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Abstract  
  
Stability testing and forecasting under various situations is very relevant since it is one of the most essential factors 
for evaluating the utility of smart grid architecture. A future smart grid design that can anticipate stability and avoid 
unwelcome instabilities is necessary due to the proliferation of both residential and commercial buildings as well as 
the incorporation of renewable energy sources into smart networks. To tackle the problems that come with 
integrating renewable energy sources, this research looks at how smart grid systems may be made more stable with 
an employ of predictive analytics and ML models. A simulated smart grid stability dataset containing 60,000 entries 
and 14 features from Kaggle. Three models were employed: ANN, CNN, and CART. The ANN model achieved superior 
results, with an accuracy of 98.7%, precision of 98.03%, recall of 98.02%, and F1-score of 98.02%.  Comparison of 
ANN, CNN, and CART models demonstrated the ANN's efficacy in accurately forecasting grid stability. The results 
highlight the promise of DL models and other forms of ML in predictive analytics for making renewable energy smart 
grids more reliable. 
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1. Introduction 
 
Solar energy helps people and communities in 

developing nations achieve energy balance and 
advancement by meeting both individual and collective 

energy needs. Renewable energy sources have the 
greatest potential to save the environment while 
simultaneously lowering emissions of greenhouse 

gases, a rapidly worsening issue. Many nations employ 
renewable energy to create next-generation 
technologies. Energy from renewable sources, 

including solar, biomass, hydro, and wind, is used in 
different ways in different countries [1][2]. There are 

many obstacles to integrating renewable energy 
sources into current networks, including outages, 
voltage swings, and energy losses[3]. These issues 

prompted the development of the smart grid. Much of 
the world's "grid network," or electrical distribution 

infrastructure, was constructed when power was 
reasonably priced. To meet the rising demand for 
power, the basic grid network has undergone slight 

improvements [4]. 
Smart grid technology emerges as a solution to 

these challenges, offering a modernised framework for 
energy generation, distribution, and management.  
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By leveraging advanced infrastructure, smart grids 
enhance grid asset controllability, performance, 
observability, and security[5][6]. It overcomes the 
shortcomings of conventional grids by enabling control 
and monitoring in real-time, which in turn allows for 
the effective incorporation of renewable energy 
sources [7][8]. Predictive analytics allows grid 
operators to analyse massive volumes of data and 
predict energy needs and supply changes, which is vital 
in this context. With predictive analytics, smart grids 
can anticipate potential issues, optimise energy 
distribution, and maintain balance even in the face of 
variable renewable energy inputs[9].  
 

Machine learning further strengthens predictive 
analytics in smart grids by providing algorithms 
capable of analysing complex data patterns and making 
accurate predictions[10]. Machine learning models can 
process data from different sources—like weather 
conditions, energy usage patterns, and grid 
infrastructure—to forecast energy generation, 
consumption, and potential grid instabilities. A steady 
and dependable energy supply is ensured by these 
predictive insights, which allow for proactive 
modifications to grid operations[11][12]. The 
integration of machine learning into smart grids thus 
represents a transformative approach, supporting the 
efficient and resilient management of renewable 
energy sources in modern power systems[13]. 
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Aim and Contribution of paper 
 
The goal of this research is to use ML methods to create 
a prediction model that is both accurate and efficient 
for evaluating smart grid stability datasets. The main 
contributions of this study are: 

Streamlined data preprocessing by utilising a high-
quality, simulated dataset with no missing values or 
outliers, eliminating the need for imputation or 
extensive cleaning. 

Retained all features without feature selection, 
ensuring that each contributes to the stability 
calculation and enhancing model comprehensiveness. 
Developed a predictive model for assessing smart grid 
stability using Artificial Neural Networks (ANN), CART, 
and CNN. 

Evaluated model performance employing metrics 
like F1-score, accuracy, recall, and precision, offering a 
detailed assessment of prediction reliability. 
 
Structure of paper 
 
The formatting for the remainder of the paper is as 
follows. Research the history of smart grids using 
renewable energy sources in Sections 1 and 2. A 
thorough explanation of the process is given in Section 
3. Section 4 compares and contrasts the findings, 
analysis, and debate. Section 5 presents the results of 
the study as well as suggestions for further research. 
 

Literature Review 
 
Recent years have seen a rise in scholarly interest in 
the potential of predictive analytics applied to smart 
grids that generate electricity from renewable sources. 
The following are a few excerpts from relevant studies: 
In this paper, Moloi, Hamam and Jordaan, (2020) 
examine a power distribution system that incorporates 
wind energy for the purpose of identifying and 
repairing fault patterns. The MATLAB/Simulink model 
incorporates a wind power energy supply and a 
decreased Eskom 22kV. The integrated model is able to 
produce a wide range of power system problem kinds. 
Our research into signal decomposition using LPA and 
fault classification and detection using SVM continued. 
Additionally, they evaluated how well the 
NBC performed. In order to identify and fix fault 
patterns in a power distribution system that 
incorporates wind energy, this study suggests a hybrid 
approach based on LPA and SVM. The suggested 
approach was further evaluated with the help of the 
ML tools WEKA and Orange. Depending on the 
classifier, the results might range from 98% to 99% 
accuracy[14]. 

In Al-Haija, Al Tarayrah and Enshasy, (2020) 
optimise the R_SNN model, which is a regression-based 
SNN with 20 hidden neurones, by determining the 
optimal values for the training parameters, such as 
weights and biases, to get the best possible results in 
terms of model fitting and time series data prediction. 

Time series data modelling and short-term renewable 
energy addition forecasting using the R_SNN (20) 
model were effective. After 50 epochs of NN training, 
the R_SNN (20) model achieved the maximum data 
fitting accuracy of 99% and the smallest loss-based 
MSE for model estimation. Renewable energy capacity 
additions are shown in the model as following a linear 
trajectory [15]. 

In Ghorbanian, Dolatabadi and Siano, (2019) 
introduced an XGBoost algorithm that capitalised on 
inertial sensors. A power system with 39 buses was 
subjected to this technology, and it attained a 97% 
accuracy rate. However, just one evaluation metric, 
namely accuracy, was used to determine how well the 
built algorithm performed. In addition, many smart 
grid models may benefit from power system modelling 
in real-time[16]. 

In this paper, Yao, Lim and Lai, (2017) a smart 
home's RES, ESS, and main grid are all shown in this 
hardware demonstration. In order to regulate the 
quantity of power used from the main grid, a SLFC is 
suggested for use in HEMS. This controller would take 
into account electricity pricing, energy stored in ESS, 
and load needs. The goal of automatically modifying 
the SLFC's parameters using a self-learning technique 
based on GA is to make the controller more resilient in 
a variety of home settings. To further increase the 
parameter learning efficiency of SLFC, efficient 
parameterisation approaches are also provided to 
represent the antecedent and consequent parts of the 
fuzzy rule base with fewer parameters. Thorough 
research has shown that by using the energy storage 
capacity of ESS, the suggested SLFC can achieve a 
reduction in energy costs of up to 37.70% [17]. 

This paper Xu et al., (2016) developed a smart grid-
based ML platform that is both dispersed and 
networked. In addition to allocating renewable energy 
resources and providing short-term energy forecasts, it 
can also analyse occupant mobility. First, a real-time 
indoor positioning system that analyses Wi-Fi data can 
capture the occupant profile. Then, a real-time meter 
system that analyses electrical load data can extract the 
energy profile. Finally, a web-based distributed 
learning system that updates its data in real time is 
employed to combine the energy profile and the 24-
hour occupant profile with prediction. Allocating solar 
energy sources to the secondary power grid in 
anticipation of peak demand on the primary grid is 
based on predicted occupant movements and energy 
consumption profiles. Utilising a general-purpose ML 
engine, the whole management flow may be executed 
on a distributed smart gateway network with 
constrained computational resources. Results from 
experiments conducted on real-world datasets 
demonstrate that the suggested energy prediction 
approach may achieve an accuracy gain of 14.83 
percent when compared to the SVM method. Along 
with a 51.94% decrease in energy costs, the peak 
demand from the main electrical power-grid is 
decreased by 15.20% [18]. 
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The background study of Predictive Analytics in Smart Grids for Renewable Energy Sources with its dataset, 
models, performance, and contribution is provided in Table I. 

 
Table 1 Comparative Study on Predictive Analytics in Smart Grids for Renewable Energy Sources 

 
Author Data Methods Performance Limitation/future work 

Moloi, 
Hamam, and 

Jordaan 
(2020) 

Simulated Eskom 
22kV grid integrated 
with a wind power 
source modelled in 
MATLAB/Simulink 

Hybrid Local Polynomial 
Approximation (LPA) and 
Support Vector Machine 

(SVM); tested on WEKA and 
Orange 

Achieved 98%-99% 
accuracy in fault pattern 

recognition and detection 

Limited focus on specific 
classifiers; future work could 

explore integrating other 
advanced ML techniques. 

Al-Haija, Al 
Tarayrah, and 

Enshasy 
(2020) 

Time series data for 
renewable energy 

additions for 2020-
2025 

Regression-based Shallow 
Neural Network (R_SNN) 

model with 20 hidden 
neurons 

R_SNN (20) model 
accurately forecasts 
renewable energy 

additions with 99%. 

Requires validation on more 
diverse datasets and longer 

forecasting horizons 

Ghorbanian, 
Dolatabadi, 
and Siano 

(2019) 

Power system data 
from a 39-bus 

network 

XGBoost algorithm with 
inertial sensor input 

Achieved 97% accuracy 
for fault detection in 

power systems 

Only accuracy was used as an 
evaluation metric; future work 

should include additional 
performance metrics and real-

time testing. 

Yao, Lim, and 
Lai (2017) 

Hardware 
demonstration with 
main grid, RES, and 

ESS 

Self-Learning Fuzzy 
Controller (SLFC) optimised 
by Genetic Algorithm (GA) 

SLFC achieved 37.70% 
energy cost savings by 
optimising electricity 
purchase and storage 

Parameter tuning methods could 
be expanded; additional real-
world testing needed under 

varying conditions. 

Xu et al. 
(2016) 

Real-life occupant and 
energy profiles (Wi-Fi 

data and electricity 
load data) 

Distributed machine 
learning platform on smart 
gateways, using real-time 
Wi-Fi-based profiling and 

load data 

Improved energy 
forecasting accuracy by 

14.83%, reduced peak load 
by 15.20%, and achieved 

51.94% energy cost 
savings. 

Scalability and performance on 
larger, more diverse datasets 

need further investigation. 

 
Research Methodology 
 
A methodology for predicting smart grid stability 
begins with data collection, using a simulated dataset 
from Kaggle containing 60,000 rows and 14 features, 
where stability is calculated based on 12 features.  
 

 
Flowchart for Predictive Analytics in Smart Grids for 

Renewable Energy Sources 
 

A heatmap correlation matrix illustrates relationships 
among features, with the dataset showing minimal 
correlations and no outliers, as confirmed by box plots. 
Data preprocessing is streamlined due to the high-
quality simulated data—no missing values, outliers, or 
categorical variables—allowing for direct application 
of the dataset in the model. A data is split 70-30 for 
training and testing purposes. An CART, CNN and ANN 

are used for smart grid system. The evaluation 
metrics—like F1-score, precision, recall, and accuracy 
—are computed using the confusion matrix values (TP, 
TN, FP, and FN) to evaluate how well the model 
predicts grid stability and to provide information about 
its resilience and efficacy. The overall steps of 
implementation are shown in Figure 1. 
 
 
Below is a brief description of each component of 
Figure 1, "Predictive Analytics in Smart Grids for 
Renewable Energy Sources. " 
 
Data Collection 
 

This dataset on smart grid stability is accessible for 
free on Kaggle. The dataset has 60000 rows and 14 
characteristics. The first 12 attributes are averaged to 
generate the grid's stability value, which is then used to 
classify the grid as either stable or unstable. The 
attribute connections are displayed in Figure 2 using a 
heatmap. 

 
 

Correlation matrix of the dataset features 

Data 

preprocessing 

Apply models like 

ANN, CART, and 

CNN 

Model evaluation 

with accuracy, 

precision, recall and 

f1-score  

 

Smart grid 

stability dataset  

Data splitting  

Testing  Training  
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Figure 2 shows a heatmap representing the correlation 
matrix between various features in a dataset. The 
features include stabf, p1 through p4, g1 through g4, 
tau1 through tau4, and stab. Each cell in the matrix 
displays the correlation coefficient between a pair of 
variables, ranging from -1 (darkest shades) to +1 
(lighter shades), as indicated by the colour bar on the 
right. Lighter colours (those closer to white) indicate 
significant positive connections, whilst darker tones 
(those closer to brown) indicate strong negative 
correlations. For example, p1 and p2 have a 
moderately negative correlation of -0.58, while stab 
and tau1 show a strong positive correlation of 0.29. 
Most of the variables exhibit relatively weak 
correlations, as many coefficients are close to zero. 
 

 
Box plot for no outliers 

 
Figure 3 displays four identical box plots without any 
outliers, illustrating a consistent data distribution 
across the plots. Each plot has a box representing the 
interquartile range (IQR), with the median marked by a 
central line, and whiskers extending to a minimum and 
maximum values within an accepted range. A lack of 
outliers suggests that all values fall within the expected 
spread, indicating a potentially uniform or well-
contained dataset.  
 
Data Preprocessing 
 
For the smart grid stability dataset, data preprocessing 
was streamlined due to the high-quality nature of the 
simulated data. As the dataset was synthetically 
generated, there were no missing values, making 
imputation techniques unnecessary[19][20]. All 
features were retained for analysis without applying 
feature selection algorithms, as each attribute 
contributes to the stability value calculation. Since the 
data consists entirely of numerical values, no 
categorical encoding was required. Additionally, the 
absence of outliers, confirmed through box plots, 
indicates a well-distributed dataset with consistent 
shape, variability, and median, allowing for 
straightforward modelling without the need for further 
data adjustments[21]. 
 
Data Splitting 
 
The dataset is split into two halves, with 70% used for 
training and 30% for testing. 

Artificial neural network (ANN) Models 
 
Three layers comprise an ANN: the input, hidden, and 
output layers. The hidden layer, which is the neural 
network's brains and is in charge of continuously 
changing the weights to enhance performance, receives 
input characteristics from the input layer[22][23]. The 
classes produced by the network are shown in the 
output layer. The neural network's output is affected 
by the learning process and propagation function. 
Equation 1 represents the propagation function, which 
allows you to control an inputs of a j-th neurone by an 
outputs of a preceding neurones[24]. 
 
 𝑃𝑗(𝑡) = ∑0𝑖(𝑡) × 𝑤𝑖𝑗 +𝑏 (1) 

 
where a propagation function is denoted by 𝑝𝑗 (𝑡), an 
output of a previous neurone by 𝑂𝑖(𝑡), a weight by 𝑤𝑖𝑗, 
and a bias by 𝑏. In order for the neural network to 
produce a desirable output from a given set of inputs, 
the learning rule modifies the network's parameters. 
Using the learning rule as a guide, the learning process 
adjusts the network's weights to enhance output 
computation[25][26]. With intensive training and 
back-propagating the mistakes, the artificial neural 
network employs a high number of neurones with 
weights that are changed to increase the learning rate 
[27][28]. 
 
Evaluation metrics 
 
This is the prediction model's last phase. Here, assess 
the prediction outcomes using a variety of assessment 
measures, such as f1-score, confusion matrix, and 
classification accuracy. A confusion matrix determines 
the statistical values that each measure is based on: TN, 
FP, TP, and FN.  Figure 4 shows a matrix of perplexity.  
 

 
 

Representation of confusion metrics 
 
TN demonstrates that the model is accurate when it 
predicts the negative class.  
A negative forecast for the positive class is indicated by 
the acronym FP.   
TP is the outcome of accurately predicting the positive 
class. 
The negative class is mispredicted by FN. 
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Accuracy: A ratio of accurate predictions to all of the 

testing dataset's predictions is known as accuracy. It is 

provided as (2). 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+Fp+TN+FN
 (2) 

 

Precision: Precision may be defined as the ratio of 

accurate class activity predictions to all class 

predictions in the testing dataset. The expression for it 

is (3). 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
 (3) 

 

Recall: Recall is the proportion of correctly identified 

positives for a given class to all actual class activities in 

the test dataset. It is expressed mathematically as (4). 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

𝑇𝑃+𝐹𝑁
 (4) 

 

F1 score: It is used to assess a test's accuracy. The 

average of recall and precision is known as the F1 

Score. [0, 1] is the range of the F1 Score. It informs you 

of the robustness and precision of your classifier. It is 

expressed mathematically as (5). 

 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

 

These metrics collectively provide insights into an 

accuracy and effectiveness of a model in predicting a 

target variable. 

 

Results And Discussion 

 

An experiment result of models like CART[29], 

CNN[30] and ANN is provided in this section. The 

following models are trained on the smart grid stability 

dataset and measured on Recall, accuracy, precision, 

and f1-score. In this section, firstly provide the ANN 

model performance for smart grid system. Then, 

comparison of model’s performance on dataset. Table 

II provides the performance of the ANN model with 

graphical results including confusion matrix, learning 

curves of loss and accuracy, and ROC curves. 

 
Table 2 ANN model efficiency across performance 

matrix 

 
Performance matrix Artificial Neural Network (ANN) 

Accuracy 98.7 

Precision 98.03 

Recall 98.02 

F1-score 98.02 

Loss 0.0384 

 
 
ANN model performance on smart grid stability dataset 
 
Table II and Figure 5 above illustrate the ANN model's 
performance. This figure shows that ANN performs 
well overall and effectively classifies positive 
occurrences, with an accuracy of 97.36%, precision 
98.03%, recall 98.02, F1-score of 98.02%, and 
loss0.0384. 

 
Accuracy curves for ANN model 

 
Figure 6 displays the training and testing accuracy of a 
model across 50 epochs. Initially, both accuracies 
increase rapidly, with testing accuracy slightly 
surpassing training accuracy around the 10th epoch, 
indicating the model generalises well. As training 
continues, both accuracies converge and stabilise 
around 95%, showing minimal fluctuation. The close 
alignment of training and testing accuracy lines 
suggests that the model has not overfit the data and is 
likely well-optimised for both training and test sets. 
 

 
 

Loss curves for the neural network 
 
Figure 7 displays a model's training and testing loss 
across 50 epochs. Both losses decrease steeply at first, 
showing rapid learning in the initial epochs. By around 
the 20th epoch, the loss values begin to converge and 
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stabilise, with training loss slightly lower than testing 
loss, indicating good generalisation with minimal 
overfitting. Both losses reach values close to zero by 
the 50th epoch, suggesting the model is effectively 
minimising error for both training and test data. 

 
Confusion matrix for the ANN 

 
Figure 8 below displays a confusion matrix with two 
labels: the real label and the anticipated label. The 
confusion matrix assesses how well a model performs 
in dividing grid stability into two groups: unstable and 
stable. The matrix reveals that the model accurately 
predicted 3835 unstable grids and 2046 stable grids. 
However, it misclassified 77 unstable grids as stable 
and 42 stable grids as unstable. 
 

 
 

ROC curves for the neural network 
 
Figure 9 displays the ROC curves for a classification 
model. The ROC curve visually shows a trade-off 
between TP rate (sensitivity) and FP rate (specificity) 
when the classification threshold changes. In this case, 
both the ROC curves for class 0 and class 1, as well as 
the micro-average ROC curve, exhibit an AUC of 1.00. 
This indicates that a model discriminates perfectly 
among two classes, achieving high sensitivity and 
specificity across all classification thresholds. 
 

Table 3 Accuracy Comparison between ML and DL 
models for smart grid system 

 
Model Accuracy 

Classification and Regression Trees (CART) 80 

Convolutional Neural Network (CNN) 89.22 

Artificial Neural Network (ANN) 98.7 

 
 

Accuracy comparison between model 
 
Comparisons of the smart grid system's model 
accuracy are shown in Figure 10, which is located 
above Table III. The ANN outperforms the other 
models significantly, with an accuracy of 97.36%. The 
CART model achieved 80% accuracy, and CNN 
improved to 89.22%. overall, the ANN model achieves 
the highest performance for smart grid systems. 
 
Conclusion and Future Study 
 
The rapid development of residential neighbourhoods 
and industrial parks has made smart grid technologies 
more and more crucial. Modernising electrical power 
networks and improving their efficiency, 
dependability, and adaptability are the goals of the 
Smart Grid system. It gathers data and generates 
forecasts for decision optimisation by integrating time 
series forecasting ML algorithms, networks, and smart 
sensors into the current grid transmission system.  
This study tested several ML and DL models on a 
simulated dataset to forecast smart grid stability. The 
analysis highlighted an effectiveness of an ANN 
compared to traditional ML models, like CART, ANN, 
and CNN. The ANN demonstrated exceptional 
performance, achieving an accuracy of 98.7%, with 
precision, recall, and F1-score values closely aligned at 
approximately 98.02%. These findings demonstrate 
the ANN's strong capacity to correctly categorise grid 
stability, which makes it a useful tool for smart grid 
applications. In contrast, the CART, and CNN models 
exhibited significantly lower performance metrics, 
with accuracies of 80% and 89.22%, respectively. This 
underscores the superiority of ANN in handling 
complex classification tasks in smart grid stability 
prediction. Future work may focus on integrating these 
models into real-time smart grid monitoring systems 
and exploring their adaptability to varying operational 
conditions and datasets. 
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