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Abstract  
  
Autonomous robotics demands real-time decision making and adaptive signal processing for effective operating in 
changing environments. This work introduces Edge AI-based IoT signal processing platform that maximizes 
autonomy, reduces latency and enhances computational efficiency in robotics systems. Current approaches including 
Centralized Cloud-Based AI, Federated Learning and Homomorphic Encryption have high latency (65 ms), high CPU 
usage (80%) and data leakage threats (12.4%). Suggested system combines lightweight neural networks, adaptive 
signal filtering and real-time sensor fusion for accurate feature extraction and decision-making. Fuzzy logic-based 
adaptive control system enhances system responsiveness during uncertain situations. Experimentation proves there is 
high performance gain where suggested system attains accuracy of 0.95 in object detection, lowering latency to 28 
ms and decreasing energy consumption rate by 37% over cloud-based AI. It improves noise reduction effectiveness by 
45 percent providing accurate sensor data processing. Privacy is obtained through privacy-preserved AI methods like 
Split Learning, neutralizing threats related to data leakage in decentralized AI systems. Findings validate that 
proposed framework supports efficient, secure and real-time processing for IoT-based autonomous robotic systems 
positioning it as perfect solution for future smart automation scenarios. Research contributes to the field of AI-
powered automation, IoT-integrated intelligent systems and future-generation autonomous robots driving 
developments in real-time perception, control and safety. 
 
Keywords: Edge AI, IoT Signal Processing, Autonomous Robotics, Fuzzy Logic Control, Split Learning and YOLOv8. 
 
 
1. Introduction 
 
The rapid evolution of autonomous robotics and the 
widespread adoption of the Internet of Things (IoT) 
have significantly reshaped numerous sectors, 
including smart industries, defense, healthcare, and 
beyond [1]. Autonomous robots are increasingly 
equipped with diverse sensors that continuously 
generate massive volumes of data, demanding efficient 
processing and interpretation for timely and accurate 
decision-making [2]. These advancements promise 
enhanced operational efficiency, precision, and safety, 
thereby enabling robots to perform complex tasks with 
minimal human intervention [3]. The integration of IoT 
in robotics also facilitates improved connectivity and 
data exchange between devices [4]. 

Central to the functionality of autonomous robotic 
systems is the processing of sensor-generated signals, 
which include data from cameras, LiDAR, 
accelerometers, gyroscopes, microphones, and other 
IoT devices [5].  
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These signals must be analyzed rapidly and reliably to 
support real-time perception, navigation, and control 
[6]. However, the sheer volume and velocity of this 
data pose significant challenges to traditional data 
processing frameworks [7]. The prevailing approach 
involves offloading sensor data to centralized cloud 
servers for processing and analytics [8]. 

While cloud computing offers scalability and 
extensive computational power, it introduces critical 
limitations such as increased latency, dependence on 
network connectivity, bandwidth constraints, and 
potential security vulnerabilities [9]. Latency is a 
particularly detrimental factor in autonomous robotics, 
where delays in data processing can lead to degraded 
system performance or even catastrophic failures in 
time-sensitive operations [10]. For example, in military 
or healthcare settings, autonomous robots must react 
instantly to environmental changes or emergent 
threats [11]. Cloud-based architectures struggle to 
guarantee this responsiveness due to round-trip 
transmission delays and possible network congestion 
[12]. 

Moreover, transmitting sensitive sensor data over 
public or unsecured networks exposes systems to 
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cyber threats, raising concerns about data privacy and 
integrity—issues that are increasingly critical in safety-
critical applications [13]. To overcome these 
shortcomings, Edge AI has emerged as a promising 
paradigm that shifts computation and intelligence 
closer to the data sources — namely, the edge devices 
embedded within or near the robots themselves [14]. 
Edge AI integrates machine learning models directly on 
IoT devices or local edge servers, enabling on-site 
processing of sensor signals without dependence on 
distant cloud infrastructure [15]. This approach 
dramatically reduces latency, enhances privacy by 
limiting data transmission, and reduces bandwidth 
usage [16]. 

Furthermore, Edge AI facilitates real-time 
adaptation and context-aware decision-making, which 
are vital for autonomous robots operating in dynamic 
and unpredictable environments [17]. Several existing 
methodologies have been proposed for IoT signal 
processing within robotic systems, each with unique 
strengths and inherent limitations [18]. Cloud 
Computing-Based Processing (CBP) leverages 
centralized servers for scalable and powerful 
computation but suffers from the network-dependent 
delays and security risks previously discussed [19]. 
Deep Learning-Based Feature Extraction (DLFE) 
techniques have revolutionized pattern recognition 
and sensor data interpretation by automatically 
learning hierarchical features from raw data [20]. 

However, DLFE’s high computational and memory 
demands make it challenging to deploy on resource-
constrained edge devices typical in autonomous robots 
[21]. This trade-off restricts DLFE’s applicability in 
scenarios requiring rapid and continuous processing 
under power limitations [22]. Traditional Signal 
Processing (TSP) algorithms such as Fourier 
Transform, Short-Time Fourier Transform, and 
Wavelet Transform have long been employed to 
analyze sensor signals due to their mathematical 
robustness and interpretability [23]. These methods 
excel at extracting frequency and time-frequency 
features from signals [24]. 

Nevertheless, they exhibit critical drawbacks in 
practical robotic contexts, especially when dealing with 
non-stationary and noisy sensor data common in real-
world environments [25]. Non-stationary signals, 
whose statistical properties change over time, 
challenge fixed-basis transforms, leading to 
information loss or inaccurate representations [26]. 
Moreover, noise and interference can significantly 
degrade signal quality, undermining the reliability of 
TSP outputs and, consequently, the robot’s decision-
making [27]. The convergence of these challenges—
latency, energy efficiency, privacy, scalability, and 
robustness—has motivated the exploration of hybrid 
solutions that synergize the strengths of AI and 
traditional signal processing at the network edge [28]. 
One promising approach involves integrating 
lightweight neural networks with advanced signal 
filtering techniques to achieve efficient feature 

extraction and noise mitigation in real-time [29]. 
Lightweight models, such as compressed convolutional 
neural networks (CNNs) or spiking neural networks, 
are designed to operate within the computational 
constraints of edge devices while preserving accuracy 
[30]. Complementing these models with adaptive 
signal filtering helps suppress noise and enhance the 
fidelity of sensory inputs, thus improving the overall 
perception capabilities of autonomous robots [31]. 
Another emerging paradigm to address the scalability 
and privacy concerns in distributed robotic networks is 
Federated Learning (FL) [32]. 

FL enables multiple edge devices to collaboratively 
train a shared machine learning model without 
exchanging raw data, thereby preserving privacy and 
reducing communication overhead [33]. Each robot 
processes its local sensor data and shares only 
encrypted model updates with a central aggregator or 
with peers in a decentralized manner [34]. This 
decentralized learning framework enhances system 
resilience against network failures and cyber-attacks, 
promotes personalized model tuning according to local 
environmental conditions, and supports scalable 
deployment of AI across vast fleets of autonomous 
robots [35]. The proposed system builds upon these 
advancements by combining Edge AI-driven IoT signal 
processing techniques tailored for autonomous 
robotics [36]. 

It incorporates lightweight neural networks for 
feature extraction, adaptive signal filtering for noise 
reduction, and federated learning for distributed and 
privacy-preserving model updates [37]. This integrated 
framework is designed to deliver ultra-low latency, 
energy-efficient, secure, and context-aware decision-
making directly at the robot’s edge [38]. As a result, the 
system significantly enhances robotic perception, 
navigation, and responsiveness, enabling reliable 
operation in challenging scenarios such as military 
reconnaissance, industrial automation with harsh 
conditions, and real-time healthcare monitoring [39]. 

In summary, this study presents a novel approach 
to optimize the deployment of Edge AI for IoT-driven 
robotics, addressing the limitations of cloud-centric 
and purely traditional methods. By leveraging the 
synergy between machine learning, signal processing, 
and distributed intelligence at the edge, the proposed 
solution achieves a balance between computational 
efficiency, accuracy, adaptability, and security. This 
approach is crucial for the future of autonomous 
robotics, as it facilitates the creation of intelligent, 
flexible, and resilient robotic systems capable of 
thriving in dynamic and uncertain environments. 

 

1.1 Problem Statement 
 
Limitations of present computational models make it 
difficult to integrate IoT signal processing with 
autonomous robots [40]. Cloud-based processing is 
commonly utilized to handle massive amounts of 
sensor data but has significant latency, network 
reliance, and security threats, making it unsuitable for 
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robotic applications [41]. Traditional signal processing 
algorithms such as Fourier Transform and Wavelet 
Transform work well for structured signals but fall 
short when dealing with non-stationary, high-
dimensional, and noisy data, which is typical in IoT-
driven robots [42]. These limitations lead to delayed 
decision-making, inefficient data transfer, and greater 
exposure to cyberattacks, reducing robotic systems’ 
autonomy and dependability [43]. 

Existing Lightweight Neural Networks (LNNs) and 
Edge-based deep learning frameworks try to solve 
computational problems but frequently sacrifice 
accuracy and flexibility [44]. LNNs minimize model 
complexity but fail to catch subtle signal fluctuations, 
resulting in poor performance in complex robotic 
contexts [45]. Edge-based deep learning models, built 
for on-device processing, confront issues in handling 
multi-modal sensor input, controlling power efficiency, 
and adjusting to contemporaneous environmental 
changes [46]. Conventional IoT-driven robotics 
frameworks lack dynamic noise reduction and context-
aware decision-making, resulting in poor responses in 
crucial applications like autonomous navigation, 
factory automation, and healthcare robots [47]. 

Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) have helped in 
feature extraction and pattern detection in robotic 
vision [48]. However, they require significant 
computing resources, vast datasets, and long training 
times, rendering them unsuitable for resource-
constrained edge devices [49]. CNNs struggle with 
temporal dependencies in signal processing, and while 
RNNs handle sequential input, they encounter 
problems such as vanishing gradients and sluggish 
inference speed [50]. These inefficiencies impede real-
time data interpretation and increase energy 
consumption, making it difficult to deploy autonomous 
robots in dynamic and low-power applications [51]. 

 
1.2 Objective 

 
• Develop Edge AI-powered IoT signal processing 

platform with lightweight deep neural networks, 
adaptive signal filtering and fuzzy logic-based 
adaptive control. 

• Employ privacy protecting AI techniques like Split 
Learning to improve security and minimize data 
leak vulnerability in decentralized robotic systems 

• Compare accuracy, latency, power consumption 
and data leakage of proposed framework with 
other methods. 

• Improve real-time decision-making and adaptive 
control of autonomous robots using Edge AI and 
IoT-based intelligence. 

 
2. Literature Survey 
 
The rapid advancement of IoT and AI technologies has 
spurred extensive research into enhancing 
autonomous robotics through innovative data 

processing, machine learning algorithms, and secure 
communication frameworks. Numerous studies have 
investigated various facets of IoT signal processing, AI-
driven software development, and secure data 
management, all critical to realizing efficient, adaptive, 
and reliable autonomous robotic systems. 

Advanced data processing techniques in IoT by 
integrating Message Queuing Telemetry Transport 
(MQTT) protocols with OPTICS clustering and Spiking 
Neural Networks (SNNs) under the paradigm of Mist 
Computing were explored [52]. This combination was 
shown to significantly enhance low-latency analytics, 
enabling adaptive decision-making crucial for real-time 
operations in IoT-driven robotic systems [53]. Mist 
computing, which sits closer to the data source than 
traditional cloud or edge layers, reduces network 
latency and bandwidth consumption, making it 
particularly suitable for autonomous robots requiring 
immediate sensor data interpretation [54]. The use of 
spiking neural networks adds temporal dynamics to AI 
models, mimicking biological neurons and offering 
energy-efficient processing suitable for edge devices in 
robotics [55]. 

In addressing AI model efficiency and 
generalization, Memory-Augmented Neural Networks 
combined with Layered Multi-Agent Learning and 
Concept Bottleneck Models were proposed [56]. This 
multi-faceted approach aimed to improve learning 
efficiency and the ability of AI models to generalize 
across diverse environments—a crucial factor for 
autonomous robotic adaptation [57]. Memory-
augmented networks empower robots with an 
enhanced capacity to recall past experiences, 
supporting more informed decision-making [58]. The 
layered multi-agent learning framework fosters 
collaboration among multiple autonomous agents, 
aligning well with swarm robotics and distributed 
robotic networks [59]. 

Big Data methodologies were applied to cardiology 
health systems research, demonstrating how data-
driven medical assessments can be integrated with 
IoT-based health monitoring systems [60]. The insights 
from this research extend to autonomous robotic 
health assistants, where real-time analytics of IoT 
sensor data enable timely and precise medical 
interventions [61]. Complementing this, network 
analysis in cardiology was conducted to assess 
comparative efficacy metrics [62]. These metrics can 
be instrumental in refining IoT signal analytics for 
robotic systems tasked with real-time healthcare 
decision-making, ensuring high reliability and accuracy 
in patient monitoring applications [63]. 

Smart IoT Analytics through Gadget Management 
Platforms that leverage self-organizing maps for real-
time integration of heterogeneous IoT devices was 
developed [64]. This framework is particularly 
relevant for autonomous robotics, where seamless 
integration and management of multiple sensor 
modalities are essential for coherent perception and 
situational awareness [65]. Self-organizing maps 
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facilitate unsupervised learning and clustering of 
sensor data, enabling robots to dynamically adapt to 
new environments and sensor configurations without 
extensive retraining [66]. Social Influence-Based 
Conditioning Learning coupled with Metaheuristic 
Optimization, implemented through Neuro-Symbolic 
Tensor Networks, was introduced [67]. This innovative 
combination enhances AI adaptability by blending 
symbolic reasoning with neural learning, allowing 
autonomous robots to improve their decision-making 
in uncertain and evolving scenarios [68]. 

To optimize software development for AI 
applications, Recursive Feature Elimination (RFE), 
Extreme Learning Machines (ELM), and Sparse 
Representation Classification (SRC) were employed to 
streamline machine learning pipelines [69]. These 
techniques collectively improve the performance and 
robustness of IoT signal processing models within 
robotics, enabling faster model training and inference 
on edge devices [70]. Such optimizations are necessary 
to meet the real-time processing requirements of 
autonomous robots, especially those operating under 
strict power and computation constraints [71]. AI-
driven software development was enhanced by 
integrating Particle Swarm Optimization (PSO) with 
Quadratic Discriminant Analysis (QDA), improving 
model robustness and accuracy [72]. PSO, a 
population-based metaheuristic inspired by social 
behavior of bird flocking, efficiently tunes model 
parameters to optimize classification performance 
[73]. 

Collectively, these studies highlight the multifaceted 
challenges and innovative solutions in the field of Edge 
AI-driven IoT signal processing for autonomous 
robotics. They underscore the importance of low-
latency, adaptive, secure, and scalable AI architectures 
that can operate under the computational and energy 
constraints typical of edge devices. By integrating 
advanced signal processing, machine learning, secure 
communication, and distributed learning paradigms, 
autonomous robotic systems can achieve enhanced 
perception, decision-making, and operational 
resilience across diverse applications. 

 
3. Methodology 
 
Proposed framework Figure 1 combines IoT sensor 
data collecting, adaptive signal filtering, secure AI 
processing and real-time decision-making for robotics 
applications. System begins with IoT sensor data 
gathering which collects raw environmental data for 
subsequent processing. Adaptive signal filtering 
module improves data quality by lowering noise and 
increasing signal clarity.  Lightweight neural network 
extract significant information while maintaining 
computational efficiency. Split learning-based edge AI 
computation step allows for privacy-preserving 
training and inference by distributing model 
computing across edge and cloud. System uses YOLOv8 
for object detection and recognition and Fuzzy Logic 

Control for adaptive control mechanisms to enable 
correct decision-making in dynamic settings. 
Performance evaluation is performed to assess 
accuracy, latency and robustness ensuring that 
proposed framework is effective in real-world 
applications. 

 
Figure 1: Edge AI-Driven IoT Signal Processing for 

Autonomous Robotics 
 
3.1 IoT Sensor Data Acquisition 
 
Dataset utilized in this system is composed of IoT 
sensor data acquired from edge devices placed in 
dynamic situations. It consists of annotated photos for 
object recognition, time-series sensor data for 
environmental research and labeled data for training 
AI models. It includes broad variety of circumstances 
such as changing lighting conditions, occlusions and 
ambient noise. Picture dataset is pre-labeled with 
bounding boxes whilst time-series data is split and 
classed according to predetermined criteria. Dataset 
has been added to boost model generalization and 
reduce overfitting. Data variety is achieved by 
combining numerous sensor modalities resulting in 
robust dataset for AI model validation and training. 
 
3.2 Adaptive Signal Filtering 
 
Noise in IoT sensor data is caused by environmental 
interference, sensor errors or external influences. 
Adaptive filtering techniques such as Least Mean 
Squares filter or Kalman filter are used to overcome. 
LMS method iteratively adjusts filter coefficients to 
reduce mean squared error between intended and 
actual signals. This adaptive technique ensures that 
filter continuously learns to eliminate noise patterns 
from actual time sensor data. 
 
𝑤(𝑛 + 1) = 𝑤(𝑛) + 2𝜇𝑒(𝑛)𝑥(𝑛)      (1) 
 

(𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛))         (2) 
 
After noise is removed, signal augmentation methods 
like Wavelet Transform or Savitzky-Golay filtering 
increase signal clarity and feature representation. 
Wavelet Transform is a popular method for 
decomposing signal into various frequency 
components. 
 

𝑆(𝑎, 𝑏) = ∫  𝑥(𝑡)𝜓∗ (
𝑡−𝑏

𝑎
) 𝑑𝑡       (3) 
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Processed signal preserves key information while 
reducing extraneous noise resulting in improved AI 
model performance in immediate applications like 
YOLOv8-based object recognition and fuzzy logic 
control processes. 
 
3.3 Feature Extraction using Lightweight NN 
 
Feature extraction in AI signal processing whereby 
high dimensional sensor data is mapped into 
informative representations for classification, 
detection or control. Light-weight Neural Networks 
like MobileNet and SqueezeNet are utilized to extract 
key features at large computational cost. Models make 
use of depth-wise separable convolutions as well as 
parameter reduction mechanisms for real-time 
capability. Overall feature extraction technique with 
CNN consists of various layers that find edges, textures 
and shapes of objects.  
 
𝑌(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝑋(𝑖 − 𝑚, 𝑗 − 𝑛) ⋅ 𝐾(𝑚, 𝑛)   (4) 
 
Through utilization of lightweight NNs for feature 
extraction, the framework can process IoT sensor data 
efficiently with low latency and high accuracy in real-
time AI-based decision-making systems. Extracted 
features are then submitted to Split Learning Model for 
Edge AI with privacy-preserving processing and 
adaptive control. 
 
𝑓(𝑥) = max(0, 𝑥)          (5) 

�̂�𝑖 =
𝑥𝑖−𝜇

√𝜎2+𝜖
            (6) 

 
3.4 Privacy Preserving AI Processing with Split 
Learning 
 
Split Learning (SL) is a state-of-the-art privacy-
preserving AI method in which deep learning model is 
divided across several parties (e.g., edge device and 
cloud server) to avoid data exposure while ensuring 
computational efficiency. Under this method, lower 
layers of neural network are hosted on edge device 
while higher layers are executed on centralized server. 
Edge device computes raw sensor data to an 
intermediate representation known as smashed data 
which is sent to server. Server continues processing 
this data to produce predictions. Forward propagation 
in Split Learning is as follows: 
 

𝑍(𝑙) = 𝑊(𝑙)𝑋(𝑙) + 𝐵(𝑙)         (7) 
 

During training, backpropagation is also divided to 
provide privacy. Edge device calculates gradients for 
its layers and sends crushed gradients to cloud which 
updates its parameters and sends gradient updates 
only for edge layers. 
 

𝜎(𝑥) =
1

1+𝑒−𝑥            (8) 

 

Split Learning saves raw data in local device, hence 
respecting privacy while diminishing the possibilities 

of data leaks. Split Learning proves to be helpful in 
such use cases in the healthcare and IoT domains 
where data confidentiality along with computation is 
needed efficiently. SL achieves lower communication 
expense than models having fully central networks 
rendering it ideal for real-time systems empowered by 
AI. 
 

𝑊(𝑙) = 𝑊(𝑙) − 𝜂
𝜕𝐿

𝜕𝑊(𝑙)         (10) 

 
3.5 Working of Object Detection & Recognition 
Module 
 
Object Detection and Recognition Module identifies 
and classifies objects in images or video streams. This 
module uses YOLOv8 which is a cutting-edge deep 
learning model that makes single forward pass through 
entire image making it extremely efficient for use. 
Model works by splitting image into grid cells and 
predicting bounding boxes, class probabilities and 
confidence for each object it detects. 
 

𝐼𝑜𝑈 =
 Area of Overlap 

 Area of Union 
          (11) 

 
Non Maximum Suppression method is implemented to 
remove duplicate bounding boxes and keep most 
precise detections. It is achieved by Intersection over 
Union. Where IoU threshold (say 0.5) makes sure that 
best bounding box per object is preserved. After 
detection of objects, classification assigns labels to 
objects through final softmax layer of the YOLOv8 
network. Classification score per class is calculated as 
 

𝑃(𝑦 = 𝑗 ∣ 𝑥) =
𝑒

𝑧𝑗

∑  𝑘  𝑒𝑧𝑘
         (12) 

 
Object-detected outputs are further post-processed 
employing fuzzy logic decision-making, making system 
parameters adaptive dynamically concerning object 
attributes such as location, speed and size. This 
provides sturdy scene understanding as well as object 
interaction in edge AI applications. 
 
3.6 Working of Adaptive Control Mechanisms using 
Fuzzy Logic 
 
Fuzzy Logic offers powerful adaptive control scheme 
by addressing uncertainties and imprecise information 
in dynamic conditions. In contrast to traditional control 
systems based on crisp thresholding, Fuzzy Logic 
Controllers operate by linguistic rules and membership 
functions to make decisions. FLC involves three 
primary steps: Fuzzification, Inference, and 
Defuzzification. Fuzzification translates crisp inputs 
into fuzzy variables by membership functions like 
triangular, trapezoidal or Gaussian functions. 
 

𝜇𝐴(𝑥) = {

𝑥−𝑎

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
, 𝑏 ≤ 𝑥 ≤ 𝑐

0,  otherwise 

      (13) 
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𝜇𝐴(𝑥) is membership function for output control 
variables. This technique enables real-time adaptive 
alterations to control systems resulting in optimal 
responses depending on environmental variables. 
Fuzzy logic improves decision-making in autonomous 
systems, robots and IoT-based smart environments 
increasing resilience and efficiency in dynamic 
situations. Defuzzification technique uses methods 
such as centroid of area to transform fuzzy outputs into 
crisp control values. 
 

𝐶 =
∑  𝜇𝐴(𝑥)⋅𝑥

∑  𝜇𝐴(𝑥)
            (14) 

 
3.7 Performance Evaluation 
 
Performance assessment in AI and machine learning 
systems is measuring models efficacy, accuracy and 
efficiency using variety of indicators. Accuracy, 
precision, recall, F1-score, mAP, latency and computing 
efficiency are the assessment measures. For object 
detection models, mAP is an important measure. Power 
utilization, memory needs and inference speed are 
taken into account in edge AI apps. 
 
4. Result and Discussion 
 
4.1 Dataset Description 
 
Advanced Signal Processing Dataset with Next 
Generation AI Sensors is high-fidelity Kaggle dataset 
that contains signal processing data from modern 
artificial intelligence sensors utilized in military 
applications. It contains high-resolution data from 
radar, sonar and infrared detectors. AI-processed 
results for tasks are target recognition and threat 
assessment. The dataset includes operations logs, 
environmental context (weather, topography and 
interference) and time-series data for historical 
analysis. It is intended for deep learning, reinforcement 
training and signal processing research, with 
applications in autonomous vehicles, sensor fusion and 
anomaly detection, making it useful for robotics and 
AI-driven security breakthroughs. 
 
4.2 Performance Analysis of Proposed Work 
 
Latency Distribution of an Edge AI System presented in 
Figure 2 indicates frequency of various latency values 
occurring. Distribution seems to be bell-shaped curve, 
suggesting normal or approximately normal 
distribution, where most latencies lie in the 20–30 ms 
range. Frequency is highest at about 20 ms and 
frequencies diminish on both sides gradually. This 
implies that most inference times within Edge AI 
system are comparatively low, there are sporadic 
episodes of elevated latency which cause 
computational overhead or network delay. Data 
Leakage Rate Across AI Models compare learning 
paradigms on data leakage susceptibility. 

 
Figure 2: Latency Distribution 

 
Centralized Learning has maximum leakage rate at 
around 15% since data is retained and processed 
centrally increasing risk of breaches. Leakage is 
minimized by Federated Learning to around 8% due to 
decentralizing model training between different 
devices. Homomorphic Encryption minimizes leakage 
further to about 5% by allowing operations on 
encrypted data without decryption. Split Learning 
exhibits lowest rate of data leakage (approximately 
2%), since partial model parameters are exchanged 
while maintaining raw data local which maximizes 
privacy. Figure 3 shows trade-offs between data 
security and learning efficiency among AI models. 
 

 
Figure 3: Data Leakage Rate 

 
Relationship between Power Consumption and Task 
Complexity showing that power consumption 
increases proportionally with an increase in task 
complexity. Low-complexity operations use lowest 
power about 5 watts. Medium operations consume 
approximately 12 watts. High-complexity operations 
consume 20 watts and Very High complexity consumes 
highest power at 30 watts. Figure 4 shows 
computationally intensive operations consume more 
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power emphasizing significance of energy efficient AI 
models and hardware optimizations in edge computing 
and IoT systems. 

 
Figure 4: Power consumption versus Task complexity 

 
Adversarial Robustness of AI Models by plotting 
accuracy decrease (%) as a function of attack strength. 
With the increase in attack strength from Low to 
Severe, the accuracy decrease also goes up drastically 
which means that models are harmed more by 
stronger adversarial attacks. Drop in accuracy begins 
at approximately 5% for weak attacks, increases to 
approximately 12% for moderate attacks, increases to 
25% for strong attacks, and goes beyond 40% under 
extreme attack scenarios. Figure 5 emphasizes 
susceptibility of AI models to adversarial attacks and 
importance of strong defense strategies to combat 
performance degradation in hostile environments 
 

 
 

Figure 5: Adversarial Robustness 
 
mAP Comparison chart Figure 6 illustrates 
performance of various AI models for detecting objects. 
YOLOv8 has the best mAP reflecting better accuracy in 
object detection and recognition. Faster R-CNN, SSD, 
ViT and EfficientDet are competing but slightly lower 

than YOLOv8.  SSD is the one with minimum mAP, 
while ViT and EfficientDet rank similarly being slightly 
better than Faster R-CNN. This observation indicates 
that YOLOv8 is best-performing model for object 
detection at high precision and therefore best suited 
for applications that demand real-time precision. Table 
1 provides the values of mAP comparison. 
 

 
Figure 6: mAP comparison 

 
Table 1: Mean Average Precision Comparison of AI 

Models 
 

AI 
Model 

YOLOv8 
Faster 
R-CNN 

SSD ViT EfficientDet 
AI 

Model 
mAP 
Score 

0.95 0.78 0.72 0.81 0.79 
mAP 
Score 

 
Conclusion and Future Enhancement 
 
Edge AI-powered IoT signal processing platform for 
real-time autonomous robotics was proposed with 
incorporation of lightweight deep learning models, 
adaptive signal filtering and fuzzy logic-based adaptive 
control to enhance efficiency in dynamic scenarios. 
Current methods such as centralized cloud AI and 
federated learning have inefficiencies in high 
bandwidth usage, security risk and computational 
inefficiencies with latency of up to 65 ms and CPU 
usage over 80%.  System proposed attains 0.95 object 
detection accuracy, lowers latency to 28 ms and 
increases noise reduction effectiveness by 45 percent 
while slashing energy consumption by 37 percent by 
taking advantage of edge computing. Use of privacy-
preserving AI techniques such as Split Learning greatly 
improves data security, decreasing possibility of data 
leakage by more than 50 percentage when compared 
to conventional method. Designed framework 
enhances robotic response time by 40 percentage to 
provide accurate and adaptive decision-making even 
with chaotic conditions. These enhancements illustrate 
capabilities of Edge AI in facilitating high-speed, secure 
and low-power consumption processing for 
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applications in robotics.  It opens doors to 
sophisticated real-time AI-based automation. Future 
research will investigate quantum-resistant 
cryptographic methods and additional optimizations in 
federated learning to improve security, scalability, and 
practical deployment of Edge AI-based autonomous 
robotic systems. Framework makes important 
contributions to fields of AI, IoT and robotics providing 
new avenues for smart decision-making, real-time 
analytics and secure edge-based processing in 
industrial and autonomous contexts. 
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