
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2023 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

101| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

An improving query optimization process in Hadoop MapReduce using
ACO-Genetic algorithm and HDFS map reduce Technique

Chandra Shekhar Gautam1 and Dr.Prabhat Pandey2

1A.P.S University Rewa, (M.P.) India
2OSD A.P.S University Rewa (M.P), (India)

Received 25 March 2023, Accepted 10 April 2023, Available online 13 April 2023, Vol.13, No.2 (March/April 2023)

Abstract

An improved query optimization process for big data using a combination of the ACO-GA algorithm and HDFS map-
reduce. The methodology consists of two phases: BD arrangement and query optimization. In the first phase, the
input data is pre-processed by finding the hash value using the SHA-512 algorithm and removing repeated data using
HDFS map-reduce. Then, features such as closed frequent pattern, support, and confidence are extracted and
managed using entropy calculation. Based on this calculation, related information is grouped using the Normalized
K-Means algorithm. In the second phase, the BD queries are collected, and the same features are extracted. The
optimized query is then found using the ACO-GA algorithm, and the similarity assessment process is performed
[1].The paper claims that the proposed algorithm out performs other existing algorithms. However, without more
details about the experimental setup and the specific metrics used to evaluate the performance of the algorithm, it is
difficult to assess the validity of this claim. Additionally, it is unclear how the proposed algorithm compares to other
state-of-the-art query optimization techniques. Further research and comparative analysis are needed to fully
evaluate the effectiveness of this approach [4][5].

Keywords: Hadoop Distributed File System (HDFS), Normalized K-Means (NKM) algorithm, Ant Colony
Optimization-Genetic Algorithm (ACO-GA), Secure Hash Algorithm (SHA-512) ·

Introduction

The importance of analysing large amounts of data in

both commercial and academic organizations. Internet

companies, for example, collect massive amounts of

data through various sources such as service logs, web

crawlers, and click-streams. As the amount of data

collected exceeds the storage space and processing

power of traditional storage systems, it is referred to as

Big Data [7]. The need for software platforms that can

handle dynamic multi-objective Big Data optimization

problems. A Big Data processing platform is defined as

a computing platform designed for processing Big Data.

The current research in databases and industrial

practices is focused more on performance rather than

energy efficiency. However, the passage notes that

traditional relational database management systems

(RDBMS) or standard statistical tools are not capable

of handling Big Data [6].

The challenges of analysing large amounts of data,
which may require processing tens or hundreds of
terabytes of data.

*Corresponding author’s ORCID ID: 0000-0000-0000-0000
DOI: https://doi.org/10.14741/ijcet/v.13.2.8

Many companies rely on highly distributed software
systems functioning on big clusters of commodity
machines to handle such large-scale data processing.
Query optimization is an essential component of
analysing large data sets, as it can help minimize the
number of queries required to process the data. The
passage notes that there is a lot of scope for
development in the area of query optimization, given
the increasing importance of data in various fields such
as user base creation, research, and market analysis. In
many relational database management systems,
multiple query plans for fulfilling queries are analysed,
and a good query plan is identified to reduce the use of
certain resources such as I/O. This optimization helps
to select the best query access plan to process data
more efficiently.

The common methods for conducting big data
analytics, which typically involve writing and executing
queries in SQL-like languages supported by systems
such as Hadoop, Scope, and Spark.

Hadoop is an open-source framework that enables
large-scale data-intensive computing applications. It
implements algorithms based on Google's extensive
research and experience in massive data processing.
The framework is designed to make large-scale batch
processing easier to use and includes the Map-Reduce

http://inpressco.com/category/ijcet

Chandra Shekhar Gautam and Prabhat Pandey An improving query optimization process in Hadoop MapReduce…

102| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

(MR) paradigm, which allows distributed processing of
large datasets across clusters of computers. The
Hadoop Distributed File System (HDFS) is also used as
a storage system for large data sets.

MR was first introduced by Google in 2004 and has
since become a popular framework for processing
large datasets. The existing open-source project,
Hadoop, is based on the MR paradigm and enables
parallel processing of vast amounts of data, automatic
partitioning of data, data distribution, fault tolerance,
and load balancing management, resulting in reliable
and scalable computing. The MR paradigm is based on
the idea of dividing large datasets into smaller, more
manageable pieces and processing them in parallel
across a distributed network of hundreds or thousands
of commodity machines. This approach enables high
scalability and availability, as well as fault tolerance,
since the system can continue to function even if some
machines fail[5].

Apache Spark is the utmost extensively utilized
open-source processing engines intended for BD, with
rich language-integrated APIs in addition to an
extensive gamut of libraries [19]. The core Spark API is
centred on collections of Java/Python objects, wherein
users run random functions written in these languages
via operators such as map or groupBy. The draft
structure for this paper is systematized as Sect. 2
surveys the associated works regarding the method
proposed. In Sects. 3, a concise discussion about the
proposed methodology is preferred, Sect. 4, explore the
Investigational outcome and also Sect. 5 deduces the
paper.

Related Work

Sahal et al. [20] proposed an index-cantered system for
reutilizing data called Indexing HiveQL Optimization
for JOIN queries over a multi-session BD environment
called iHOME. This methodology was divided into three
groups: compute-on-iHOME, Filter-of-iHOME, and
Similar-to-iHOME. The experimental results showed
that the total execution time of eight JOIN queries using
iHOME on Hive was reduced. However, further
improvements were needed for this methodology.

Mukul and Praveen [21] propounded a heuristic-
centric algorithm as a key for the issue of MJQO (i.e.
Multi Join Query Ordering). This algorithm integrated
‘2’ fundamental search algorithms, tabu search and
cuckoo. The simulation evinced some exciting
outcomes in respect of the propounded algorithm and
deduced that the propounded algorithm could resolve
the MJQO problem in lesser time than the existent
methods. Binglei et al. [22] presented a framework for
designing as well as constructing green databases.
Firstly, a method of modelling the energy cost of query
plans during query processing cantered on their
resource consumption patterns was submitted. Then,
the plan evaluation principles were studied. Using the
cost model as a basis, the evaluation model utilized the
trade-ofs betwixt power and performance of plans.

Experimental outcomes revealed that, with accurate
and reliable statistical data, this framework could
achieve considerable energy savings and improve
energy efficiency[8].

Jiajia et al. [23] recommended a framework for
PGNN queries (PGNN-Probabilistic Group Nearest
Neighbor) cantered on granularity classification
utilizing ELM in order that the general cost was
minimized. The depth classification was intended for
the PGNN query, where the options of candidate
objects were selected automatically cantered on
different queries[12]. Then some useful features were
picked for the PGNN query. Next, a DCA (depth
classification algorithm) utilizing the Extreme Learning
Machine (ELM) was presented, wherein a plurality
voting approach was utilized. The outcomes confirmed
that the depth set by the ELM classifier decreases the
overall price than the default values.

Bin Zhang et al. [24] presented optimization
strategies to recur queries in BD analysis. This
approach used the MR consistent window slice
algorithm for the re-utilization of recurring queries.
And, it reduced the redundant data whilst loading
input data with the fne-grain scheduling. Next,
concerning data scheduling, it designed the MR late
scheduling strategy that improved the data processing
and it optimized the computation resource scheduling
in the MR cluster. The experiment’s outcomes on an
assortment of workloads showed that the algorithms
outperformed the top-notch approaches.

Jafarinejad and Amini [2] offered an approach for
the MJQO problem in the BACO database as an
extension to the MAX–MIN Ant System algorithm.
Experimental evaluations of this technique indicated
that preventing the pointless operations and even
producing useful meta-data as feedback information to
other agents (ants) made the BACO method to find
better solutions, approximately 91.5–122.4% faster
than previously successful methods.

Sahal et al. proposed a Multi-Query Optimization
system called MOTH that utilizes metadata and
histograms for slow storage considerations. MOTH
investigated opportunities for coarse-grained
reutilization based on non-equivalent tuple sizes and
non-uniform data distribution. MOTH created three
multi-query plans for fully reused-centric
opportunities and two multi-query plans for partially
reused-based opportunities[12]. The experimental
results showed that the three fully reused-centric plans
outperformed the Naive Technique plan on average by
40%, 45%, and 50%, respectively. The two partially
reused-based plans outperformed the Naive Technique
plan on average by 22% and 27%, respectively, on MR.

Proposed query optimization methodology

Organizations maintain different databases to store
and also to process BD which is huge in volume and has
different data models. Querying along with analyzing
BD for insight is critical for business. This paper

Chandra Shekhar Gautam and Prabhat Pandey An improving query optimization process in Hadoop MapReduce…

103| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

enhanced the query optimization process in BD using
the ACO-GA algorithm as well as the HDFS map-reduce
technique. The proposed work comprises two phases
namely,

• BD arrangement
• Query optimization

The block diagram of the proposed methodology is
displayed in below Fig. 1,

Fig: Block diagram of proposed Methodology

Big Data Arrangement

Arranging big data requires a systematic and efficient
approach to organize and store large volumes of data.
Here are some common techniques for arranging big
data:

Distributed storage: One common approach is to
use a distributed file system such as Hadoop
Distributed File System (HDFS) or Apache Cassandra.
These systems allow data to be distributed across
multiple nodes, making it easier to store and access
large volumes of data.

Data partitioning: Another technique is to partition
data into smaller subsets. For example, data can be
partitioned based on time, location, or some other
attribute. This makes it easier to process and analyze
the data.

Compression: Large data sets can take up a lot of
storage space. Compression techniques such as gzip or
bzip2 can be used to reduce the amount of storage
needed.

Data indexing: Indexing can help speed up searches
and queries on large data sets. Indexes can be created
on specific attributes, making it easier to search for
specific data.

Data normalization: Normalizing data involves
organizing it into a consistent format. This can make it
easier to compare and analyze data across different
data sets.

Data archiving: Finally, data that is no longer
needed for analysis can be archived. This frees up
storage space and makes it easier to manage the data
that is still being used.

Initially, the input data are amassed from the
“Hospital Compare Datasets”. The hospital compare
dataset contains information associated with heart
attack, pneumonia, surgery, heart failure, in addition to
other conditions. The gathered data are written as,

Ds = {D1, D2, D3,……………,Dn}

where Ds denotes the data set Dn represented the n-
number of data.

Preprocessing

This phase executed the pre-processing of the input
data. Initially, it fnds the HV for all the data utilizing the
Secure Hash Algorithm (SHA-512). Then, centered on
the HV, the MR process is executed utilizing HDFS. The
SHA-512 and HDFS process is explained in the below
subsections. 3.1.2.1 Finding the hash value of big data
using the SHA-512 algorithm The input data is set at
128-bit length feld. The augmented data is separated
into blocks. Then, a 64 bit word is derived as of the
current data block using ‘8’-constants centered on the
square-root of the 1st ‘8’ prime numbers. In the
succeeding stage, a 512-bit bufer is updated. SHA-512
operation is signifed in Fig. 2, The generated HV of each
data block is expressed as follows,

fH(Dn) = { H (D1) , H (D2) , H (D3) , …, H (Dn)}

where fH(Dn) represents fnd the HV of n-number of
data, and H (Dn) denotes the HV of n-number of data.

HDFS

HDFS is a distributed file system that is used to store

and manage large data sets in a reliable and scalable

way. It is designed to work with the Hadoop

MapReduce (MR) programming model, which is a

popular way of processing large data sets.One of the

key features of HDFS is its ability to quickly transfer

data between nodes. This allows for efficient

processing of large data sets across a cluster of

computers. Additionally, HDFS automatically

distributes data across the cluster, making it easier to

manage and access data.Another important function of

HDFS is its ability to remove duplicate data from the

collection. This helps to reduce the amount of storage

space needed and improves data processing

efficiency.HDFS retrieves data based on the file name

and does not change the file once it has been written.

Chandra Shekhar Gautam and Prabhat Pandey An improving query optimization process in Hadoop MapReduce…

104| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

This ensures the integrity and consistency of the data

stored in HDFS.

Thus, if any changes are required to be made, then
the entire fle must be rewritten. The HDFS has ‘2’
phases for solving the query, for instance, map function
as well as reduced function, which is expressed as
follows,

H (Dn) = [Pf , Cf]

For all hash data value, the mapping function Pf and
the reducing function Cf is processed.

Map () function The preliminary function that exists in
the Map/Reduction tool is the Map() function. This
function prevails on the master node (MN). It segments
the input information or processes it to numerous
smaller sub-processes. These sub-processes are further
scattered to the worker nodes, which operates on these
tiny processes. Then, an acknowledgment is delivered
to the MN.

Pf = map(H (4) (Dn))

where Pf is the map() function’s output, map() signifes
the function which performs the mapping.

Reduce () function The next function, which is
important in the Hadoop tool is the reduce () function.
This function assembles the comprehensive sub
operation results and then combined it for the
generation of aggregated decisionbased results
delivered as an acknowledgment of the original big
demands. The reduce function is denoted as exhibited
in the subsequent mathematical equation

Cf = (5) reduce(Pf)

where Pf is the mapped function’s output, reduce() is
the function that reduces the components and Cf is the
reduced set of data.

Feature extraction

After the removal of repeated data, important features
such as closed frequent itemset, support, and
confidence are extracted from the original data. At last,
the support and confidence value is managed cantered
on the entropy calculation. The feature extraction steps
are briefly explained in the below section.

Closed Frequent Itemset (o (fi)): This is the highest
number of occurrences of a particular item in the
frequent itemset. The closed frequent is expressed as
follows,

o (fi) = {o (f1), o (f2), o (f3), …, o (fn)} (6)

Support (σt): This is the percentage of transactions on
the database that encompasses item sets U and V. The
support of an association rule U → V is given by,

σt = Support (U → V) = P(U ∪ V) (7)

Confidence (Ae): This is the percentage of transactions
on the database with itemset U that as well
encompasses the itemset V. The confidence is
computed utilizing the conditional probability that is
further conveyed in respects of itemset support. The
equation for the confidence is given by,

Ae = Confidence (U → V) = P(V∕U) = P (U ∪ V) /P(U) (8)

Entropy calculation: In this subsection, the support and
confidence are managed based on entropy calculation.
This entropy measure is related to the variance of a
probability distribution. Entropy is assayed for the
data sets utilizing Eqs. (9)

Entropy(σt) =- ∑ 𝑃𝜎𝑡 𝑙𝑜𝑔2{𝑃(𝜎𝑡)}𝑛

𝑡=1 (9)

where P(σt) is the probability of getting the nth
support and confidence values, when randomly
selecting one from the set. The entropy contains a
number of values which are the minimum and
maximum value. These values are then inputted to the
normalized K-Means algorithm for the BD arrangement

Big data arrangement using normalized K-Means
(NKM) algorithm This section performed a BD
arrangement using a normalized K-Means algorithm.
Here, it initially takes the entropy value of the support
and confidence features that consists of minimum and
maximum values. So, perform normalization first, it can
help get the useful and right information about the
entropy value of the support and confidence features.

The normalization is expressed as:

𝑁 ∝=
D−Dmin

𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛
 (10)

where N∝ denotes the normalized value Dmax and
Dmin represents the maximum and minimum value of
the number of data D. Then, generate the number of
clusters and initial centroids using K-Means. K-Means
clustering technique is used for grouping N values into
c number of clusters. The algorithm is utilized to
resolve the clustering issue for finding the optimum
value of the objective function. This algorithm finds the
Euclidean distance betwixt the normalized value and
the center of the cluster. The smaller value of the
objective function means better clustering results.

Result and discussion

This section analyzed the performance shown by the
proposed query optimization approach utilizing the
NKM methodology. The system performance is
analyzed and contrasted to the existing techniques
centered on the data size. Here, the data sizes range
from 10 to 50 MB is considered. This proposed query
optimization methodology is employed in the working
platform of JAVA.

Performance analysis Here, the performances
shown by the proposed Normalized K Means (NKM)
algorithm and the existing Fuzzy C Means (FCM) along
with K-Means algorithm are contrasted in respect of
statistical metrics:

Chandra Shekhar Gautam and Prabhat Pandey An improving query optimization process in Hadoop MapReduce…

105| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

• precision (Pe)
 • sensitivity (Se)
 • specificity (Sp)
• recall (Rc)
• accuracy (Ac)
• F-Measure (Fs)
 • retrieval time (RT)
 • execution time (ET)
 • Memory usage

The performance comparison of the proposed NKM
and the existent methods is evinced in Tables 1, 2, 3
and 4. Discussion Table 1 contrasted the performances
proffered by the proposed NKM with the existing K-
Means and FCM centered on sensitivity, accuracy, and
specificity. The performance varies grounded on the
data sizes ranging as of 10 to 50 MB. For all the
considered data sizes, the proposed NKM clustering
profers the accuracy within the range of 91 to 96.
When the data size is 50 MB, the proposed NKM
clustering has 96.25% accuracy. Similarly, when the
data size is 40 MB, the proposed NKM has 92.46%
specificity and 93.45% sensitivity. But the existing K-
Means and FCM oFfer 86.34% specificity and 86.37%
sensitivity which are lower when contrasted to the

proposed NKM. For all the considered file sizes, the
proposed NKM showed excellent performance than the
existing methods. Thus, it is deduced that the proposed
NKM has high-level performance. Graphically, this
comparison can well be elucidated using Fig. 4.

Discussion Table 2 contrasted the performances
shown by the proposed NKM and the existing FCM and
K-Means in respect of recall, precision, along with F-
Measure. For 30 MB data size, the proposed NKM has
92.45% precision, 0.21% recall and 89.72% F-Measure.
For the same data size, the existing K-Means
achieves90.67% precision, 87.34% recall and 87.99%
F-Measure and the existing FCM obtained 87.12%
precision, 84.89% recall, and 84.44% F-Measure which
are lower than the proposed NKM clustering method.
Similarly, the proposed NKM achieves better
performance for remaining data size such as, 10 MB,
20 MB, 30 MB, and 50 MB. The F-Measure metric is the
integration of recall and precision metrics. If the
system has high F-Measure, then the system is denoted
as a good system. In this way, as the proposed NKM
provides better F-Measure than the existent K-Means
and FCM, it is regarded as a good system. Graphically,
Table 2 can well be elucidated utilizing Fig. 5.

Table 1 Demonstrate the performance of the proposed NKM with the existing K-Means and FCM in terms of

accuracy, specificity, and sensitivity

Data size
in MB

Proposed NKM Existing K-Means Existing FCM
AC SP Se AC SP Se AC SP Se

10 91.23 83.53 81.56 87.23 77.87 78.43 83.12 73.43 72.56
20 92.45 87.89 85.43 90.23 80.95 79.23 84.69 78.78 74.45
30 94.67 88.90 88.78 91.89 83.56 83.45 86.25 81.34 80.79
40 95.56 92.78 93.45 92.88 86.34 86.37 88.67 83.53 84.23
50 96.78 94.67 96.12 93.23 88.84 91.23 90.34 86.15 89.45

Table 2 Comparison table for proposed NKM with K-Means and FCM based on precision, recall, and F-measure

Data size
in MB

Proposed NKM Existing K-Means Existing FCM
Pe Rc Fs Pe Rc Fs Pe Rc Fs

10 89.23 87.53 87.56 86.23 82.87 88.43 83.12 73.43 82.56
20 91.45 88.89 88.43 88.23 85.95 89.23 84.69 78.78 84.45
30 92.67 90.90 89.78 90.89 87.56 83.45 86.25 81.34 80.79
40 94.56 92.78 91.45 91.88 89.34 96.37 88.67 83.53 89.23
50 95.78 93.67 92.12 92.23 92.84 91.23 90.34 86.15 90.45

Table 3 Illustrate the performance of the proposed NKM with the existing K-Means and FCM based on retrieval
time, execution time

Data size in MB Proposed NKM Existing K-Means Existing FCM
RT ET RT ET RT ET

10 265 120 453 132 682 148
20 784 141 1505 154 2145 179
30 1495 187 3092 214 4655 247
40 2442 212 5171 244 6543 287
50 3699 281 7677 315 8877 349

Table 4 Memory usage analysis

Data size in MB Proposed NKM Existing K-Means Existing FCM
10 5333,475 5888,654 6344,455
20 5777,633 6124,456 6755,434
30 6035,000 6577,343 7132,346
40 6477,867 6988,556 7344,676
50 6689,554 7145,667 7544,232

Chandra Shekhar Gautam and Prabhat Pandey An improving query optimization process in Hadoop MapReduce…

106| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

Fig. 4 Comparative analysis for the proposed NKM with the K-Means and FCM in terms of (a) accuracy, (b)
specificity and (c) sensitivity

Fig. 5 Demonstrate the performance of the proposed NKM with the existing K-Means and FCM in terms of a
precision, b recall and c F-Measure.

Chandra Shekhar Gautam and Prabhat Pandey An improving query optimization process in Hadoop MapReduce…

107| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

Discussion Table 4 contrasted the performances
proffered by the proposed NKM and the existing FCM
and K-Means centered on memory usage (in kilobytes).
For 40 MB data size, the proposed NKM occupies
6477867 kilobytes memory storage during execution.
But the existing K-Means and FCM occupy 7145667
kilobytes and 7544232 kilobytes. Similarly, for the
other remaining data size, the proposed NKM occupies
less memory than the existing methods. Thus, it is
deduced that the proposed NKM acquires high-level
performance than the existent approaches. Graphically,
Table 4 can well be elucidated utilizing Fig. 7

Fig. 6 Comparative analysis for the proposed NKM
with the existing K-Means and FCM based on (a)

retrieval time and (b) execution time

Fig. 7 Memory usage analysis graph

Conclusion

Query optimization in BD becomes a propitious
research direction on account of the popularity of huge

data analytical systems like the Hadoop system. This
paper proposed an improved query optimization
process in BD using the ACO-GA algorithm and HDFS
map reduce technique. The proposed work contains
two phases namely, the BD arrangement phase and
query optimization phase. The proposed system’s
performance was analyzed using data size. The file size
ranges from 10 to 50 MB. The performance analysis
showed that the proposed system has 96.25% accuracy
for 50 MB data size which is higher on considering the
other existent methods namely FCM as well as K-
Means. The comparison results corroborated that the
proposed work provides higher accuracy and takes less
time for retrieving the query. Also, the proposed
system occupies less memory storage. Hence, this
proposed system is better when compared with the
existent system. In the future, the efficiency of this
system can well be enhanced further by including
feature selection to reduce the retrieval time and also
by using advanced optimization algorithms.

References

[1]. Rawat, J.S., Kishor, S., Kumari, M.: A survey on query

optimization in cloud computing. Int J Adv Technol Eng
Sci 4(10), 2348 (2016)

[2]. Gu, R., Yang, X., Yan, J., Sun, Y., Wang, B., Yuan, C., Huang,
Y.: SHadoop: improving mapreduce performance by
optimizing job execution mechanism in hadoop clusters.
J Parallel Distrib Comput. 74(3), 2166–2179 (2014)

[3]. J Wolf, D Rajan, K Hildrum, R Khandekar, V Kumar, S
Parekh, and KL Wu 2010, “Flex: A slot allocation
scheduling optimizer for mapreduce workloads”,
In Proceedings of the ACM/IFIP/USENIX 11th
International Conference on Middleware, Springer-
Verlag, pp. 1-20

[4]. Barba-González, C., García-Nieto, J., Nebro, A.J., Cordero,
J.A., Durillo, J.J., Navas-Delgado, I., Aldana-Montes, J.F.:
jMetalSP: a framework for dynamic multi-objective big
data optimization. Applied Soft Computing 69, 737–748
(2018)

[5]. Song, J., Ma, Z., Thomas, R., Ge, Yu.: Energy efficiency
optimization in big data processing platform by
improving resources utilization. Sustainable Computing:
Informatics and Systems 21, 80–89 (2019)

[6]. Mahajan, D., Blakeney, C., Zong, Z.: Improving the energy
efciency of relational and NoSQL databases via query
optimizations. Sustainable Computing: Informatics and
Systems 22, 120–133 (2019)

[7]. Rini John, and Nikita Palaskar, “A survey of various
query optimization techniques”, International Journal of
Computer Applications, vol. 975, pp. 8887

[8]. Roy, C., Pandey, M., Rautaray, S.S.: A proposal for
optimization of data node by horizontal scaling of name
node using big data tools. In: Proceedings of the 3rd
International Conference for Convergence in Technology
(I2CT), IEEE, pp. 1–6 (2018)

[9]. Dwivedi, J., Tiwary, A.: Big data analytics: an overview.
Int. J. Sci. Technol. Res. 5(07) (2016)

[10]. Elham Azhir ,Mehdi Hosseinzadeh , Faheem Khan ,
and Amir Mosavi : Performance Evaluation of Query Plan
Recommendation with Apache Hadoop and Apache
Spark. 10(19), 3517(2022)

[11]. Deepak Kumar, Vijay Kumar Jha: An improved query
optimization process in big data using ACO-GA algorithm
and HDFS map reduce technique. Springer

Chandra Shekhar Gautam and Prabhat Pandey An improving query optimization process in Hadoop MapReduce…

108| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

Science+Business Media, LLC, part of Springer Nature
(2020)

[12]. Song, J., Ma, Z., Thomas, R., Ge, Yu.: Energy efciency
optimization in big data processing platform by
improving resources utilization. Sustainable Computing:
Informatics and Systems 21, 80–89 (2019)

[13]. Panahi, V.; Navimipour, N.J. Join query optimization in
the distributed database system using an artificial bee
colony algorithm and genetic operators. Concurr.
Comput. Pract. Exp. 2019, 31, e5218.

[14]. Pasquale Salza, Filomena Ferrucci. Speed up genetic
algorithms in the cloud using software containers.
(2019)

[15]. Mahajan, D., Blakeney, C., Zong, Z.: Improving the
energy efciency of relational and NoSQL databases via
query optimizations. Sustainable Computing:
Informatics and Systems 22, 120–133 (2019)

[16]. Bao, C., Cao, M.: Query optimization of massive social
network data based on hbase. In: Proceedings of the
IEEE 4th International Conference on Big Data Analytics
(ICBDA), pp. 94–97 (2019)

[17]. Sahal, R., Nihad, M., Khafagy, M.H., Omara, F.A.:
iHOME: index-based join query optimization for limited
big data storage. J. Grid Comput. 16(2), 345–380 (2018)

[18]. Rawat, J.S., Kishor, S., Kumari, M.: A survey on query
optimization in cloud computing. Int J Adv Technol Eng
Sci 4(10), 2348 (2016)

[19]. Kiranjit Pattnaik, Bhabani Shankar Prasad Mishra: A
Review on Parallel Genetic Algorithm Models for Map
Reduce in Big Data. International Journal of Engineering
Research & Technology (IJERT) ISSN: 2278-0181
IJERTV5IS080400 Vol. 5 Issue 08, August-2016

[20]. Panahi, V.; Navimipour, N.J. Join query optimization in
the distributed database system using an artificial bee
colony algorithm and genetic operators. Concurr.
Comput. Pract. Exp. 2019, 31, e5218.

[21]. Rani, S.; Rama, B. MapReduce with Hadoop for
Simplified Analysis of Big Data, International Journal of
Advanced Research in Computer Science, May-June
2017, Volume 8, No. 5, ISSN No. 0976-5697, pp. 853-856.

[22]. Joseph, C.W.; Pushpalatha, B., A Survey on Big Data
and Hadoop, International Journal of Innovative
Research in Computer and Communication Engineering,
ISSN(Online): 2320-9801, March 2017, Vol. 5, Issue 3,
pp. 5525-5530.

[23]. Ferrucci, F., Salza, P., and Sarro, F. (2016). Using
Hadoop MapReduce for Parallel Genetic Algorithms: A
Comparison of the Global, Grid and Island Models -
Appendix. https:
//doi.org/10.6084/m9.figshare.5091898.

[24]. Fu, W., Menzies, T., and Shen, X. (2016). Tuning for
Software Analytics: Is It Really Necessary? Information
and Software Technology, 76:135–146.

[25]. Salza, P., Ferrucci, F., and Sarro, F. (2016a). Develop,
Deploy and Execute Parallel Genetic Algorithms in the
Cloud. In Genetic and Evolutionary Computation
Conference (GECCO), pages 121–122.

[26]. Salza, P., Ferrucci, F., and Sarro, F. (2016b).
Elephant56: Design and Implementation of a Parallel
Genetic Algorithms Framework on Hadoop MapReduce.
In Genetic and Evolutionary Computation Conference
(GECCO), pages 1315–1322

