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Abstract  
  
An improved query optimization process for big data using a combination of the ACO-GA algorithm and HDFS map-
reduce. The methodology consists of two phases: BD arrangement and query optimization. In the first phase, the 
input data is pre-processed by finding the hash value using the SHA-512 algorithm and removing repeated data using 
HDFS map-reduce. Then, features such as closed frequent pattern, support, and confidence are extracted and 
managed using entropy calculation. Based on this calculation, related information is grouped using the Normalized 
K-Means algorithm. In the second phase, the BD queries are collected, and the same features are extracted. The 
optimized query is then found using the ACO-GA algorithm, and the similarity assessment process is performed 
[1].The paper claims that the proposed algorithm out performs other existing algorithms. However, without more 
details about the experimental setup and the specific metrics used to evaluate the performance of the algorithm, it is 
difficult to assess the validity of this claim. Additionally, it is unclear how the proposed algorithm compares to other 
state-of-the-art query optimization techniques. Further research and comparative analysis are needed to fully 
evaluate the effectiveness of this approach [4][5]. 
 
Keywords: Hadoop Distributed File System (HDFS), Normalized K-Means (NKM) algorithm, Ant Colony 
Optimization-Genetic Algorithm (ACO-GA), Secure Hash Algorithm (SHA-512) · 
 
 
Introduction 
 
The importance of analysing large amounts of data in 

both commercial and academic organizations. Internet 

companies, for example, collect massive amounts of 

data through various sources such as service logs, web 

crawlers, and click-streams. As the amount of data 

collected exceeds the storage space and processing 

power of traditional storage systems, it is referred to as 

Big Data [7]. The need for software platforms that can 

handle dynamic multi-objective Big Data optimization 

problems. A Big Data processing platform is defined as 

a computing platform designed for processing Big Data. 

The current research in databases and industrial 

practices is focused more on performance rather than 

energy efficiency. However, the passage notes that 

traditional relational database management systems 

(RDBMS) or standard statistical tools are not capable 

of handling Big Data [6]. 

The challenges of analysing large amounts of data, 
which may require processing tens or hundreds of 
terabytes of data.  

 

*Corresponding author’s ORCID ID: 0000-0000-0000-0000 
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Many companies rely on highly distributed software 
systems functioning on big clusters of commodity 
machines to handle such large-scale data processing. 
Query optimization is an essential component of 
analysing large data sets, as it can help minimize the 
number of queries required to process the data. The 
passage notes that there is a lot of scope for 
development in the area of query optimization, given 
the increasing importance of data in various fields such 
as user base creation, research, and market analysis. In 
many relational database management systems, 
multiple query plans for fulfilling queries are analysed, 
and a good query plan is identified to reduce the use of 
certain resources such as I/O. This optimization helps 
to select the best query access plan to process data 
more efficiently. 

The common methods for conducting big data 
analytics, which typically involve writing and executing 
queries in SQL-like languages supported by systems 
such as Hadoop, Scope, and Spark. 

Hadoop is an open-source framework that enables 
large-scale data-intensive computing applications. It 
implements algorithms based on Google's extensive 
research and experience in massive data processing. 
The framework is designed to make large-scale batch 
processing easier to use and includes the Map-Reduce 
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(MR) paradigm, which allows distributed processing of 
large datasets across clusters of computers. The 
Hadoop Distributed File System (HDFS) is also used as 
a storage system for large data sets. 

MR was first introduced by Google in 2004 and has 
since become a popular framework for processing 
large datasets. The existing open-source project, 
Hadoop, is based on the MR paradigm and enables 
parallel processing of vast amounts of data, automatic 
partitioning of data, data distribution, fault tolerance, 
and load balancing management, resulting in reliable 
and scalable computing. The MR paradigm is based on 
the idea of dividing large datasets into smaller, more 
manageable pieces and processing them in parallel 
across a distributed network of hundreds or thousands 
of commodity machines. This approach enables high 
scalability and availability, as well as fault tolerance, 
since the system can continue to function even if some 
machines fail[5]. 

Apache Spark is the utmost extensively utilized 
open-source processing engines intended for BD, with 
rich language-integrated APIs in addition to an 
extensive gamut of libraries [19]. The core Spark API is 
centred on collections of Java/Python objects, wherein 
users run random functions written in these languages 
via operators such as map or groupBy. The draft 
structure for this paper is systematized as Sect. 2 
surveys the associated works regarding the method 
proposed. In Sects. 3, a concise discussion about the 
proposed methodology is preferred, Sect. 4, explore the 
Investigational outcome and also Sect. 5 deduces the 
paper. 
 
Related Work 
 
Sahal et al. [20] proposed an index-cantered system for 
reutilizing data called Indexing HiveQL Optimization 
for JOIN queries over a multi-session BD environment 
called iHOME. This methodology was divided into three 
groups: compute-on-iHOME, Filter-of-iHOME, and 
Similar-to-iHOME. The experimental results showed 
that the total execution time of eight JOIN queries using 
iHOME on Hive was reduced. However, further 
improvements were needed for this methodology. 

Mukul and Praveen [21] propounded a heuristic-
centric algorithm as a key for the issue of MJQO (i.e. 
Multi Join Query Ordering). This algorithm integrated 
‘2’ fundamental search algorithms, tabu search and 
cuckoo. The simulation evinced some exciting 
outcomes in respect of the propounded algorithm and 
deduced that the propounded algorithm could resolve 
the MJQO problem in lesser time than the existent 
methods. Binglei et al. [22] presented a framework for 
designing as well as constructing green databases. 
Firstly, a method of modelling the energy cost of query 
plans during query processing cantered on their 
resource consumption patterns was submitted. Then, 
the plan evaluation principles were studied. Using the 
cost model as a basis, the evaluation model utilized the 
trade-ofs betwixt power and performance of plans. 

Experimental outcomes revealed that, with accurate 
and reliable statistical data, this framework could 
achieve considerable energy savings and improve 
energy efficiency[8].  

Jiajia et al. [23] recommended a framework for 
PGNN queries (PGNN-Probabilistic Group Nearest 
Neighbor) cantered on granularity classification 
utilizing ELM in order that the general cost was 
minimized. The depth classification was intended for 
the PGNN query, where the options of candidate 
objects were selected automatically cantered on 
different queries[12]. Then some useful features were 
picked for the PGNN query. Next, a DCA (depth 
classification algorithm) utilizing the Extreme Learning 
Machine (ELM) was presented, wherein a plurality 
voting approach was utilized. The outcomes confirmed 
that the depth set by the ELM classifier decreases the 
overall price than the default values. 

Bin Zhang et  al. [24] presented optimization 
strategies to recur queries in BD analysis. This 
approach used the MR consistent window slice 
algorithm for the re-utilization of recurring queries. 
And, it reduced the redundant data whilst loading 
input data with the fne-grain scheduling. Next, 
concerning data scheduling, it designed the MR late 
scheduling strategy that improved the data processing 
and it optimized the computation resource scheduling 
in the MR cluster. The experiment’s outcomes on an 
assortment of workloads showed that the algorithms 
outperformed the top-notch approaches. 

Jafarinejad and Amini [2] offered an approach for 
the MJQO problem in the BACO database as an 
extension to the MAX–MIN Ant System algorithm. 
Experimental evaluations of this technique indicated 
that preventing the pointless operations and even 
producing useful meta-data as feedback information to 
other agents (ants) made the BACO method to find 
better solutions, approximately 91.5–122.4% faster 
than previously successful methods. 

Sahal et al. proposed a Multi-Query Optimization 
system called MOTH that utilizes metadata and 
histograms for slow storage considerations. MOTH 
investigated opportunities for coarse-grained 
reutilization based on non-equivalent tuple sizes and 
non-uniform data distribution. MOTH created three 
multi-query plans for fully reused-centric 
opportunities and two multi-query plans for partially 
reused-based opportunities[12]. The experimental 
results showed that the three fully reused-centric plans 
outperformed the Naive Technique plan on average by 
40%, 45%, and 50%, respectively. The two partially 
reused-based plans outperformed the Naive Technique 
plan on average by 22% and 27%, respectively, on MR. 

 
Proposed query optimization methodology 
 
Organizations maintain different databases to store 
and also to process BD which is huge in volume and has 
different data models. Querying along with analyzing 
BD for insight is critical for business. This paper 
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enhanced the query optimization process in BD using 
the ACO-GA algorithm as well as the HDFS map-reduce 
technique. The proposed work comprises two phases 
namely,  
 
• BD arrangement  
• Query optimization 
 
The block diagram of the proposed methodology is 
displayed in below Fig. 1, 
 

 
 

Fig: Block diagram of proposed Methodology 
 

Big Data Arrangement 
 
Arranging big data requires a systematic and efficient 
approach to organize and store large volumes of data. 
Here are some common techniques for arranging big 
data: 

Distributed storage: One common approach is to 
use a distributed file system such as Hadoop 
Distributed File System (HDFS) or Apache Cassandra. 
These systems allow data to be distributed across 
multiple nodes, making it easier to store and access 
large volumes of data. 

Data partitioning: Another technique is to partition 
data into smaller subsets. For example, data can be 
partitioned based on time, location, or some other 
attribute. This makes it easier to process and analyze 
the data. 

Compression: Large data sets can take up a lot of 
storage space. Compression techniques such as gzip or 
bzip2 can be used to reduce the amount of storage 
needed. 

Data indexing: Indexing can help speed up searches 
and queries on large data sets. Indexes can be created 
on specific attributes, making it easier to search for 
specific data. 

Data normalization: Normalizing data involves 
organizing it into a consistent format. This can make it 
easier to compare and analyze data across different 
data sets. 

Data archiving: Finally, data that is no longer 
needed for analysis can be archived. This frees up 
storage space and makes it easier to manage the data 
that is still being used. 

Initially, the input data are amassed from the 
“Hospital Compare Datasets”. The hospital compare 
dataset contains information associated with heart 
attack, pneumonia, surgery, heart failure, in addition to 
other conditions. The gathered data are written as,  
 
Ds = {D1, D2, D3,……………,Dn} 
 
where Ds denotes the data set Dn represented the n-
number of data. 
 
Preprocessing 
 
This phase executed the pre-processing of the input 
data. Initially, it fnds the HV for all the data utilizing the 
Secure Hash Algorithm (SHA-512). Then, centered on 
the HV, the MR process is executed utilizing HDFS. The 
SHA-512 and HDFS process is explained in the below 
subsections. 3.1.2.1 Finding the hash value of big data 
using the SHA-512 algorithm The input data is set at 
128-bit length feld. The augmented data is separated 
into blocks. Then, a 64 bit word is derived as of the 
current data block using ‘8’-constants centered on the 
square-root of the 1st ‘8’ prime numbers. In the 
succeeding stage, a 512-bit bufer is updated. SHA-512 
operation is signifed in Fig. 2, The generated HV of each 
data block is expressed as follows, 
 
fH(Dn) = { H ( D1 ) , H ( D2 ) , H ( D3 ) , …, H ( Dn )} 

 
where fH(Dn) represents fnd the HV of n-number of 
data, and H ( Dn ) denotes the HV of n-number of data. 
 
HDFS 
 
HDFS is a distributed file system that is used to store 

and manage large data sets in a reliable and scalable 

way. It is designed to work with the Hadoop 

MapReduce (MR) programming model, which is a 

popular way of processing large data sets.One of the 

key features of HDFS is its ability to quickly transfer 

data between nodes. This allows for efficient 

processing of large data sets across a cluster of 

computers. Additionally, HDFS automatically 

distributes data across the cluster, making it easier to 

manage and access data.Another important function of 

HDFS is its ability to remove duplicate data from the 

collection. This helps to reduce the amount of storage 

space needed and improves data processing 

efficiency.HDFS retrieves data based on the file name 

and does not change the file once it has been written. 
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This ensures the integrity and consistency of the data 

stored in HDFS. 

Thus, if any changes are required to be made, then 
the entire fle must be rewritten. The HDFS has ‘2’ 
phases for solving the query, for instance, map function 
as well as reduced function, which is expressed as 
follows, 
 
H (Dn ) = [Pf , Cf] 
 
For all hash data value, the mapping function Pf and 
the reducing function Cf is processed. 
 
Map () function The preliminary function that exists in 
the Map/Reduction tool is the Map() function. This 
function prevails on the master node (MN). It segments 
the input information or processes it to numerous 
smaller sub-processes. These sub-processes are further 
scattered to the worker nodes, which operates on these 
tiny processes. Then, an acknowledgment is delivered 
to the MN.  
 
Pf = map(H (4) ( Dn ) ) 
 
where Pf is the map() function’s output, map() signifes 
the function which performs the mapping.  
 
Reduce () function The next function, which is 
important in the Hadoop tool is the reduce () function. 
This function assembles the comprehensive sub 
operation results and then combined it for the 
generation of aggregated decisionbased results 
delivered as an acknowledgment of the original big 
demands. The reduce function is denoted as exhibited 
in the subsequent mathematical equation 
 
Cf = (5) reduce(Pf) 
 
where Pf is the mapped function’s output, reduce() is 
the function that reduces the components and Cf is the 
reduced set of data. 
 

Feature extraction 
 
After the removal of repeated data, important features 
such as closed frequent itemset, support, and 
confidence are extracted from the original data. At last, 
the support and confidence value is managed cantered 
on the entropy calculation. The feature extraction steps 
are briefly explained in the below section.  
 

Closed Frequent Itemset (o (fi)): This is the highest 
number of occurrences of a particular item in the 
frequent itemset. The closed frequent is expressed as 
follows, 
 

o (fi) = {o (f1), o (f2), o (f3), …, o (fn)}             (6) 
 
Support (σt): This is the percentage of transactions on 
the database that encompasses item sets U and V. The 
support of an association rule U → V is given by, 
 
σt = Support (U → V) = P(U ∪ V)              (7) 

Confidence (Ae): This is the percentage of transactions 
on the database with itemset U that as well 
encompasses the itemset V. The confidence is 
computed utilizing the conditional probability that is 
further conveyed in respects of itemset support. The 
equation for the confidence is given by, 
 
Ae = Confidence (U → V) = P(V∕U) = P (U ∪ V) /P(U)     (8) 
 
Entropy calculation: In this subsection, the support and 
confidence are managed based on entropy calculation. 
This entropy measure is related to the variance of a 
probability distribution. Entropy is assayed for the 
data sets utilizing Eqs. (9)  
 
Entropy(σt)   =- ∑ 𝑃𝜎𝑡 𝑙𝑜𝑔2{𝑃(𝜎𝑡)}𝑛

𝑡=1                              (9) 
 
where P(σt) is the probability of getting the nth 
support and confidence values, when randomly 
selecting one from the set. The entropy contains a 
number of values which are the minimum and 
maximum value. These values are then inputted to the 
normalized K-Means algorithm for the BD arrangement 

Big data arrangement using normalized K-Means 
(NKM) algorithm This section performed a BD 
arrangement using a normalized K-Means algorithm. 
Here, it initially takes the entropy value of the support 
and confidence features that consists of minimum and 
maximum values. So, perform normalization first, it can 
help get the useful and right information about the 
entropy value of the support and confidence features.  
 
The normalization is expressed as: 
 

𝑁 ∝=
D−Dmin

𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛
                 (10) 

 
where N∝ denotes the normalized value Dmax and 
Dmin represents the maximum and minimum value of 
the number of data D. Then, generate the number of 
clusters and initial centroids using K-Means. K-Means 
clustering technique is used for grouping N values into 
c number of clusters. The algorithm is utilized to 
resolve the clustering issue for finding the optimum 
value of the objective function. This algorithm finds the 
Euclidean distance betwixt the normalized value and 
the center of the cluster. The smaller value of the 
objective function means better clustering results. 
 
Result and discussion  
 
This section analyzed the performance shown by the 
proposed query optimization approach utilizing the 
NKM methodology. The system performance is 
analyzed and contrasted to the existing techniques 
centered on the data size. Here, the data sizes range 
from 10 to 50 MB is considered. This proposed query 
optimization methodology is employed in the working 
platform of JAVA. 

Performance analysis Here, the performances 
shown by the proposed Normalized K Means (NKM) 
algorithm and the existing Fuzzy C Means (FCM) along 
with K-Means algorithm are contrasted in respect of 
statistical metrics: 
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• precision (Pe) 
 • sensitivity (Se) 
 • specificity (Sp)  
• recall (Rc)  
• accuracy (Ac)  
• F-Measure (Fs) 
 • retrieval time (RT) 
 • execution time (ET) 
 • Memory usage 
 
The performance comparison of the proposed NKM 
and the existent methods is evinced in Tables 1, 2, 3 
and 4. Discussion Table 1 contrasted the performances 
proffered by the proposed NKM with the existing K-
Means and FCM centered on sensitivity, accuracy, and 
specificity. The performance varies grounded on the 
data sizes ranging as of 10 to 50 MB. For all the 
considered data sizes, the proposed NKM clustering 
profers the accuracy within the range of 91 to 96. 
When the data size is 50 MB, the proposed NKM 
clustering has 96.25% accuracy. Similarly, when the 
data size is 40 MB, the proposed NKM has 92.46% 
specificity and 93.45% sensitivity. But the existing K-
Means and FCM oFfer 86.34% specificity and 86.37% 
sensitivity which are lower when contrasted to the 

proposed NKM. For all the considered file sizes, the 
proposed NKM showed excellent performance than the 
existing methods. Thus, it is deduced that the proposed 
NKM has high-level performance. Graphically, this 
comparison can well be elucidated using Fig. 4. 

Discussion Table 2 contrasted the performances 
shown by the proposed NKM and the existing FCM and 
K-Means in respect of recall, precision, along with F-
Measure. For 30 MB data size, the proposed NKM has 
92.45% precision, 0.21% recall and 89.72% F-Measure. 
For the same data size, the existing K-Means 
achieves90.67% precision, 87.34% recall and 87.99% 
F-Measure and the existing FCM obtained 87.12% 
precision, 84.89% recall, and 84.44% F-Measure which 
are lower than the proposed NKM clustering method. 
Similarly, the proposed NKM achieves better 
performance for remaining data size such as, 10 MB, 
20 MB, 30 MB, and 50 MB. The F-Measure metric is the 
integration of recall and precision metrics. If the 
system has high F-Measure, then the system is denoted 
as a good system. In this way, as the proposed NKM 
provides better F-Measure than the existent K-Means 
and FCM, it is regarded as a good system. Graphically, 
Table 2 can well be elucidated utilizing Fig. 5. 

 
Table 1 Demonstrate the performance of the proposed NKM with the existing K-Means and FCM in terms of 

accuracy, specificity, and sensitivity  
 

Data size 
in MB 

Proposed NKM Existing K-Means Existing FCM 
AC SP Se AC SP Se AC SP Se 

10 91.23 83.53 81.56  87.23 77.87 78.43 83.12 73.43 72.56 
20 92.45 87.89 85.43  90.23 80.95 79.23 84.69 78.78 74.45 
30 94.67 88.90 88.78  91.89 83.56 83.45 86.25 81.34 80.79 
40 95.56 92.78 93.45  92.88 86.34 86.37 88.67 83.53 84.23 
50 96.78 94.67 96.12  93.23 88.84 91.23 90.34 86.15 89.45 

 
Table 2 Comparison table for proposed NKM with K-Means and FCM based on precision, recall, and F-measure 
 

Data size 
in MB 

Proposed NKM Existing K-Means Existing FCM 
Pe Rc Fs Pe Rc Fs Pe Rc Fs 

10 89.23 87.53 87.56  86.23 82.87 88.43 83.12 73.43 82.56 
20 91.45 88.89 88.43  88.23 85.95 89.23 84.69 78.78 84.45 
30 92.67 90.90 89.78  90.89 87.56 83.45 86.25 81.34 80.79 
40 94.56 92.78 91.45  91.88 89.34 96.37 88.67 83.53 89.23 
50 95.78 93.67 92.12  92.23 92.84 91.23 90.34 86.15 90.45 

 

Table 3 Illustrate the performance of the proposed NKM with the existing K-Means and FCM based on retrieval 
time, execution time 

 

Data size in MB Proposed NKM Existing K-Means Existing FCM 
RT ET RT ET RT ET 

10 265     120 453 132 682 148 
20 784     141 1505 154 2145 179 
30 1495  187 3092 214 4655 247 
40 2442  212 5171 244 6543 287 
50 3699  281 7677 315 8877 349 

 
Table 4 Memory usage analysis 

 

Data size in MB Proposed NKM Existing K-Means Existing FCM 
10 5333,475  5888,654 6344,455 
20 5777,633  6124,456 6755,434 
30 6035,000  6577,343 7132,346 
40 6477,867  6988,556 7344,676 
50 6689,554  7145,667 7544,232 
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Fig. 4 Comparative analysis for the proposed NKM with the K-Means and FCM in terms of (a) accuracy, (b) 
specificity and (c) sensitivity 

 

 
 

Fig. 5 Demonstrate the performance of the proposed NKM with the existing K-Means and FCM in terms of a 
precision, b recall and c F-Measure. 
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Discussion Table 4 contrasted the performances 
proffered by the proposed NKM and the existing FCM 
and K-Means centered on memory usage (in kilobytes). 
For 40 MB data size, the proposed NKM occupies 
6477867 kilobytes memory storage during execution. 
But the existing K-Means and FCM occupy 7145667 
kilobytes and 7544232 kilobytes. Similarly, for the 
other remaining data size, the proposed NKM occupies 
less memory than the existing methods. Thus, it is 
deduced that the proposed NKM acquires high-level 
performance than the existent approaches. Graphically, 
Table 4 can well be elucidated utilizing Fig. 7 
 

 

 
 

Fig. 6 Comparative analysis for the proposed NKM 
with the existing K-Means and FCM based on (a) 

retrieval time and (b) execution time 
 

 
 

Fig. 7 Memory usage analysis graph 
 
Conclusion 
 
Query optimization in BD becomes a propitious 
research direction on account of the popularity of huge 

data analytical systems like the Hadoop system. This 
paper proposed an improved query optimization 
process in BD using the ACO-GA algorithm and HDFS 
map reduce technique. The proposed work contains 
two phases namely, the BD arrangement phase and 
query optimization phase. The proposed system’s 
performance was analyzed using data size. The file size 
ranges from 10 to 50 MB. The performance analysis 
showed that the proposed system has 96.25% accuracy 
for 50 MB data size which is higher on considering the 
other existent methods namely FCM as well as K-
Means. The comparison results corroborated that the 
proposed work provides higher accuracy and takes less 
time for retrieving the query. Also, the proposed 
system occupies less memory storage. Hence, this 
proposed system is better when compared with the 
existent system. In the future, the efficiency of this 
system can well be enhanced further by including 
feature selection to reduce the retrieval time and also 
by using advanced optimization algorithms. 
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