherently time-
consuming and error-prone, making it unsuitable for 
continuous integration and agile development 
environments [43]. Tools like Appium and Selenium 
have been extensively used for GUI test automation, 
but they lack adaptability to frequent UI changes and 
require considerable manual scripting [44]. One of the 
key limitations in traditional GUI automation lies in the 
brittleness of UI element locators, which often break 
when UI layouts are altered [45]. Image-based 
techniques for GUI testing, including pixel comparison 
and template matching, are unable to handle dynamic 
content, animations, or responsive elements [46]. 
These static techniques struggle to maintain accuracy 
in the face of evolving interface designs [47]. As mobile 
applications grow more complex, incorporating 
adaptive layouts, user personalization, and animations, 
traditional methods fall short of providing consistent 
validation [48]. Recent advancements in deep learning 
have opened new avenues for UI element detection and 
classification. Convolutional Neural Networks (CNNs), 
in particular, have demonstrated strong performance 
in visual recognition tasks, making them suitable for 
GUI testing [49]. Several studies have employed CNNs 
to classify GUI components such as buttons, sliders, 
text fields, and icons with high accuracy [50]. However, 
the reliance on large-scale labeled datasets for training 
CNNs remains a bottleneck [51]. Manual annotation of 
GUI elements across app versions and platforms is 
resource-intensive and not scalable [52]. To overcome 
these challenges, researchers have begun integrating 
active learning techniques to reduce labeling efforts 
while maintaining high classification accuracy [53]. 
Active learning selectively queries the most 
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informative samples for labeling, optimizing the 
training process [54]. Reinforcement learning has also 
been explored in the domain of software testing, where 
models learn from interaction with the application 
environment to improve test strategies over time [55]. 
These self-learning mechanisms aim to minimize 
human intervention and allow the testing framework 
to adapt autonomously [56]. Transfer learning has 
shown promise in reducing the data and computational 
requirements for training CNNs in GUI testing tasks 
[57]. By leveraging pre-trained visual models, 
developers can fine-tune networks to recognize GUI-
specific elements with fewer labeled examples [58]. 
Domain adaptation techniques further help bridge the 
gap between GUIs of different platforms (e.g., Android 
vs. iOS) [59]. Combining CNNs with self-supervised 
learning has also been proposed, enabling models to 
learn useful representations from unlabeled 
screenshots [60]. In the context of mobile app 
development, GUI testing needs to scale across 
frequent updates and app iterations, making 
adaptability a key requirement [61]. Studies have 
highlighted that self-improving models trained via 
continuous feedback loops outperform static classifiers 
in long-term testing scenarios [62]. Incorporating 
attention mechanisms in CNN-based models can 
further enhance the ability to detect subtle UI changes 
and element misalignments [63]. Moreover, the use of 
synthetic data generation (e.g., UI rendering engines or 
layout simulators) has been suggested to augment 
training data for CNNs [64]. Hybrid models that 
combine CNNs with object detection algorithms like 
YOLO or SSD have been introduced for real-time UI 
validation [65]. These models provide both localization 
and classification, allowing testers to assess whether UI 
elements appear correctly in specific screen regions 
[66]. In parallel, OCR (Optical Character Recognition) 
has been integrated with CNN-based systems to 
validate textual content in GUI components [67]. A few 
studies have proposed architecture-specific UI test 
generators that use CNN-based screen analysis to drive 
automated exploration [68]. These systems often 
employ state transition graphs or event-flow models to 
emulate user behavior and discover potential UI bugs 
[69]. Researchers have also begun to investigate 
explainable AI (XAI) techniques for GUI testing, 
enabling visual interpretability of CNN decisions to 
improve debugging and validation [70]. 
 

3. Problem Statement 
 
This article focuses on developing and implementing 
an automated usability testing approach specifically for 
iOS applications, designed to operate without requiring 
the involvement of expert testers or actual users. The 
scarcity of comprehensive research in the area of GUI 
testing for mobile applications highlights the 
challenges faced in creating effective, domain-specific 
testing methods, especially for critical aspects like 
security and usability. Despite the rapid growth and 
widespread release of mobile apps, many continue to 

suffer from significant usability issues that impact user 
experience and satisfaction [71]. The study particularly 
centers on the Gigiku Sihat application, which serves as 
a case study for evaluating usability in sectors such as 
education, health, and tourism. Through systematic 
testing, the research uncovers key usability challenges 
including how intuitive and easy the app is to use, the 
convenience it offers to users, and how quickly new 
users can learn its functionalities [72]. Furthermore, 
the study examines overall user satisfaction levels, 
ensuring that the app meets accessibility standards 
and provides accurate information or results. Cultural 
considerations also emerge as an important factor 
influencing usability, emphasizing the need for 
localized and culturally aware design choices. By 
addressing these diverse usability dimensions, the 
research aims to enhance app performance and user 
engagement, offering valuable insights for developers 
and testers seeking to improve mobile application 
quality in various domains. 
 
4. Proposed Methodology 
 
The proposed approach ensures adequate UI layout 
categorization by a well-organized workflow. It starts 
with an input source, collecting UI images from 
applications. The preprocessing stage improves data 
quality through normalization and imputation of 
missing values. Feature extraction follows, identifying 
significant UI components with deep learning 
techniques. Finally, the prediction stage categorizes 
layouts as defective or non-defective. This approach 
enhances UI validation using automated methods, with 
precise defect identification and improved user 
interface quality through minimal human intervention, 
optimizing software development processes. 

 
 

Figure 1 Diagram of Proposed Methodology 
 
Data collection  
 
The input source consists of mobile UI screenshots 
collected from various applications, devices, screen 
resolutions, and operating systems such as Android 
and iOS. These images serve as the dataset for training 
and validating the model. The dataset should include 
diverse UI elements such as buttons, text fields, icons, 
and images to ensure comprehensive coverage of 
different interface designs. Capturing data from 
multiple environments helps the model generalize 
better and accurately detect inconsistencies across 
various UI layouts. 
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Pre processing 
 
Preprocessing enhances raw UI images for accurate 
feature extraction and model performance. It includes 
normalization to standardize pixel values and missing 
value imputation to handle incomplete data. These 
steps ensure consistency across images, reduce noise, 
and improve the model’s ability to detect UI elements 
and layout inconsistencies effectively. 
 
(i) Normalization 
 
Normalization is a crucial preprocessing step that 
ensures pixel values remain within a standard range, 
reducing variations caused by lighting conditions and 
contrast differences. By applying Min-Max Scaling, the 
pixel values are transformed to a fixed range, typically 
between 0 and 1. This helps in stabilizing the training 
process and prevents large numerical values from 
dominating the model. The transformation is 
mathematically represented as, 
 

𝑋′ =
𝑋−𝑋min

𝑋max−𝑋min
                               (1)                                                                                                                               

 
Where, 𝑋 = original pixel value,𝑋min, 𝑋max = minimum 
and maximum pixel values in the dataset. This scales 
pixel values between 0 and 1, preventing large 
numerical values from dominating training. 
 
(ii) Missing Value Imputation 
 
Missing values in UI metadata, such as button labels 
and element positions, can impact the accuracy of 
feature extraction and model training. To address this, 
interpolation or statistical methods are used to fill 
these gaps. One common approach is mean imputation, 
where missing values are replaced with the average of 
the available values. This ensures that incomplete data 
does not introduce inconsistencies in the model. The 
mean imputation formula is given by: 
  

𝑋new =
1

𝑁
∑  𝑁
𝑖=1 𝑋𝑖             (2) 

 
Where 𝑁 is the number of available values. This 
ensures that missing data does not affect feature 
extraction 

 
Feature Extraction 
 
Feature extraction is a critical step in analysing UI 
images, as it helps identify key elements and their 
spatial relationships. A Convolutional Neural Network 
(CNN) processes the input image through multiple 
layers to detect essential features such as edges, 
textures, and spatial structures. The convolutional 
operation applies a filter (kernel) to different regions 
of the image, allowing the model to recognize patterns 
like buttons, text fields, and icons. Mathematically, this 
process is represented as 

𝑌(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 (𝑚, 𝑛)          (3) 
 
Where, 𝑌(𝑖, 𝑗) = output feature map.𝐹(𝑚, 𝑛) = filter 
matrix𝑋(𝑖 + 𝑚, 𝑗 + 𝑛) = image patch. 
 
This operation extracts key visual elements from the UI 
layout, allowing the model to recognize buttons, text 
fields, and images efficiently. 
 
Prediction using FCN 
 
The classification stage determines whether a UI layout 
is defective or non-defective based on extracted 
features. A fully connected neural network (FCN) 
processes these features and assigns probabilities to 
each class, helping to identify UI inconsistencies. The 
classification process uses the SoftMax Activation 
Function, which converts raw scores into probability 
values, ensuring that the sum of probabilities across all 
classes equals one. Mathematically, SoftMax is defined 
as: 
 

𝑃(𝑦𝑖) =
𝑒𝑧𝑖

∑  𝑗  𝑒
𝑧𝑗

                      (4)                                                                                                                                        

 
Where,𝑧𝑖 = predicted score for class 𝑖,𝑃(𝑦𝑖) = 
probability of class 𝑖 (defect or non-defect). 
 
The prediction output is categorized into: 
 
• Defect Prediction (𝑦 = 1) → UI issues detected, 

requiring developer intervention. 
• Non-Defect Prediction (𝑦 = 0) → Ul layout is 

correct and ready for deployment. 
 
The final step generates a report highlighting UI 

inconsistencies and validation results, including 

detected defects and confidence scores. A feedback 

loop enhances model performance using reinforcement 

learning. Cross-Entropy Loss measures classification 

accuracy by comparing true labels with predicted 

probabilities. A lower loss value indicates improved 

defect detection reliability.  
 

5. Result and Discussion 
 
This section compares the performance of the 

proposed UI validation model through dataset 

evaluation, main performance metrics, and accuracy of 

classification. The model successfully identifies UI 

defects with little or no human intervention, promoting 

consistency and reliability. A confusion matrix attests 

to its accuracy in differentiating between defective and 

non-defective layouts. The automation minimizes 

human effort, software stability improves, and user 

experience enhances. Ongoing enhancement and 

learning mechanisms refine the defect detection even 

further, making the method an invaluable resource in 

contemporary software development. 
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Data description   
 
The dataset consists of 169 unique records, each 
capturing key monitoring metrics over a specific 
period. It includes the monitoring time, representing 
the time frame for data collection, and users, which 
denotes the total number of observed users during that 
period. The sessions field reflects the total number of 
recorded user sessions, while new users indicate the 
number of first-time users interacting with the 
application. Additionally, the crashes metric logs the 
total number of application failures, helping assess 
stability and performance. 
 
Performances metrics 
 
Performance of the UI validation model is measured 
based on critical values like Accuracy, Precision, Recall, 
and F1 Score. Model Accuracy is 95.65% giving the 
general accuracy in the classification of the model. 
Precision is 96.80% giving the rate at which non-
defective UI layouts are classified correctly. Recall of 
94.50% indicates the effectiveness of the model to 
identify defective UI elements. Finally, the F1 Score, 
balancing Precision and Recall, is 95.90%, which gives 
good classification performance. The bar chart 
graphically represents these values, indicating the high 
efficiency of the model in UI validation. 
 

 
 

Figure 2 Graph of performances metrics 
 
Confusion metrics 
 
Confusion matrix gives a precise measure of the 
model's accuracy in classification of UI defects. It 
shows true positives (defective UI identified correctly) 
and true negatives (non-defective UI classified 
correctly), along with misclassifications. High accuracy 
demonstrated in the matrix shows how efficiently the 
model can differentiate between the case of defect and 
non-defect. This performance measure gives strong 
performance, supporting UI validation and 
improvement. Ongoing updates by reinforcement 
learning improve defect discovery, and hence the 
system's reliability and flexibility increase. 

 
Figure 3 Graph of confusion metrics 

 
Conclusion                             
 
The proposed UI validation model effectively 
automates defect detection, particularly improving 
software quality by reducing human intervention and 
increasing UI consistency. With very high classification 
reliability 95.65% accuracy, 96.80% precision, 94.50% 
recall, and a 95.90% F1 score the model excels in UI 
defect detection with accuracy. The bar chart 
visualization also bears witness to the robustness of 
the approach, confirming its reliability in real-world 
settings. 

With faster UI validation, this design pattern 
maximizes software development lifecycle and enables 
user interfaces to conform to consistency, usability, as 
well as their visual beauty. Automated defect detection 
minimizes potential errors which otherwise impact 
user experience and thereby enhance adoption and 
satisfaction. The process is faster since programmers 
now have space for innovation rather than doing the 
manual testing of UI Overall, the model offers a 
successful and scalable method of maintaining high UI 
standards for software projects. With UI complexity 
growing even more, such types of automated validation 
systems will play an ever more critical role in 
maintaining user experiences that are seamless. The 
model can be further extended by using more complex 
deep learning algorithms to identify deeper defects and 
incorporating real-time validation in CI/CD pipelines 
for continuous and seamless deployment of software. 
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