
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2023 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

119| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

Analysis of all Local Pairwise Sequence Alignment Algorithms - Survey

Suchindra Suchindra† and Preetam Nagarajϯ

†1Department of Engineering, National Institute of Mental Health and Neurosciences, Karnataka State Govt, Bangalore, India
‡2Department of Engineering, IBM, Bangalore, India

25 March 2023, Accepted 10 April 2023, Available online 13 April 2023, Vol.13, No.2 (March/April 2023)

Abstract

Biological sequence alignment is common today and are used in a variety of fields ranging from Bioinformatics,
Computational Biology, Genome analysis, Cancer research, Stem Research and many more fields. Most of these fields
use the sequence alignment to find the ‘similar’ regions or similarities between organisms. Since, this step is
computational heavy, today, there are specialized hardware to help speed up and techniques and strategies to help
speed up or improve the sensitivity (quality) of the alignment in general. The early successful algorithms in sequence
alignment were focused on quality, and it produced an optimal algorithm called SmithWaterman algorithm, which we
will discuss in detail later using a technique called ‘Dynamic Programming’. The time complexity of this algorithms was
O (mn). Later, to speedup, heuristic algorithms were developed. Heuristic algorithms gave up a little bit on the quality
for speed, by calculating the near-optimal alignment rather than optimal algorithm. In this paper, we will analyze
various computational approaches for local sequence alignments.

Keywords: Bioinformatics, Computational, Dynamic, Heuristic.

1. Introduction

A sequence alignment is one of the important tasks in
certain biological solutions or tasks we mentioned
earlier. A sequence in general could be an RNA, DNA, or
a protein sequence. A sequence is represented by a
sequence of characters that represent their amino acids.
For example, DNA (A, C, G, T) , RNA (A, C, G, U) and
protein molecules (A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P,
S, T, W, Y, V) can be re represented as strings of letters
from their alphabet set (Reddy, 2009), (Haque, et al,
2009), (Haque, et al, 2008), (Reddy and Fields, 2020).

A sequence alignment is primarily a task of finding
similar regions of match between them. These matches
throw major information between them, these include
the evolutionary relationship - their common ancestor,
the conserved region – which could throw light on their
functional, structural, and visual relationships.

If the sequence characters match at the same position
in both the sequences, them they are represented by a
straight line shown in Fig 1. If they differ, then they are
represented by a character ‘ - ‘, called indel. An indel
represents a missing same character and signals a
biologist a divergence from the other sequence. Two
given sequences could be of different length although
they might be homologous sequences. By homologous
sequences, we mean, they are sequences from a same
genome E.g., cat family, lion, and Cheetah. So, a letter can
be matched with either an indel or a same character in
an alignment.

*Corresponding author’s ORCID ID: 0000-0000-0000-0000
DOI: https://doi.org/10.14741/ijcet/v.13.2.11

Fig 1 Example of a sequence alignment. (Reddy and

Fields, 2020)

In Fig 1, we see regions, where the two sequences are
aligned perfectly, these regions are what a biologist call
‘similar region. In some regions, indels ‘-’, are present
(Reddy and Fields, 2020).

All sequence alignment algorithms can be classified
into pairwise and multiple sequences alignment
algorithms. Pairwise sequence alignment as the name
says, is an alignment between two sequences (Reddy,
2009), (Haque, et al, 2009), (Haque, et al, 2008), (Reddy
and Fields, 2020). The objective of a Pairwise sequence
alignment is used to find conserved regions between
them or a divergence between them depending on the
sequence’s perspective. Fig 1 shows a pairwise sequence
alignment.

Multiple sequence alignments on the other hand, find
common regions of similarity between multiple
sequences. Here, an alignment between 3 or more is
considered multiple sequencing. Some of these multiple
sequence alignment algorithms use pairwise sequence
alignment as a first step in many bioinformatics
solutions. Hence the importance of a pairwise
sequencing is quite pivotal from both the quality
(sensitivity) and speed perspective.

http://inpressco.com/category/ijcet

Suchindra and Pretam Analysis of all Local Pairwise Sequence Alignment Algorithms - Survey

120| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

Most multiple sequence alignment algorithms are
heuristic based and ClustalW family of programs by
Higgins (Higgins, 1988), (Higgins, 1992) (Higgins, 1994)
uses a version of the earlier solution by (Feng and
Dolittle, 1987). Others are based off Hidden Markov
method proposed first by Krogh, 1994). Others are based
on a technique called ‘iteration based’. A progressive
iteration-based algorithm is called so because they all
start with 2 sequences, align them, and progressively
add more sequences to the already alignment sequences
and ultimately arrive at a final alignment. A popular
iteration-based algorithm is called MUSCLE (multiple
sequence alignment by log-expectation). This algorithm
improves on other previous progressive methods by
accurately measuring how distantly they measure to
assess the relatedness of two sequences (Edgar, 2004).

A. Pairwise Sequence Alignment Classification

All Pairwise sequence alignment algorithms can be
classified into local and global sequence alignment
algorithms. A local sequence alignment aims at finding
regions or best subsequence between the two sequences
in hand. A global sequence finds regions of similarity
between the entire length of the two sequences (Reddy
and Fields, 2020). Of the two, local sequence alignment
algorithms are faster than global sequence algorithms as
they are trying to find subregions and not regions or
sections of similarity in entirety (Reddy and Fields,
2020).

Popular local sequence algorithms are optimal
algorithm Smith-Waterman (Smith and Waterman,
1981), FASTA (Lipman and Pearson, 1985), BLAST
(Altschul, et al, 1990), GappedBLAST (Altschul, et al,
1997), BLASTZ (Schwartz et al, 2000),
PatternHunter[16], YASS (No and Kucherov, 2005),
(Singer and Lambda, 2004), USearch (Edgar, 2010),
LAST (Kiełbasa, 2011), and ALLAlign (Wachtel, 2016).
This paper focuses on analyzing the local sequence
alignment algorithms in detail.

Famous global sequence alignment algorithms
icnclude Optimal and Heuristic based are Needleman
and Wunsch (Needleman and Wunsch, 2007), GLASS
(Batzoglou, 2000) , WABA (Kent, and Zahler, 2000) ,
AVID (Bray, 2002), AlignMe (Stamm,et al, 2013),
MUMmer (Delcher, et al, 1999), LAGAN & MultiLAGAN
(Brudno and Morgenstern, 1999), respectively.

Some of the pairwise algorithms find their usefulness
in multiple sequence alignment (Reddy and Fields,
2022) and with the advent of AI in major fields today, we
find similar techniques used in modern pairwise
sequence alignments. However, both multiple sequence
alignment and AI based sequence alignment algorithms
are beyond the scope of this paper.

2. Background

In this section we will talk about the popular algorithms
in local sequence alignment. We first start the section
with some basic terminology used in the literature and
we then analyze the algorithms in detail.

B. Sequence algingment terminology

A sequence is a set of characters written left to right
such that each character in the sequence occupy a
unique position of the sequence (Reddy, 2009). Many
algorithms use a scoring function to quantify the
alignment (Reddy, 2009), (Waqar, et al, 2009), (Waqar,
et al, 2008), (Reddy and Fields, 2020). This scoring
function set a score for all match pair between the
sequences, score for mismatches and score for insertion
or deletion (indels). Therefore, when one says the
alignment score is ‘a’, then ‘a’ is a sum of all matches,
mismatches and indels.

There are many scoring functions described in the
literature. The simplest being the constant function.
Meaning there is a constant score ‘σ’ for mismatches and
matches, no matter where the matches or mismatches
appear in the length of the two sequences in hand. A
scoring function is represented in the form of a matrix
with each cell having a score which corresponds to the
base pair match or mismatch (online, 2007). PAM
(Percentage of Acceptable point Mutations per 108
years) series of matrices (State, et al, 1991) (Dayhoff,
1978) and BLOSUM (BLOcks SUbstitution Matrix) series
of matrices (Henikof and Henikof, 1992) are widely
used scoring matrices.

Some Biologists believe that mutations are
concentrated in the sequence, so much so, there is
always a contiguous region after the mutation begins
where the characters are either mismatches or deleted.
This theory led to another scoring function called gap
open score and gap extension score. A gap open score is
a score which is fixed irrespective of the location in the
aligned sequences, where the first difference shows
between the 2 sequences. A gap extension is the indels
are gaps inserted to the sequences after the initial
mutation is identified. Since a mutation location is more
important to the biologists a larger score is associated
with the gap open penalty than the gap extension
penalty.

When it comes to measuring the performance of
each algorithm in the literature, some of the measure
used are the maximum score of the alignment (Gusfield,
1997) and percent similarity score (Gusfield, 1997),
total column matched score (Needleman and Wunsch,
2007) and score of the filtered region (Bray, 2002).

3. Optimal Pairwise Local Sequence Alignment
Algorithm

Smith-Waterman Algorithm is an optimal local sequence
alignment algorithm. The algorithm employs a technique
called ‘Dynamic Programming’, where a problem is
broken into smaller problems and solving these smaller
problems recursively (Smith and Waterman, 1981). In
this algorithm, all characters of the two sequences are
matches to find the optimal score between them. If S and
T are the two sequences, then the algorithm builds the
optimal alignment between S and T by using the
following formula,

Suchindra and Pretam Analysis of all Local Pairwise Sequence Alignment Algorithms - Survey

121| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

V [i; j] = max{

V [i - 1; j] + 𝜎(𝑆[i - 1];-) i > 0; j ≥ 0

V [i -1; j -1] + 𝜎(𝑆[𝑖]; T[𝑗])i; j > 0

V [i; j -1] + (-; T[j - 1])i ≥ 0; j > 0

Bear in mind, there is a score associated with each

character match, and ultimately, an optimal score

alignment or a best score is calculated by using a

procedure called ‘back tracing’ to find the optimal path

(Smith and Waterman, 1981).

4. Heuristic Algorithms

Optimal algorithms are very slow. To overcome this

short comings, Heuristic algorithms were developed. All

heuristics algorithms produce a near optimal algorithm

and are based on the inference or observation that there

are regions which are conserved in both the sequences

which have high alignment score. So, these optimal

algorithms are first finding these conserved regions

quickly and building the final alignment arounds these

conserved regions.

A. Common Strategies

Most of the heuristic algorithms find regions of

similarities which they call ‘seed’. So, a ‘seed’ is a

conserved region in the sequence of length ‘l’. A seed

could be a maximum subsequence in both the

sequences. This is shown in Fig 2.

 Fig 2. Seed or conserved regions in S1 and S2.

In some cases, Heuristic algorithms are based on a seed

with some mismatches in them. Let look at Fig 3. In this

figure, we see that, there is a mismatch between X1 and

Y1, the number of mismatches in this seed is one. In the

literature, later, we will talk about these mismatch seeds

with ‘x’ mismatches of length ‘l’, where ‘l’ is the length of

the seed including both the conserved and mismatch

characters.

Some algorithms consider seeds which have a score

above a threshold ‘d’. This score is based off any of the

scoring matrices we talked about in the previous

sections. An example of a seed above a threshold is

shown in Figure 4.

Fig 3: Mismatch seed with one mismatch.

Fig 4: Seed above a threshold score 13.

In figure 4, we see two seeds who score is above a
threshold score of 13. These two instances are taken
into consideration in some heuristic algorithm for the
final alignment. Bear in mind, this a score associated
with a seed.

A seed can also be represented by 1’s and 0’s. In fig
4, beginning from position 4, or the 4th character, a seed
making up for (TAGGTGTAGG) in sequence S1 and
(TAGAACAAGG) in sequence S2 can be represented as
111000011 with four mismatches. Such a seed is called
spaced seed with weight 5. Meaning 5 matches and 4
mismatches with a total length of 9. Another example is
shown below in fig 5.

Fig 5: Spaced seed with weight 12 and length
18.

Since the seed selection is an important step in the
heuristic algorithms, the way these seeds or subregion
or conserved regions are found is also important. The
way these seeds are found directly affects the speed of
the algorithm. From the literature there are two ways of
finding these regions, first is called a look-up table data
structure based and second being a tree data structure.
A look-up table is a data structure which is usually an
array, vector, or a linked list. The idea is all seeds which
are present in the sequence and their position is first
known and hashed using a hashing function. Once the
look-up table is established for sequence S1, then one

Suchindra and Pretam Analysis of all Local Pairwise Sequence Alignment Algorithms - Survey

122| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

can linearly move across sequence S2 and find all the
seeds of length ‘l’ and their position while moving across
sequence S2.

 The second approach is using a data structure
called tree, most specifically a version of tree called suffix
tree. Suffix tree represents the “internal structure of a
string in a comprehensive manner” (Gusfield, 1997). The
main advantage of using this tree is that it can find exact
matching strings in linear time O(n), where n is the
length of the string. Weiner developed the first linear
time suffix tree back in 1973 (Weiner, 1973) and was
improved later by (McCreight, 1976)(Ukkonen, 1995).

B. FASTA

FASTA (Lipman and Pearson, 1985), which stands for
FAST-ALL was the first algorithm to use a lookup table
to find all seeds. Also, the seeds it found were perfect
match seeds of length ‘k’ also known as k-mer seeds.
Initially, the algorithm finds all k-mers in both the
sequences and stores their positions in a look up table.

In the next step, the algorithm uses a ‘diagonal’
method, where all seeds along the diagonal between the
two sequences are identified. FASTA stores 10 best
diagonal seeds along the diagonal. In the subsequent
step, groups of seeds with high scores along the diagonal
are saved. There could be many diagonal paths.

All such diagonals are then combined into a single
alignment allowing spaces by constructing a directed
weighted graph around the seeds (Reddy, 2009),
(Haque, et al, 2009), (Haque, et al, 2008), (Reddy and
Fields, 2020) (Lipman and Pearson, 1985). The
maximum weighted graph is then selected, and the best
alignment found is then marked as ‘initn’ (Reddy, 2009),
(Haque, et al, 2009), (Haque, et al, 2008), (Reddy and
Fields, 2020) (Lipman and Pearson, 1985).

FASTA then proceeds to build a narrow band of
width ‘k’ centered along the diagonal. FASTA then
computes an optimal local alignment in this band by
using Smith-Waterman algorithm (Lipman and Pearson,
1985).

C. BLAST

Basic Local Alignment Search Tool BLAST (Altschul, et al,
1990), also uses a look-up table to identify seeds of
length ‘k’ and is faster than FASTA (Lipman and Pearson,
1985). BLAST differs from FASTA on how the seeds are
identified. A Sliding window technique is employed to
find all good neighbors seeds for every k-mer seed in
either direction (Altschul, et al, 1990).

When all seeds and their neighborhood seeds are
found, it then extends the seeds in either direction
without introducing any gaps. Now, in this step, the
alignment score can increase or decrease. When the
alignment drops below a threshold ‘t’, the extension is
stopped. Such a segment pair is called a high scoring
segment pair (HSP).

When all HSP are found, BLAST now extends with
gaps (indels) around these HSP’s. using Smith-
Waterman algorithm until the resultant score falls again

below a threshold ‘r’. The best HSP is taken then and is
the output the two sequences.

When all seeds are found, it then proceeds to find the
seeds (HSP, high scoring pairs), and extend them until
they fall under a threshold score ‘k’. These HSP are then
stitched using a restricted dynamic programming which
is a version of Smith-Waterman Algorithm (Smith and
Waterman, 1981).

BLAST 2 [], is an interactive solution of BLAST and
the only difference here is that it produces a gapped
alignment by using dynamic programming versus the
ungapped alignment in the earlier version to extend the
HSPs. BLAST2 is mostly used to compare two sequences
that are homologous.

D. Gapped BLAST

Gapped BLAST or PSI-BLAST (Altschul, 1997) is an
upgraded version of BLAST which is 3 times faster than
BLAST. It employs a method which convert all
statistically significant alignments into a position-based
scoring matrix. To speed up, this algorithm a ‘2 hit
method’, where two non-overlapping words along the
diagonal are chosen and they both need to be within a
distance ‘k’ from each other.

E. BLASTZ

BLASTZ (Schwartz et al, 2000), is the fastest among the
BLAST family of algorithms, and it employs a different
method. All repeat seeds in the sequence are removed
[15]. It then looks for smaller seeds of length ‘l’ with
almost one-character transition or one mismatch
(Reddy, 2009), (Haque, et al, 2009), (Haque, et al, 2008),
(Reddy and Fields, 2020) (Schwartz et al, 2000).

All seeds are then extended on both sides. For regions
in between the seeds, it employs smaller seeds and uses
optimal alignment to stitch these seeds to form the final
alignment (Reddy, 2009), (Haque, et al, 2009), (Haque, et
al, 2008), (Reddy and Fields, 2020) (Schwartz et al,
2000).

F. PatternHunter

PatternHunter (Ma, et al, 2002) introduced a seed called
spaced seed which we talked about in the previous
strategies section. This seed strategy was used to
improve the sensitivity and speed. It uses a combination
of priority queues variation of red-black tree, queue and
hash table to achieve speed (Ma, et al, 2002).

Once all spaced speed of K-mer with weight ‘w’ are
found. It then finds all these spaced seeds in the diagonal
between 2 sequences as in FASTA to find the final
alignment (Ma, et al, 2002). The algorithm is written in
JAVA, and encounters memory problems for long
sequences (Reddy, 2009), (Waqar, et al, 2009), (Haque,
et al, 2008), (Reddy and Fields, 2020) (Ma, et al, 2002).

G. SOAP, SeqMAP and MAQ

SOAP (Li, 2008) also makes use of the spaced seed like
PatternHunter (Ma, et al, 2002). Here, SOAP (Li, et al,

Suchindra and Pretam Analysis of all Local Pairwise Sequence Alignment Algorithms - Survey

123| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

2008) allows for certain number of mismatches or a
continuous gap for aligning a sequence. The best hit
with minimal mismatches or smaller gaps is reported
and then the rest of the algorithm follows the same
technique of FASTA to build the final alignment.

SeqMAP (Jiang and Wong, 2008) and MAQ (Li, et al,
2008) extend the matches to allow k-mismatches in
then. On these two, SeqMAP allows up to 5 mismatches
and is considerably faster than MAQ.

H. BLAT

BLAT – BLAST like alignment tool (Kent, 2002) (States,
et al, 1991) is much faster than BLAST. BLAT is like
FASTA and BLAST in that, it searches for K-mer seed.
BLAT differs from previous algorithms in the way
sequences are indexed. One of the sequences S1 is
already preprocessed in the database and all the seeds in
that sequences are already known. We then proceed to
find all “non-overlapping seeds of S2 are run linearly. If
BLAST builds an index of S1 and then scans linearly
through the S2 (Altschul, et al, 1990), BLAT has a
preprocessed sequence with it seeds and their position
in the database, this saves time. After this stage, it then
searches for seeds with some mismatch’s ‘n’ in them
around the seeds it found earlier (Reddy, 2009), (Haque,
et al, 2009), (Haque, et al, 2008), (Reddy and Fields,
2020) (Altschul, et al, 1990) (Altschul, 1997). Then the
HSPs of seeds like BLAST and mismatch seeds are
extended like BLAST and BLAST2 to form a final
alignment.

I. SSAHA

SSAHA (Ning, 2001) which stands for Sequence Search
and Alignment by hashing algorithm is new algorithm
that performs fast searches on the database containing
many gigabytes of data. It achieves this by organizing the
database into hash table data structure. This is only
possible because SSAHA are now able to exploit faster
bigger machines with huge RAM, which enables it to
store a hash table that describes the database containing
these sequences.

Since it can store such an enormous amount of data
and has hashed it, the sequence 1 is already
preprocessed in BLAT can now be searched across
sequence 2 in hand at a much higher speed than BLAT.
To improve sensitivity, all it should do to decrease the k-
mer to over wit BLAT.

J. UBLAST

UBLAST (Edgar, 2010) uses a different technique – by
finding fewer long subsequences in both the sequences.
These subsequences should not only be unique, found
least amount of time between the sequences but also
long. The rest of the algorithm is very similar to BLAST
in the way that, a diagonal is found, and best diagonal
subsequence is found.

Later the subsequence is extended on either side
until the score falls under a threshold and then the final
alignment is produced (Edgar, 2010). The sole aim of
UBLAST is the outperform

BLAST (Altschul, et al, 1990) and MEGABLAST (Zhang, et
al, 2000) which is algorithm from BLAST family.

K. LAST

LAST (Kiełbasa et al, 2011) is recent algorithm. It uses a
new type of seed called adaptive alignment seeds; these
adaptive seeds vary in length and the number of indels
in them so they can be considered as dynamic seeds.
These adaptive seeds can be of different lengths and
weight (Kiełbasa et al, 2011).

By weight, a score associated with the seed if they
have a match and mismatches. The rest of the algorithm
is very similar to BLAST. To improve the sensitivity one
can, reduce the k-mer in the adaptive seed and decrease
the number of indels to zero. If one wants speed, then
one can increase the k-mer length and indels in the seed.
This is truly a dynamic seed in that, there is no
prescribed length here, just a group of adaptive ranging
from a – b in length with m – n number of indels in them
(Kiełbasa et al, 2011).

 ALLAlign (Wachtel, 2016) is a new algorithm
developed, however literature of this AWS based web
algorithm is very limited.

L. LAMBDA

LAMBDA (Singer and Lambda, 2004) is new algorithm
which is optimized for protein sequence alignment. It
implements a technique where there are more than 1
protein sequences as the target sequences to be aligned
with a pre indexed database set of all other know
sequences [18]. It is optimized for big or large biological
data and uses a Suffix tree to get the maximal common
subsequences or maximal unique sequences (Singer and
Lambda, 2004), (Reddy and Fields, 2020) and then goes
about aligning these subsequences against a pre indexed
database (pre indexed based off suffix array) (Singer and
Lambda, 2004).

M. MASAA

MASAA (Reddy, 2009), (Haque, et al, 2008), introduced
in 2008 is based on Ukkonen [38[suffix tree. The
algorithm uses double indexing and back tracking and
identifies maximum match subsequences (MMSS)
(Haque, et al, 2008). In the subsequent stages, it finds
perfect and near perfect seeds and stitches the local
alignment to produce the final alignment.

MASAA – S (Reddy and Fields, 2020) was introduced
in 2019 which is like MASAA but uses adaptive seeds in
between the MMSS, In the later stages it uses perfect
seeds to improve sensitivity (Reddy and Fields, 2020).
The algorithm is also more sensitive than MASAA but
comparable in speed to MASAA (Reddy and Fields,
2020).

4. Experimental Results

In the experimental results, we randomly generated
sequences whose length is from 100k to 500k and
compared the speed of alignment than others [Tatusova,

1999). For smaller sequences the speed is much faster

Suchindra and Pretam Analysis of all Local Pairwise Sequence Alignment Algorithms - Survey

124| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

than BLASTZ and compares well with other previous
algorithms. However, when the sequences grow, then
the speed of algorithm get slower. We believe it will
perform slower as the length of the sequence increases
further the algorithms would continue to be to maintain
the same trajectory. We did not compare get to compare
the other algorithms in the literature, as it was
sometimes difficult to get a copy of their algorithms and
at times the difficulty of exercising the comparing. For
example, AllAlign needed an index database first and
for a randomly generated sequences it was challenging.
For AllAlign, we could not find source code to download
and compare, checking the performance of the sequence
on a server was not clinical. Although we know LAMBDA
is 500x faster than BLASTZ, here we assume that
LAMBDA is faster than FASTA, BLAST and BLAT too.

Fig 5: Speed Comparison on different sequence length

For sensitivity, we compared the exon coverage from all
four algorithms. We compared the performance of three
algorithms on the small dataset of genes, most of these
genes are not longer than few thousands. The idea was
to see if the algorithms can extract full genes or partial
genes and compare the exon coverage. Table 1 shows
the percentage of exon coverage, here we think BLASTZ
and FASTA are more of less the same while BLAT
performs poorly, and this is expected as BLAT is
designed for speed and not sensitivity.

Table 1 Sensitivity comparison on genes

Algorithm % of exon coverage

 100 exon 90 exon 70 exon

BLASTZ 94 97 98

FASTA 94 99 99

BLAT 94 95 94

Conclusions

Pairwise sequence algorithms are very important and
therefore has been an active field of research. It is also
due to many private firms employing computational
biology for commercial purposes. This and

technological revolution in computer hardware are
opened the gates where in previous older algorithms
which were sensitive but slower now can be made faster
using superior hardware.

Although most of the algorithms concentrate in seed
finding techniques, database preprocessing or
hardware improvement, we believe that we have not
seen the end of any of the above 3 strategies yet.
Therefore, we believe there is enough research to find
new data structure to speed up the seed’s identification
and new seeds but also enough research in parallelizing
above algorithms for better performance employing
clusters in the future.

References

[1]. Reddy, B. G. (2009). Multiple Anchor Staged Local

Sequence Alignment Algorithm-MASAA. University of
Northern British Columbia.

[2]. Waqar Haque, Alex Aravind, and Bharath Reddy. 2009.
Pairwise sequence alignment algorithms: a survey. In
Proceedings of the 2009 conference on Information
Science, Technology and Applications (ISTA '09). ACM,
New York, NY, USA, 96-103.
DOI=http://dx.doi.org/10.1145/1551950.1551980

[3]. Haque, W., Aravind, A.A., & Reddy, B. (2008). An efficient
algorithm for local sequence alignment. 2008 30th
Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, 1367-1372.

[4]. Reddy, B, Fields, R. 2020, Multiple Anchor Staged
alignment algorithm – Sensitive, 2020, In proceedings
with The International Conference on Information and
Computer Technologies (ICICT), 2020, San Jose. USA.

[5]. Higgins, D.G. & Sharp P.M. (1988), “CLUSTAL: a package
for performing multiple sequence alignment on a
microcomputer”, Gene, vol. 73,pp237-44. ACEIT
Conference Proceeding 2016, IJCSIT-S96

[6]. Higgins, D.G et al. (1992), “ClustalV—improved software
for multiple sequence alignment” Comput. Appl. Biosci.,
vol. 8, pp. 189-91.

[7]. Higgins, D.G et al. (1994), “ClustalW—improving the
sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap
penalties and weight matrix choice”, Nucl. Acid Res., vol.
22, no. 22, pp 4673-80.

[8]. Feng D. & Doolittle R. F (1987), “Progressive sequence
alignment as a prerequisite to correct phylogenetic
trees”), J. Mol. Evol., vol. 60, pp 351-360.

[9]. Krogh, A. et al. (1994), “Hidden Markov models in
computational biology: applications to protein
modeling”, J. Mol. Biol., vol. 235, pp. 1501-1531.

[10]. Edgar C Robert (2004), “ MUSCLE: multiple sequence
alignment with high accuracy and high throughput”
Oxford Journals Science & Mathematics Nucleic Acids
Research Volume 32, Issue 5Pp. 1792-1797.

[11]. Smith, T.F. and Waterman, M.S. 1981. Identification of
common molecular subsequences. J. Mol. Biol. 147:195-
197.

[12]. Lipman D. and Pearson W, 1985. Rapid and sensitive
protein similarity searches. Science, 227: 1435, 1441.

[13]. [Altschul, S.F.,Gish, W., Miller, W., Myers, E. W., and
Lipman, D. J. 1990. Basic local alignment search tool. J.
Mol. Biol. 215: 403-410.

[14]. Altschul, S.F., Madden. T. L, Schaer , A. A., J. Zhang, Z.
Zhang, Miller W., and Lipman D. J, 1997. Gapped BLAST

0
5

10
15
20
25
30
35
40

1
00

00
0

1
20

00
0

1
40

00
0

1
60

00
0

1
80

00
0

2
00

00
0

2
20

00
0

2
40

00
0

2
60

00
0

2
80

00
0

3
00

00
0

3
20

00
0

3
40

00
0

3
60

00
0

3
80

00
0

4
00

00
0

4
20

00
0

4
40

00
0

4
60

00
0

4
80

00
0

5
00

00
0

Ti
m

e
in

 S
ec

o
n

d
s

Length of the sequences

Speed Comparison

BLASTZ FASTA BLAT

Suchindra and Pretam Analysis of all Local Pairwise Sequence Alignment Algorithms - Survey

125| International Journal of Current Engineering and Technology, Vol.13, No.2 (March/April 2023)

and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research,25(17): 3389,
3392.

[15]. Schwartz, S., Zhang, Z., Frazer, K.A., Smit, A., Riemer, C.,
Bouck, J., Gibbs, R., Hardison, R., and Miller, W. 2000.
PipMaker-A web server for aligning two genomic DNA
sequences. Genome Res. 10: 577-586.

[16]. Ma, B., J. Tromp, and M. Li, (2002). Patternhunter:

Faster and more sensitive homology search.

Bioinformatics 18, 440-445.

[17]. [No, Laurent and Kucherov, Gregory, 2005. YASS:

enhancing the sensitivity of DNA similarity search.

Nucleic Acids Res.

[18]. Singer, H. Hauswedell, J. &, Lambda. K. Reinert, (2004),

the local aligner for massive biological data.

Bioinformatics 30, i349–i355 .

[19]. Edgar R.C (2010). Search and clustering orders of

magnitude faster than BLAST. Bioinformatics.

2010;26(19):2460–2461. doi:

10.1093/bioinformatics/btq461.

[20]. Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC.

Adaptive seeds tame genomic sequence comparison.

Genome Res. 2011 Mar;21(3):487-93. doi:

10.1101/gr.113985.110. Epub 2011 Jan 5. PMID:

21209072; PMCID: PMC3044862.

[21]. Stamm M, Staritzbichler R, Khafizov K, Forrest LR

(2013) Alignment of Helical Membrane Protein

Sequences Using AlignMe. PLOS ONE 8(3): e57731.

https://doi.org/10.1371/journal.pone.0057731.

[22]. Wachtel. E 2016. All ALL Local Alignment.

http://www.allalign.com/

[23]. Zhang Z, et al, 2000. A greedy algorithm for aligning

DNAsequences, J. Comp. Biol , 2000, vol. 7 (pg. 203-214)

[24]. Kent. W. James, 2002, BLAT: The BLAST-Like

Alignment Tool. Genome Research, Vol. 12, Issue 4, 656-

664.

[25]. Needleman, S.B. and Wunsch, C.D. 1970. A general

method applicable to the search for similarities in the

amino acid sequence of two proteins. J. Mol. Biol. 48: 443-

453.

[26]. Batzoglou, S., Pachter, L., Mesirov, J.P., Berger, B., and

Lander, E.S. 2000. Human and mouse gene structure:

Comparative analysis and application to exon prediction.

Genome Res. 10: 950-958.

[27]. Kent, J. and Zahler, M. 2000. The Intronerator:

Exploring introns and alternative splicing in C. elegans

genomic alignment. Genome Res. 10: 1115-1125.

[28]. Bray Nick, Dubchak Inna and Pachter Lior, Avid: A

global alignment program, Genome Research. 2003 13:

97-102; 2002.

[29]. Delcher A.L., Kasif S., Fleischmann R.D., Peterson J.,

White O., and Salzberg S.L. 1999. Alignment of whole

genomes. Nucleic Acids Res. 27: 2369-2376.

[30]. [Brudno, M. and Morgenstern, B. Fast and sensitive

alignment of large genomic sequences, 2002.

[31]. Pittsburgh Supercomputing Center. (2007) [Online].

http://www.psc.edu/research/biomed/homologous/

scoring_primer.html

[32]. States. D. J., W. Gish, and S. F. Altschul, "Improved
Sensitivity of Nucleic Acid Database Search Using
Application-Specific Scoring Matrices ," METHODS: A
Companion to Methods in Enzymology, vol. 3, no. 1, pp.
66-70, 1991.

[33]. Dayhoff M. O, Schwartz R. M, and Orcutt. B. C, "A Model
of Evolutionary Change in Proteins," in Atlas of Protein
Sequence Structure Nat'l Biomedical Res., M. O. Dayhoff,
Ed. 1978, ch. 5, pp. 345-352.

[34]. H=enikof. S and Henikof J. G, "Amino acid substitution
matrices from protein blocks," in Proc Natl Acad Sci,
1992, pp. 10915-9.

[35]. Gusfield. D, 1997, Algorithms on Strings, Trees and
Sequences: Computer Science and Computational Biology
. Cambridge University Press.

[36]. Weiner. P, 1973. "Linear Pattern Matching
Algorithms," in Proc. 14th IEEE Annual Symp. on
Switching and Automata Theory, pp. 1-11.

[37]. McCreight. E. M, 1976 "A Space- Economical Suffix
Tree Construction Algorithm," J. ACM, vol. 23, pp. 262-
272.

[38]. Ukkonen. E. 1995, "On-Line Construction of Suffix
Trees ," Algorithmica, vol. 14, pp. 249-260, 1995.

[39]. Altschul. S. F, Madden L T., Alejandro A. Schäffer1,
Jinghui Zhang, heng Zhang, Webb Miller2 and David J.
Lipman “Gapped BLAST and PSI-BLAST, 1997: A new
generation of protein database search programs”, Nucleic
Acids Research, 1997, Vol. 25, No. 17 3389–3402.

[40]. Tatusova. A. Tatiana, Madden L. Thomas, 1999“ BLAST
2 SEQUENCES, a new tool for comparing protein and
nucleotide sequences”, FEMS Microbiology Letters 174
(1999) 247250.

[41]. States. D. J., Gish.W., and Altschul S. F, 1991, "Improved
Sensitivity of Nucleic Acid Database Search Using
Application-Specific Scoring Matrices ," METHODS: A
Companion to Methods in Enzymology, vol. 3, no. 1, pp.
66-70, 1991.

[42]. Ning Z, et al, 2001, SSAHA: a fast search method for
large DNA databases, Genome Res., vol. 11 (pg. 1725-
1729)

[43]. Li R, Li Y, Kristiansen K, etal, 2008, “SOAP: short
oligonucleotide alignment program.”, Bioinformatics
2008;24:713–4.

[44]. Jiang H, Wong WH, 2008 “ SeqMap: mapping massive
amount of oligonucleotides to the genome”,
Bioinformatics 2008;24: 2395–6.

[45]. Li H, Ruan J, Durbin R., 2008 “ Mapping short DNA
sequencing reads and calling variants using mapping
quality scores”, Genome Res 2008;18:1851–8.

[46]. Reddy, B., Fields, R. 2022. From past to present: a
comprehensive technical review of rule-based expert
systems from 1980 -- 2021. In Proceedings of the 2022
ACM Southeast Conference (ACM SE '22). Association for
Computing Machinery, New York, NY, USA, 167–172.
https://doi.org/10.1145/3476883.3520211

[47]. Reddy, B., Fields, R. (2022). Multiple Sequence
Alignment Algorithms in Bioinformatics. In: Zhang, YD.,
Senjyu, T., So-In, C., Joshi, A. (eds) Smart Trends in
Computing and Communications. Lecture Notes in
Networks and Systems, vol 286. Springer, Singapore.
https://doi.org/10.1007/978-981-16-4016-2_9

