Research Article

Design & Analysis of Filled Coating Piping System

Amol Y. Patankar*

Department of Mechanical Engineering, Wainganga Collage of Engineering & Management, Nagpur, Maharashtra

Received 15 May 2023, Accepted 20 June 2023, Available online 21 June 2023, Vol.13, No.3 (May/June 2023)

Abstract

Piping design is the basis for every aspect of material flow within and outside the plant. For example, in many processing plants, material movement inside the various units must be optimized to ensure that it travels the shortest distance and over the fewest bends possible to be processed quickly. Basically, a piping system is a closed system having several components that carry or transfer the fluids (liquids, gases, or slurry) from one piece of equipment to another or from one place to another. For a complex or an industrial plant. There are many aspects to be considered while it is designed, and one of the most prominent is piping design and its modeling. The basic design code used for the above plant is the ASME B31.3 process piping code. The main objective of this paper is to provide an aesthetic and optimized piping design that fulfills the required process with a sustainable, long-lasting design with the help of stress analysis by using CAESAR II software. Stress aims to resolve all the forces in the components and check the load and flexibility of the piping system that could work during conditions such as sustained operation, hydrostatics, and seismic. To provide suitable supports to make the system balance with all working conditions. Here in this project, we have taken one example of a filled coating piping system, which is one of the more complicated processes in the roof singles manufacturing process and has a normal temperature of 425 °C.

Keywords: Piping design, 3d modeling, Filled Coating system, Stress Analysis, CAESAR II optimized & sustainable design.

1. Introduction

Piping Design is the one of the engineering discipline of mechanical engineering that covers the design of piping and the layout of equipment and process units in chemical, petrochemical, or hydrocarbon facilities. To ensure the safe functioning of the facilities for the design life, piping engineers oversee the layout of the overall plant facilities, the positioning of equipment and process units on the plot, and the design of the associated piping. To transfer or distribute process fluid from one piece of equipment to another in a process plant, pipework is an assembly of pipeline components. This assembly's pipeline components include pipes, fittings, flanges, valves, piping specialties, bolts, and gaskets. This definition also covers pipe-supporting components like pipe shoes, but it excludes support buildings like foundations, racks, and sleepers for pipes. As per ASME B31.3, the piping designer is responsible to the owner for ensuring that the engineering design of the piping complies with the requirements of this code and any additional requirements established by the owner. Piping engineering is an important aspect in creating a plant facility and goes much beyond simply designing piping in accordance with ASME rules.

*Corresponding author's ORCID ID: 0000-0000-0000 DOI: https://doi.org/10.14741/ijcet/v.13.3.13

There are numbers of different ASME codes available to use to understand standard procedure to follow while design the plant. Most of the plant facilities in the petrochemical and hydrocarbon industries will use the ASME B31.3code for the design of process piping. Piping stress analysis is one of the most crucial activities need to perform in piping design. At largely process critical pipes are once routed by design guidelines, process requirements those needs to be verified or analysis by piping stress engineers by analysis to ensure that the system will work smoothly without failure throughout their design life cycle. A pipe stress analysis, also known as a thermal flexibility analysis, forecasts and checks stresses in piping systems as well as any access loads placed on equipment because of weights, pressure, temperature fluctuations, thermal gradients, and bolt-up strain. This study is normally required for major process piping those experiences high temperature fluctuations take place or for long pipe runs through the pipe rack, such as hot piping to coolers or headers, Steam piping, Reactor, Column piping. Cases where equipment's are more sensitive to external loads may also require checking the pipe stress analysis. For the primary process piping, analysis determines the various piping stresses brought on by temperature cycles, pipe and fitting weights, and static pressure. CAESAR II stress analysis software is used for modeling the piping

280 | International Journal of Current Engineering and Technology, Vol.13, No.3 (May/June 2023)

system one by one with number of cases to be check separately., there are other specialty computer programs are also available to check stress analysis in piping system such as NozzlePRO and FETee.

Stress is frequently generated in piping systems by weight, internal/external pressure, temperature change, irregular loads from the wind, seismic occurrences, PSV discharge, etc. force is generated by vibration.

2. Methodology

Filled Coating piping System: Filled Coating it is one of the systems known as Roof coating application is the process used to protect and extend the life of an installed roofing system. Roof coverings, also known as roof coatings, are made of a thick coating material that typically comprises high-quality resins. Each application of a business roof coating adds an additional layer of defense. a coating made entirely of acrylic that has been particularly developed for use on asphalt shingles. Its distinctive recipe offers outstanding longevity, improved fading resistance, and a smooth, low sheen that binds the tiles together to prevent wind lift-up while resisting cracking, peeling, and chipping. Roof coating systems have a lifespan of 10 to 20 years, but after their warranty expires, they can be recoated, at which point a new warranty will apply. Roof coating systems are a renewable and sustainable roofing technology since the procedure may be repeated. For UV protection and resistance, silicone roof coatings are the best option.

Fig.1: Roof Shingles with numbers of layers

Fig.2: Roof Shingles manufacturing process plant

Design: Piping Layout and Routing

Filled Coating system is the one of the systems which is involved in the manufacturing of roof shingles.

Basically, Coating is the mixture of oxidizing asphalt flux which is use for shingle plant. The Filled Coating Mixer receives heated coating that is metered into the mixer along with heated filler from the Filler Heater screw conveyor. Coating and filler enter the mixer and are blended to produce filled coating with a nominal temperature of 425°F. The filled coating is discharged from the Filled Coating Mixer into the aboveground 6,000-gallon Filled Coating Surge Tank which provides short-term storage of filled coating. The surge tank is provided with an agitator to maintain the suspension of the filler. Filled coating temperature is maintained by the HTM system. Filled coating is supplied to the Coater on the shingle machine by the Filled Coating Supply Pump after first being processed through a homogenizer.

Fig.3: Filled Coating piping system.

Now that we have one of the piping connections in the system mentioned above, from the surge tank bottom nozzle connection to the homogenizer inlet nozzle connection, we can use CAESAR II software to check stress feature to see if our design is feasible by given the design parameters.

Fig.4: Over all Layout.

Data use: Piping & instrumentation diagram (P&ID), Piping metrical specification (PMS), Piping 3D Model, Piping Isometric, Mechanical Data sheet (MDS), Line list (Critical line List), Piping Layout, Equipment Layout. Design Details: ASME 31.3 process Piping, Pipe diameter 6" Pipe Material CS, Class 150# ASTM A53 Grade B, Operating & Design Pressure 15 PSIG / 100 PSIG, Operating & Design Temperature 435 F / 500 F.

Fig.5: First Case study with Preliminary 3D design.

The design was approved by the client from an operational and maintenance physibilty point of view, and the layout engineer had completed preliminary routing in accordance with the minimum pipe routing suggested by the process team. However, when it came to the stress department, the routing was ineffective because it had become rigid and there had been no flexibility during the normal operation condition of the plant. Once the plant started and it reaches to its highest temperature, the connection between the tank & the homogenizer will be pushed out of its original position after a few cycles and break the nozzles OR the line between the surge tank and homogenizer will begin to spread towards the homogenizer right at the connection and back side of the tank. To avoid such breakdown during the operation we need to think different ways.

Fig.6: Second Case study with change routing

Hence there were two options, one is to change the location of equipment's and second is to change the pipe routing. Then to utilize the CAESAR II software programme to check stress characteristic on the system demonstrated above, from the surge tank bottom nozzle connection to the homogenizer inlet nozzle connection. Refer the below fig. for the same.

Due to space and process limitations in the aforementioned scenario, we had to replace the pipe routing with a C-type position by increasing the number of bends while keeping the position of the equipment in place. When we used the CAESAR II software, the supports were the only obstruction during the initial cut. Stress advised against using rigid, typical support to use Variable spring support with clamp shoe to avoid failure. Because in the above case the line would probably lift as a result of the high temperature during plant operation, further disrupting the system.

Fig.7: Piping & instrumentation diagram (P&ID)

3. Stress Analysis

A "piping stress engineer" is a pipe engineer that gives technical advice on piping design. They use software to construct static and dynamic piping models and analyses the piping system stresses. By performing listed activities. To model the line in CAESAR II software, Determine potential failure cases, Check and qualify the behavior of the piping under various reasons such as high temperatures, high pressures, wind effects, and seismic conditions. Recommend pipe supports with proper span, locations. Ensure piping loads are within allowable range by using the ASME 31.3.

Load Categories

Sustained loads: The presence of these loads is anticipated during regular plant operation. When working under regular conditions, pressure and weight loads are typical sustained loads. Expansion loads: Expansion loads are those resulting through pipe displacements. Examples involve structure settlement, seismic anchor movements, thermal anchor movements, and thermal expansion. Occasional loads: These loads are present at infrequent intervals during plant operation. Occasional loads include things like earthquakes, wind, and fluid transients like water hammer and relief valve release.

Flexibility analysis

In order to find the most cost-effective designs with sufficient safety, flexibility analysis is performed on a piping system to examine its behavior when its temperature varies from ambient to working. The following are the considerations that decide the minimum acceptable flexibility on a piping configuration. 1) Maximum allowable stress range in the system. 2) The upper and lower limits of forces and moments that the pipe system is permitted to impose on the associated equipment. 3) The displacements within the piping system. 4) The maximum allowable load on the supporting structure.

Stress Intensification Factor (SIF)

The definition states that it is the ratio of maximum stress level to nominal stress. To take into consideration, the impact of localized stresses on piping caused by repeated loading, it is used as a safety factor. This factor is used in the design of pipes at welds, fittings, branch connections, and other places where there may be stress concentrations and a risk of fatigue failure. Typically, experimental techniques are employed to ascertain these variables.

In-plane,
$$i = \frac{0.9}{h^{\frac{2}{3}}}$$

Out-plane, $i_0 = \frac{0.75}{h^{\frac{2}{3}}}$

Static Analysis

Static analysis is carried out to find the sorted code stresses, code compliance stresses, pipe support load, element forces and moments and displacement at all nodes and hangers. This comprehensive analysis is done by using a CAD package like CAESAR II software.

4. Caesar II Detail Analysis Reports

Stress analysis assures the safety of the piping and its components, the safety of the connected equipment for and the stability of the supporting structure, as well as the compliance of piping deflections with predefined limitations.

CAESAR II® is stress analysis software which is used for piping system a mechanical engineering and evaluation. You can model the piping system and define the loading constraints applied to it.

First Case study with Preliminary 3D design. (Fig.5)

Fig.8: First Case Design Output - Isometric-1

Fig.9: First Case CAESAR II Modeling details.

Stress analysis Result: Stress Summary report.

STRESS SUMMARY (LEGACY) REPO	ORT: Highest Str	esses Mini Statement	
Various Load Cases			
Highest Stresses: (lb./sq	.in.) LOADCASE	3 (HYD) WW+HP+H	
Ratio (%):	8.0	@Node 120	
Code Stress:	2784.8	Allowable Stress:	35000.0
Axial Stress:	777.4	@Node 20	
Bending Stress:	2685.0	@Node 120	
Torsion Stress:	65.9	@Node 70	
Hoop Stress:	1624.6	@Node 30	
Max Stress Intensity:	3469.3	@Node 120	
CODE STRESS CHECK PASSED	: LOADCA	ASE 25 (SUS) W+P1+H	
Highest Stresses: (lb./sq	.in.) LOADCASE	25 (SUS) W+P1+H	
Ratio (%):	17.0	@Node 120	
Code Stress:	3315.4	Allowable Stress:	19540.0
Axial Stress:	682.0	@Node 20	
Bending Stress:	3524.0	@Node 120	
Torsion Stress:	88.4	@Node 70	
Hoop Stress:	1405.7	@Node 30	
Max Stress Intensity:	4212.7	@Node 120	
CODE STRESS CHECK FAILED	: LOADCA	ASE 49 (EXP) L49=L4-L8	
Highest Stresses: (lb./sq	.in.) LOADCASE	E 49 (EXP) L49=L4-L8	
Ratio (%):	115.9	@Node 120	
Code Stress:	34683.8	Allowable Stress:	29918.8
Axial Stress:	52.6	@Node 70	
Bending Stress:	34666.9	@Node 120	
Torsion Stress:	540.7	@Node 70	
Hoop Stress:	0.0	@Node 20	
Max Stress Intensity:	43013.1	@Node 120	

283| International Journal of Current Engineering and Technology, Vol.13, No.3 (May/June 2023)

Displacement Analysis Result

ASE 4 (OPE)	W+D1+T1+P1+H					
Node	DX in.	DY in.	DZ in.	RX deg.	RY deg.	RZ deg
10	0.0001	-0.0709	0.0001	-0.0003	0.0001	0.00
20	0.0001	-0.0816	0.0001	-0.0004	0.0001	0.00
30	0.0016	-0.1187	0.0010	-0.0084	0.0020	0.03
40	-0.0147	-0.1200	0.0012	-0.0084	0.0020	0.0
50	-0.0254	-0.1208	0.0013	-0.0084	0.0020	0.03
60	-0.0283	-0.1211	0.0013	-0.0084	0.0020	0.0
70	0.1610	-0.0888	0.0002	-0.0567	-0.0055	0.0
80	0.2036	-0.0799	0.0023	-0.0697	-0.0122	0.0
90	0.2143	-0.0777	0.0031	-0.0698	-0.0123	0.0
100	0.2210	-0.0764	0.0036	-0.0699	-0.0123	0.0
110	0.2317	-0.0742	0.0043	-0.0700	-0.0124	0.0
120	0.2479	-0.0709	0.0057	-0.0749	-0.0159	0.0
130	0.2642	-0.0678	0.0072	-0.0749	-0.0159	0.0
140	0.2749	-0.0657	0.0082	-0.0749	-0.0159	0.0
150	0.2815	-0.0644	0.0088	-0.0749	-0.0159	0.0
160	0.2845	-0.0638	0.0091	-0.0749	-0.0159	0.0
170	0.2249	-0.0000	0.1474	-0.0850	-0.0334	0.0
180	0.2130	0.0289	0.2068	-0.0817	-0.0343	0.0
190	0.2100	0.0451	0.1990	-0.0817	-0.0343	0.0
200	0.2080	0.0559	0.1938	-0.0817	-0.0343	0.0
210	0.2074	0.0588	0.1924	-0.0817	-0.0343	0.0
220	0.2096	0.0367	0.2231	-0.0819	-0.0345	0.0
230	0.2083	0.0399	0.2297	-0.0819	-0.0345	0.0
235	0.2075	0.0419	0.2338	-0.0819	-0.0345	0.0
240	0.2061	0.0451	0.2404	-0.0819	-0.0345	0.0
250	0.0001	-0.0709	0.0001	-0.0003	0.0001	0.0
260	-0.0000	0.0000	-0.0000	-0.0000	0.0000	0.0
275	0.2061	0.0451	0.2404	-0.0819	-0.0345	0.0
280	0.1953	0.0709	0.2936	-0.0820	-0.0345	0.03
285	0.2082	-0.0000	0.3279	-0.0819	-0.0345	0.03

Restraint Summary Extended Report

RESTRAI	NT SUMMARY	EXTENDED REPORT:	Loads On Restr	aints						
arious	Load Cases									
Node	Load Case	FX	FY	ΕZ	MX	HY	MZ	DX	DY	DZ
		ID.	10.	10.	It.ID.	10.10.	It.1D.	10.	10.	10.
	(0110) M+D1									
	(202) 4482									
10		TYPE=Rigid ANC;								
	3 (HYD)	-30	-32	-6	-85.8	10.1	120.3	0.0000	-0.0000	0.0000
	4 (OPE)	-188	137	-139	-657.4	142.0	1067.4	0.0001	-0.0709	0.0001
	6 (OPE)	-190	143	-139	-685.3	140.3	1110.7	0.0001	-0.0737	0.0001
	25 (SUS)	-28	-46	-5	-93.9	9.9	115.7	0.0000	-0.0000	0.0000
	MAX	-190/L6	143/L6	-139/16	-685.3/16	142.0/14	1110.7/L6	0.0001/L6	-0.0737/L6	0.0001/L4
-										
10	3 (11275)	TIP2=Frog Design	1 VOR)	0	0.0		0.0	0.0003	-0.0000	.0.0001
	3 (HID)	č	-000		0.0	0.0	0.0	0.0002	-0.0000	-0.0001
	f (OPE)	č	-505	č	0.0	0.0	0.0	0.1610	-0.0000	0.0002
	6 (OPL)		-305		0.0	0.0	0.0	0.16/4	-0.0923	0.0003
	25(505)		=0/0		0.0	0.0	0.0	0.0002	-0.0002	-0.0000
	2554		-000/16					0.16/4/10	-0.0923726	0.0003/24
170		TYPE=Rigid +Y;								
	3 (HYD)	52	-497	7	0.0	0.0	0.0	0.0001	-0.0000	0.0000
	4 (OPE)	170	-677	111	0.0	0.0	0.0	0.2249	-0.0000	0.1474
	6 (OPE)	171	-682	112	0.0	0.0	0.0	0.2345	-0.0000	0.1533
	25 (505)	69	-532	9	0.0	0.0	0.0	0.0000	-0.0000	0.0000
	MAX	171/L6	-682/L6	112/L6				0.2345/L6	-0.0000/L6	0.1533/L€
240		TYPEPERALA MICH								
610	3 (HYD)	=22	-72	-1	110.0	-33.4	-44.5	0.0011	0.0000	0.0000
	4 (OPE)	16	-95	26	91.4	24.4	32.5	0.2061	0.0451	0.2404
	6 (OPE)	17	-96	26	92.5	24.8	33.0	0.2154	0.0469	0.2501
	25 (505)	-71	- 65	-4	109.1	-30.5	-41.1	0.0010	0.0000	0.0000
	MAX	-22/L3	-96/L6	26/L6	110.0/L3	-33.4/L3	-44.5/L3	0.2154/L6	0.0469/L6	0.2501/L4
260		TYPE-Rigid ANC;								
	3 (HYD)	-30	-32	-6	-74.7	10.1	60.2	-0.0000	-0.0000	-0.0000
	4 (OPE)	-188	137	-139	-380.4	142.0	690.4	-0.0000	0.0000	-0.0000
	6 (OPE)	-190	143	-139	-406.5	140.3	730.3	-0.0000	0.0000	-0.0000
	25 (SUS)	-28	-16	-5	-83.2	9.9	59.8	-0.0000	-0.0000	-0.0000
	MAX	-190/L6	143/L6	-139/L6	-406.5/16	142.0/14	730.3/L6	-0.0000/L6	0.0000/L6	-0.0000/L6
285		TYPE-Rigid +Y:								
	3 (HYD)	-22	-72	-0	0.0	0.0	0.0	-0.0025	-0.0000	-0.0000
	1 (OPE)	15	-95	24	0.0	0.0	0.0	0.2082	-0.0000	0.3279
	6 (OPE)	16	-96	24	0.0	0.0	0.0	0.2182	-0.0000	0.3411
	25 (SUS)	-20	-68	-0	0.0	0.0	0.0	-0.0031	-0.0000	-0.0000
	(000)									

Second Case study with change routing (Fig.6)

Fig.10: Second Case Design Output – Isometric-2

Fig.11: Second Case CAESAR II Modelling details.

Optimize	d Stress	Summary	Result

STRESS SUMMARY (LEGACY) Various Load Cases	REPORT: Highest St	tresses Mini Statement	
CODE STRESS CHECK PASSED	: LOADCASE	C 3 (HYD) WW+HP+H	
Highest Stresses: (1b./sc	q.in.) LOADCASE	3 (HYD) WW+HP+H	
Ratio (%):	6.7	@Node 390	
Code Stress:	2353.9	Allowable Stress:	35000.0
Axial Stress:	963.4	@Node 1150	
Bending Stress:	1938.4	@Node 390	
Torsion Stress:	291.7	@Node 1220	
Hoop Stress:	1858.9	@Node 50	
Max Stress Intensity:	2846.5	GNODE 390	
CODE STRESS CHECK PASSEI	: LOADCAS	E 25 (SUS) W+P1+H	
Highest Stresses: (1b./so	.in.) LOADCASE	25 (SUS) W+P1+H	
Ratio (%):	29.8	@Node 1210	
Code Stress:	5796.8	Allowable Stress:	19450.0
Axial Stress:	1713.8	@Node 1220	
Bending Stress:	3432.9	@Node 1210	
Torsion Stress:	1333.7	@Node 1220	
Hoop Stress:	3481.1	@Node 1220	
Max Stress Intensity:	5893.8	@Node 1210	
CODE STRESS CHECK PASSED	: LOADCAS	E 36 (OCC) L36=L25+L27	
Highest Stresses: (1b./sq	.in.) LOADCASE	36 (OCC) L36=L25+L27	
Ratio (%):	34.2	@Node 1210	
Code Stress:	8834.5	Allowable Stress:	25868.5
Axial Stress:	1755.4	@Node 1220	
Bending Stress:	6428.6	@Node 1210	
Torsion Stress:	1310.3	@Node 1220	
Hoop Stress:	3481.1	@Node 1220	
Max Stress Intensity:	8931.5	@Node 1210	
CODE STRESS CHECK PASSED) : LOADCAS	E 49 (EXP) L49=L4-L8	
Highest Stresses: (1b./so	(.in.) LOADCASE	49 (EXP) L49=L4-L8	
Ratio (%):	18.0	@Node 1220	
Code Stress:	5381.2	Allowable Stress:	29918.8
Axial Stress:	93.0	@Node 1220	
Bending Stress:	5189.4	@Node 1220	
Torsion Stress:	727.0	@Node 50	
Hoop Stress:	0.0	@Node 30	
Max Stress Intensity:	14967.2	@Node 1220	

Optimized Displacement Analysis Result

Piping Flexibility analysis according to the basic assumptions and requirements of B31.3, displacement stress and sustained stress are the two types of stress that piping flexibility analysis considers. Both stresses must be considered separately because displacement stress is related to fixed displacement and sustained stress is related to sustained force.

0/102 / (0/ 2) ////						
Node	DX in.	DY in.	DZ in.	RX deg.	RY deg.	RZ deg.
10	-0.0007	-0.1191	-0.0001	0.0003	0.0053	-0.0038
30	-0.0009	-0.1313	-0.0001	0.0003	0.0054	-0.0039
50	-0.0023	-0.1699	-0.0001	-0.0020	0.0164	-0.0040
70	0.0000	-0.1696	0.0265	-0.0016	0.0153	-0.0040
90	0.0016	-0.1695	0.0442	-0.0015	0.0153	-0.0040
110	0.0027	-0.1693	0.0564	-0.0015	0.0153	-0.0040
130	0.0032	-0.1693	0.0623	-0.0015	0.0153	-0.0040
150	-0.0055	-0.1704	-0.0267	-0.0048	0.0241	-0.0017
170	-0.0496	-0.1819	-0.1952	-0.0178	0.0603	0.0133
190	-0.0539	-0.1832	-0.2073	-0.0178	0.0603	0.0133
210	-0.0583	-0.1845	-0.2195	-0.0178	0.0604	0.0134
229	-0.0583	-0.1871	-0.2491	-0.0285	0.0787	0.0133
230	-0.0383	-0.1868	-0.2722	-0.0328	0.0904	0.0161
250	0.0679	-0.1761	-0.3294	-0.0484	0.0876	0.0150
268	0.1152	-0.1724	-0.3532	-0.0553	0.0810	0.0122
269	0.1437	-0.1674	-0.3522	-0.0604	0.0421	0.0099
270	0.1570	-0.1565	-0.3289	-0.0783	0.0005	0.0132
290	0.1570	-0.1564	-0.3285	-0.0784	0.0005	0.0131
310	0.1434	-0.0660	-0.1551	-0.0959	-0.0227	0.0032
330	0.1417	-0.0591	-0.1430	-0.0959	-0.0227	0.0032
350	0.1408	-0.0553	-0.1363	-0.0959	-0.0227	0.0032
370	0.1392	-0.0484	-0.1241	-0.0959	-0.0227	0.0032
390	0.1372	-0.0400	-0.1094	-0.0960	-0.0233	0.0023
410	0.1195	0.0260	0.0175	-0.0679	-0.0211	0.0009
430	0.1119	0.0477	0.0873	-0.0384	-0.0146	0.0001
450	0.1267	0.0477	0.0885	-0.0384	-0.0146	-0.0000
470	0.1389	0.0477	0.0896	-0.0384	-0.0146	-0.0000
490	0.1448	0.0477	0.0901	-0.0384	-0.0146	-0.0000
510	0.1103	0.0519	0.1079	-0.0301	-0.0119	0.0000
530	0.1092	0.0575	0.1252	-0.0182	-0.0076	0.0002
550	0.1087	0.0586	0.1359	-0.0179	-0.0075	0.0002

DISPLACEMENTS REPORT: Nodal Movements CASE 4 (OPE) W+T1+P1+H

Optimized Restraint Summary Extended Report

The Restraint products allow for the quick and secure restraint of fittings at bends, dead ends, tees, valves, and reducers without the use of tie rods or concrete thrust blocks. The pipeline becomes its own thrust block thanks to these joint restraint products. Understanding how to apply pipeline restraint correctly is essential for using these new goods. Identifying the force to be restrained the resultant thrust force is the first step in designing any pipeline restraint. It is necessary to isolate the pipe segment holding the fitting restraint to define this force at a specific fitting.

Nozzle Load Summary

		Nozzle Load						Doc. No.:		Rev.:	
		Summary					Page 1 of 1		1	0	
Customer	GAF				Date:		Ву:				
				2/7/2023 KS			S				
Project	GAF PROJE	CT XLR8						Job No.:		Checked	Approved
								31800	3-00011	TL	CR
Equipment Tag	Nozzle				Pressure Stress File Node			Nozzle Loads Approved by Stress Engineer			
Number	Tag	NPS	Line N	umber	Class	Number	Number				
XLR-122-MXR-	N1/N2	6"	122-FCS	-002/003	150	XLR-DC-027-	1220/1280	() Nozz	le Loads Submitt	ed to Mechanical	Dept.
052						PE-003		¢			
			1	Eara	and (lb)			Mama	te (ft lb)		1
Load Case			Fx	FV	Fz	Fr	Mx	My	Mz	Mr	Notes
	SUS		1214	1619	1619	2592	2071	1593	1100	2835	
	0.055		1214	1610	1610	2602	4600	2200	1100	6767	
	OFC		1214	1013	1018	2002	4000	3300	1100	5/0/	
	occ		1214	1619	1619	2592	5650	2700	1100	6358	
						0				0	
						-				-	
						0				0	
Allowable Loads	5		1214	1619	1619	2592	2071	1593	2390	3541	
Notes:					Equipmen	t Orientation			lozzle Orien	tation	
1 Nozzle loads are	applied at:	C Flange Face	🕼 Nozzle /	Shell Junction			N	1/	~		
2. This Nozzle load SI	2. This Nozzle load Sheet is applicable for Pressure Vessels and Static Equipment.					Axis	C +X	* .2	0 + Y		^'
3. All loads are bird	irectional						- I	1			<d< td=""></d<>
4 The Operating S	iutained I oa	de do not include		all oads	🐨 Y - Axis						Τ.
 Ine upersong, outrained, Loads conto include any Uccasional Loads Occasional loads are mentioned as OPE+DCC 					€ z.	Axis	$^{\circ}$	° ~	° ॅ्	z	⊁&_×
										North Axis	.×.

Notes and Assumptions

1. Location of new supports have been used as provided in the stress isometrics.

2. Hydro test pressure has been taken as 1.5 times of highest design pressure for whole system.

3. Line size 6" as discussed

4. Weight of the Homogenizer assembly assumed as 850 lbs.

5. Allowable nozzle load data is considered from nozzle load std.

6. Surge Tank 122-TNK-050 and Homogenizer 122-MXR-052) are modeled from reference data.

7. 122-TNK-050 assumptions:

286 | International Journal of Current Engineering and Technology, Vol.13, No.3 (May/June 2023)

a) Diameter assumed (from ref) = 10'-0"

b) Tank Thickness assumed = 1"

c) Caesar Material used for Tank = A53 Grade B

This is based on the nearest material available in Caesar database as per the provided

Snapshots to A283 Grade C (from ref) which is not available in Caesar database

d) Corrosion allowance assumed (from ref) = 3/16''

d) Elevation of nozzle from Tank base assumed = 1'-9 1/8"

e) Material of construction of Tank Nozzle = A53 Gr B (same as pipe)

d) Diameter of Nozzle = 12" (same as pipe)

e) Thickness of Nozzle = 0.375'' (same as pipe)

f) Length of the Nozzle from the shell connection (assumed) = 10 5/16"

g) Corrosion allowance of Nozzle = 0.06" (same as pipe)

8. 122-MXR-052 Homogenizer assumptions:

North-South and East-West dimension of Homogenizer assumed= 24" (equivalent cylindrical model assumed) Thickness of shell assumed = 1"

Corrosion allowance of shell assumed = 0.1875"

Height of the Nozzle from the base of the Homogenizer (assumed) = $1'-8 \frac{3}{4}$ "

Diameter of Nozzle assumed = 6"

Thickness of Nozzle assumed = 0.28"

Corrosion allowance of Nozzle = 0.1875" (same as pipe)

Length of nozzle assumed (from Navis) = 9"

5. Results

1. All stresses are within ASME B 31.3 allowable.

2. All flanges are qualified as per NC-3658.3.

3. Piping exerted loads at nozzle junction are less than allowable nozzle loads as per Worley nozzle load std. for filled coating surge tank (122-TNK-050)

4. Piping exerted loads on homogenizer (122-MXR-052) nozzle is more than allowable nozzle loads. Same is mentioned in attached nozzle transmittal sheet.

Conclusion

The stress analysis and flexibility analysis of the pipe system in the chemical plant are described in the analytical results of this piping arrangement, which are found to be good and economically valuable. The CAESAR II Software was used to analyze and design this piping configuration. Consequently, our project's goal was achieved. The analytical study of piping systems is done using the process piping code ASME B 31.3 and 3D software tool CAESAR II is used for piping system modeling and stress analysis purpose. The analytical and software output is observed. The flexibility analysis requirement for the piping system is checked analytically using the design code ASME B 31.3 and the system is stress analyzed using CAESAR II software.

The Final results are analyzed and found that as follow:

1. Piping system case study 2 is safer than the Piping system case study 1.

2. Piping system case study 2 is more flexible than the piping system case study 1.

References

[1] CAESAR II Design Manuals, ASME Standards

[2] Mohinder L. Nayyar, Piping Handbook, 7th Edition, McGraw-Hill, Inc. Singapore [2000]

[3] "ASME B 31.3" [2008] Edition- American Society of Mechanical Engineers Process piping code

[4] P.M. Gedkar and Dr. D. V. Bhope, "Finite Element Analysis of Pipe T-Joint", International Journal of Engineering, Science and Technology (IJEST), Vol-4, [2012]

[5] Payal Sharma, Mohit Tiwariand Kamal Sharma, Design and Analysis of a Process Plant Piping System, International Journal of Current Engineering and Technology ISSN 2277 – 4106, Special Issue-3, [April 2014]

[6] G.M. Pradeep, K. Arun Kumar, I. JayaSharathi, Stress Analysis of Process Piping using CAESAR II, International Journal of Research in Mechanical Engineering, ISSN: 2349-3860, Volume 3, [2016]

[7] Nikhil S. Chipade, Prof. Amol. N. Patil, Design & Analysis of Piping System for Optimization of Pipe Wall Thickness, International Journal of Engineering Research & Technology (IJERT), Vol. 5 Issue 06, [June2016]

[8] Gaurav Bhende, Girish Tembhare on "Stress Intensification & Flexibility in Pipe Stress Analysis," International Journal of Modern Engineering Research (IJMER) Vol.3, Issue.3, May-June. 2013 pp-1324-1329

[9] A. sivanagaraju, S. Krugon, Dr. M.Venkateswararao, on "Stress Analysis of Process Pipeline Systems (ASME B 31.3) In a Plant Using Caesar-II," 2015 IJEDR Volume 3, Issue 3 ISSN: 2321-9939

[10] "Piping Engineering," by IIT Bombay December 8 -21, 2004

[11] "ASME Section II, Div. 1" 2007 Edition

[12] Payal Sharma, Mohit Tiwari and Kamal Sharma on "Design and Analysis of a Process Plant Piping System," International Journal of Current Engineering and Technology. Special Issue-3, ISSN 2277 – 4106