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Abstract  
  
The O-rings are the very commonly employed solution for creating sealing to prevent the loss of pressurized fluid or 
gases. In the present work the design of an O-ring with no-groove arrangement is presented. 
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1. Introduction 
 
The loss of pressurized fluid or gas is generally 

prevented by the use of O-rings. The O-rings are made 

up of elastomeric materials.  The sealing effect in these 

elastomers occurs due to their axial or radial 

compression. The elastomer behaves as an 

incompressible liquid of great viscosity with high 

surface tension [1]. When the O-ring is installed in such 

a way that no groove has been provided in the assembly, 

then this type of arrangement is called no groove 

arrangement [2]. There are two types of no groove 

arrangement, depending upon the type of compression 

being imposed upon the O-ring, the Axial O-ring and 

Radial O-ring [3]. 

 
 

Fig.1 Axially loaded O-ring without groove 

 
The no groove arrangement for the axial loaded O-ring 
is depicted in figure 1. Under the case of axial 
compression, the O-ring is free to expand radially as a 
result of which the corresponding shape of the O-ring 
under load changes as shown in the figure 2. 
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Fig. 2 Deformed O-ring 

 
The compression brings out a change in the cross-
sectional diameter of the O-ring, from an initial value of 
‘d’[2]. In order to define the change in the diameter, a 
parameter called as compression ratio (ψ) is introduced 
which is defined as the change in the cross-sectional 
diameter divided by the original cross-sectional 
diameter.  
 

𝜓 =  
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
         (1) 

 

The analysis of the O-ring has been divided into two 
categories, namely: (i) Unlubricated condition and (ii) 
Lubricated condition based upon whether lubrication 
was provided to the O-ring prior to its installation 
within the assembly or not [4], [5], [14]–[23], [6], [24]–
[33], [7], [34]–[43], [8], [44]–[53], [9], [54]–[63], [10], 
[64]–[69], [11]–[13]. Lubrication may result in swelling 
up of the O-ring, which increases the cross-section 
diameter of the O-ring. 
 

2. Axially Loaded Unlubricated Condition 
 
The unlubricated condition specifies the situation when 
the O-ring has been installed in the assembly without 
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prior lubrication around the surface of the O-ring. In 
static applications, where movement between the 
sealing faces and the O-ring is negligible, unlubricated 
O-rings can be utilized without significantly affecting 
the life of the O-ring. 

Squeeze upon loading: The O-ring under 
compression will undergo an effective squeeze defined 
as the change in its cross-section which is calculated 
from the compression ratio (ψ) and O-ring diameter (d).  
 
The formulation is given in equation 2. 
 
𝑠𝑞𝑢𝑒𝑒𝑧𝑒 =  𝜓 ∗ 𝑑                (2) 
  
There are two approaches for the calculation of Young’s 
Modulus.: Young’s Modulus determination using 
hardness and the other using stress and strain values 

Young’s Modulus determination using hardness: The 
estimation for Young’s Modulus has been formulated 
using the value of hardness as a parameter using the 
empirical relation proposed: 
 
𝐸 = 0.256 ∗ 𝑒0.047∗(ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠−ℎ𝑎𝑟𝑑𝑡𝑜𝑙)     (3) 
𝐸 = 0.256 ∗ 𝑒0.047∗(ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠+ℎ𝑎𝑟𝑑𝑡𝑜𝑙)     (4) 
 
When calculating Young’s Modulus using hardness, both 
positive and negative tolerances have been utilized in 
the O-ring design leading to two different values of 
Young’s Modulus. Under the same compression 
imposed upon the O-ring, positive tolerances on 
hardness yield a higher value of Young’s Modulus and 
consequently the stresses generated on the O-ring will 
be higher and vice versa. Therefore, for calculating the 
stress, positive tolerance of O-Ring is considered and in 
the case of safeguard against leakage/squeezing out, 
calculation of Young’s Modulus using negative 
tolerances is incorporated.  

Young’s Modulus determination using stress and 
strain values: The estimation of Young’s Modulus using 
hardness as a parameter is based on an empirical 
relation and therefore, in order to estimate a more 
accurate value of Young’s Modulus, stress and strain 
values, which have been arrived experimentally are 
preferred. 

The relation between stress and strain for hyper-
elastic rubber materials such as O-ring is non-linear, 
and several models have been proposed from time to 
time in order to evaluate the value of Young’s Modulus 
using stress and strain.  

According to Cauchy-Green, the stretch imparted to 
any material can be expressed by using three invariants 
as represented below: 
 

𝐼1 =  𝜆1
2 + 𝜆2

2  +  𝜆3
2            (5) 

𝐼2 =  𝜆1
2𝜆2

2 + 𝜆2
2𝜆3

2 + 𝜆1
2𝜆3 

2         (6)    
𝐼3 =  𝜆1

2𝜆2
2𝜆3

2             (7) 
 

Where 𝜆 represents the stretch and is defined as: 
 

𝜆 =  
𝐷𝑒𝑓𝑜𝑟𝑚𝑒𝑑 𝐿𝑒𝑛𝑔𝑡ℎ

𝑈𝑛𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 𝐿𝑒𝑛𝑔𝑡ℎ
 

 𝜆 = 1 −  𝜀              (8) 
𝜀 - Representing the strain in the material. 
 
The three invariants specifically represent the change in 
length, surface area and volume of the hyper-elastic 
material. 
 
Since the material is assumed to be incompressible, 
therefore: 
 
𝜆1𝜆2𝜆3 = 1            (9) 
 
Mooney-Rivlin model: The Mooney-Rivlin model uses a 
linear combination of two invariants of the Cauchy-
Green deformation tensor in the definition of the strain 
energy density function (W) which is defined as follows: 
 
𝑊 =  𝐶1(𝐼1 − 3) + 𝐶2(𝐼2 − 3)       (10) 
 
For the case of uniaxial tension or compression 
imparted to the O-ring, the following values can be used:  
 
 𝜆1 =  𝜆             (11) 

𝜆2 =  
1

√𝜆
             (12) 

𝜆3 =  
1

√𝜆
             (13) 

 
Using these values 
 

 𝐼1 =  𝜆2 +
2

𝜆
              (14) 

 𝐼2 =  𝜆 +
2

𝜆2 + 𝜆            (15) 

 
On substituting these values in Eq. (10), 
 

𝑊 =  𝐶1 (𝜆2 +
2

𝜆
− 3) +  𝐶2 (𝜆 +  

1

𝜆2 + 𝜆 − 3)   (16) 

 
The differentiation of the above equation with respect 
to 𝜆 yields the value of stress. Therefore, on 
differentiating with respect to 𝜆, we have: 
 
𝑑𝑊

𝑑𝜆
=  𝐶1 (2𝜆 −

2

𝜆2) + 𝐶2 (2 − 
2

𝜆3)      (17) 

𝑓 =  
𝑑𝑊

𝑑𝜆
=  2 𝐶1 (𝜆 −

1

𝜆2) +  2𝐶2 (1 −  
1

𝜆3)    (18) 

𝑓 =  2 (𝐶2 + 𝐶1𝜆) (1 − 
1

𝜆3)       (19) 

 

Equation (2.11) can be rewritten as  
 

𝑓 =  2 (𝐶1 +
𝐶2

𝜆
) (𝜆 −  

1

𝜆2)        (20) 
 

Where ‘f’ denotes the Cauchy stress and 𝐶2 𝑎𝑛𝑑 𝐶1are 
material constants. The values of material constant are 
estimated by curve fitting the stress (f) and stretch (λ) 
values from the obtained experimental results. In the 
present work least-square method is adopted for curve 
fitting the stress and stretch values. The detail 
discussion of the method opted is discussed in detail 
below. The least squared approach is based upon the 
minimization of the square of the error between the 
function and estimated values.  
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For example, in the present case  
 

2 (𝐶1 +
𝐶2

𝜆
) (𝜆 −  

1

𝜆2)  

 
is the function and stress “f” is the estimated value. 
Therefore, the equation (20) can be rewritten as: 
 

minimize err = ∑ (𝑓𝑖 − 2 (𝐶1 +
𝐶2

𝜆
) (𝜆 −  

1

𝜆2))
2

𝑛
𝑖=1      (21) 

minimize err = ∑ (𝑓𝑖 − 2 (𝐶1𝜆 + 𝐶2 −
𝐶1

𝜆2 −
𝐶2

𝜆3))
2

𝑛
𝑖=1  (22) 

Where 
err –the error involved while curve fitting 
i – Current data point being summed  
n – No. of data points given  
fi – Stress at data point i [MPa] 
 
Now calculate the derivatives of the function “err” (i.e. 
equation (22)) with respect to the two constants C1 and 
C2, and set both these equations equal to zero. 
 

𝜕𝑒𝑟𝑟

𝜕𝐶1
=  (∑ −2 (𝑓𝑖 − 2 (𝐶1𝜆𝑖 + 𝐶2 −

𝐶1

𝜆𝑖
2 −

𝐶2

𝜆𝑖
3))𝑛

𝑖=1 2 (𝜆𝑖 −

 
1

𝜆𝑖
2)) = 0                         (23) 

𝜕𝑒𝑟𝑟

𝜕𝐶2
=  (∑ −2 (𝑓𝑖 − 2 (𝐶1𝜆𝑖 + 𝐶2 −

𝐶1

𝜆𝑖
2 −

𝐶2

𝜆𝑖
3)) 2 (1 −𝑛

𝑖=1

 
1

𝜆𝑖
3)) = 0                           (24) 

 
Rewriting the above two equations, we obtain: 
 

∑ 𝑓𝑖 (𝜆𝑖 −  
1

𝜆𝑖
2) − 2𝐶1 ∑ (𝜆𝑖

2 −
2

𝜆𝑖
+  

1

𝜆𝑖
4)𝑛

𝑖=1 −𝑛
   𝑖=1

2𝐶2 ∑ (𝜆𝑖 −
2

𝜆𝑖
2 + 

1

𝜆𝑖
5)𝑛

𝑖=1 0               (25) 

 

∑ 𝑓𝑖 (1 −
1

𝜆𝑖
3) − 2𝐶1 ∑ (𝜆𝑖 −

2

𝜆𝑖
2 +  

1

𝜆𝑖
5)𝑛

𝑖=1 −𝑛
𝑖=1

2𝐶2 ∑ (𝑛 −
2

𝜆𝑖
3 + 

1

𝜆𝑖
6)𝑛

𝑖=1 = 0              (26) 

 
Simultaneously solving equations 25 and 26 by 
substituting the values of ‘f’ and ‘λ’, the values of C1 and 
C2 are obtained. The values of stress obtained using the 
Mooney-Rivlin model has been calculated above.  

Apart from the Mooney-Rivlin model, there are two 
other models available to estimate the Young’s Modulus 
using the Stress vs Stretch plot (i) Hooke’s model and 
(ii) Neo-Hookean Model. 
 
Hooke’s model: Hooke’s law states that the stress is 
proportion to the stretch and the relation between the 
two has been shown in equation (27). 
𝑓  = 𝐶10 𝜆            (27) 
 
Where,  
f= Stress value and  

λ= Stretch value. 
 
The values of stress obtained using the Hooke’s model 
has been calculated. 
 
Neo-Hookean model: Neo-Hookean model is a hyper 
elastic material model that can be used for predicting 
the stress-strain behavior of materials, and the model is 
similar to Hooke’s law. The strain energy density 
function is described as follows: 
 
𝑊 =  𝐶10(𝐼1 − 3)          (28) 
 
The O-ring is assumed to be incompressible, therefore, 
using the Cauchy Stress Invariant I3, is given by: 
 
 𝜆1𝜆2𝜆3 = 1            (29) 
 
For the case of uniaxial tension or compression 
imparted to the O-ring the following values are used:  
 
𝜆1 =  𝜆             (30) 

𝜆2 =  
1

√𝜆
             (31) 

𝜆3 =  
1

√𝜆
             (32) 

 
Therefore, the Strain Energy Density function can be 
written as: 
 

𝑊 =  𝐶10(𝜆2 +  
2

𝜆
− 3)         (33) 

 
For an incompressible Neo-Hookean material, 
therefore, differentiating the strain energy density 
function with respect to 𝜆. 
 

𝑓  = 2𝐶10  (𝜆 −
1

𝜆2)          (34) 

 
C10= Material constant (Neo-Hookean constant) 
 
The value of Neo-Hookean constant can be determined 
from the above equation. The values of Neo-Hookean 
constant should be determined for each case and 
average value must be taken as Neo-Hookean constant. 
The values of stress obtained using the Neo-Hookean 
model is thus determined. 
 

3. Experimental Validation 
 
Two sets of stress vs strain experimental data for 
materials “AN 70 O-ring at 165˚C” and “GLS 70 at 175˚C” 
were obtained under both compression and tension 
conditions. The specimen height was 50mm and cross-
sectional area of 635mm2. The details of the 
experimental results and different models are discussed 
below. When the O-ring is placed inside the assembly, a 
part of the O-ring will undergo compression as a result 
of the applied load whereas the other part of the O-ring 
will suffer from tensile stress; therefore, both these 
modes have been considered in the analysis of the above 
proposed models. 
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Compression Mode: The values obtained for AN 70 O-
ring are tabulated in Table 1. Deformation of specimen 
is from 2%-32% of its total length. To obtain elastic 
constant from Hooke’s law, average value of force in 
each case was calculated.  

The stretch ratio λ is a fundamental quantity to 
describe material deformation. It is defined as the 
current length (deformed length) divided by the original 
length (50mm). Stress values are calculated from the 
equation,  
 

Stress =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓𝑓𝑜𝑟𝑐𝑒

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
       (35) 

Strain values are calculated from the equation, 
 

Strain=
𝑓𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
       (36) 

From these stress-strain values elastic constants are 
determined from Hooke’s law,  
 

E=
𝑠𝑡𝑟𝑒𝑠𝑠

𝑠𝑡𝑟𝑎𝑖𝑛
             (37) 

 
From the values of elastic constants, the specimen 
elastic constant is determined by taking the average 
value of elastic constants from each case. Value of elastic 
constant in this case is: 24.3031. 

The constants for the Neo-Hookean and Mooney-
Rivlin models were predicted using curve fit method 
using Eq. (21) and (22) respectively. The estimated 
value of constants and the stress values are shown in 
table 2. 
 

Table 1: Experimental Stress-strain values 
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291.3 284.4 287.85 2% 1 49 0.98 0.453 0.02 22.6654 

734.5 723.7 729.1 5% 2.5 47.5 0.95 1.148 0.05 22.6654 

1499.4 1483.7 1491.55 10% 5 45 0.9 2.348 0.1 23.489 

2294.8 2274.2 2284.5 15% 7.5 42.5 0.85 3.597 0.15 23.9843 

3143.0 3108.7 3125.85 20% 10 40 0.8 4.922 0.2 24.613 

4050.0 4012.9 4031.45 25% 12.5 37.5 0.75 6.348 0.25 25.395 

5511.3 5466.2 5488.75 32% 16 34 0.68 8.643 0.32 27.0116 

 

Table 2: Estimated value of constants and the stress values 
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-3.7015 C10=-5.12 3 47 0.94 0.06 1.2843 1.3501 1.46 

-3.632 C01=1.509 4 46 0.92 0.08 1.7514 1.8229 1.94 

-3.5103  6 44 0.88 0.12 2.7551 2.8062 2.91 

-3.3681  8 42 0.84 0.16 3.8664 3.8439 3.89 

-3.2279  9 41 0.82 0.18 4.469 4.3846 4.37 

-3.0886  11 39 0.78 0.22 5.7849 5.5125 5.34 

-2.915  13 37 0.74 0.26 7.2752 6.7055 6.31 

  14 36 0.72 0.28 8.0981 7.327 6.80 

  15 35 0.7 0.3 8.9809 7.9652 7.29 
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Comparison of stretch values for different values of 
stresses of experimental and intermediate values for all 
three models are plotted in figure 3. From this figure it 
can be observed that Mooney-Rivlin model estimates 
the value closest to the experimental value.  
 

 
 

Fig. 3 Comparison of stress vs stretch for AN 70 under 
compression 

 

The test was repeated for GLS 70 O-Ring at 175°C in 
compression mode. The comparison of the results is 
shown in figure 4. 
 

 
 

Fig. 4 Comparison of stress vs stretch for GLS 70 under 
compression 

 

Tension Mode: The similar test was repeated for 
samples in tension. The comparison of result is shown 
in figure 5(a) and (b) for AN 70 and GLS 70 respectively. 
 
 

 
(a) AN 60 

 

 
(b) GLS 70 

 

Fig. 5 Comparison of stress vs stretch for in-tension 
mode 

It is inferred from the above plots that Mooney-Rivlin 
model is the best model which describes the behavior of 
materials in tension and compression compared to 
other theoretical models. Hence in the present work, 
Mooney-Rivlin model is used to estimate Young’s 
Modulus. 

Contact Width: Compression applied to the O-ring 
causes it to deform along the groove surface. The 
contact width thereafter generated has been described 
as a function of the squeeze imposed on the O-ring. The 
absence of the restraining effects of the lateral walls 
allows for the expansion of the O-ring along the radial 
direction.  
 
𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑊𝑖𝑑𝑡ℎ = 1.5 ∗ 𝜓2/3       (38) 
 
Load per unit length: The elastic reaction of the O-ring 
under deformation, is the prime reason for the 
utilization of the O-ring for sealing purposes. With the 
increase in the compression within elastic limits, the 
load per unit length can be easily estimated as a function 
of the Young’s Modulus cross-section diameter and the 
squeeze of the O-ring. 
 
𝐿 = 𝐸 ∗ 𝑑 ∗ (1.25 ∗ 𝜓1.5 + 50 ∗ 𝜓6)     (39) 
 
After calculating the load per unit length, the total 
compressive force can be estimated by multiplying the 
load per unit length with the circumferential length (𝜋 ∗
𝐷). This is represented in eq. (40). 
 
𝐶𝑜𝑚𝑝_𝐹𝑜𝑟𝑐𝑒 =  𝜋 ∗ 𝐿 ∗ 𝐷         (40) 
 
Average stress over the O-ring: The primary sealing 
feature of an O-ring is the generation of contact stress 
upon deformation, which will be distributed over the 
contact width generated as a result of compression. The 
average stress can be evaluated using: 
 

𝑆𝑡𝑟𝑒𝑠𝑠 = 𝐸 ∗ √
8

3𝜋
∗  [1.25 ∗ 𝜓1.5 + 50 ∗ 𝜓6]   (41) 

 
Peak contact stress: The contact stress generated will be 
distributed in such a way that the maximum stress 
generated will be at the center of the contact width 
which will be evaluated using eq. (42). 
 
 𝑀𝑎𝑥𝐶𝑜𝑛𝑡𝑆𝑡𝑟𝑒𝑠𝑠 = (𝐸(2.62𝜓 − 8.85 𝜓2 + 12.83 𝜓3)) (42) 
 
The internal fluid sealed by the O-ring will exert 
pressure on the O-ring, thereby, deforming it further. 
This consequent deformation will result in increased 
contact pressure generation by the O-ring. This stress is 
known as hydro-stress and is expressed as the product 
of Poisson’s ratio times the fluid pressure. This increase 
is calculated using eq. (43). 
 

𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑟𝑒𝑠𝑠 =  𝜐 ∗ 𝑃1         (43) 
 

𝑀𝑎𝑥𝐶𝑜𝑛𝑡𝑆𝑡𝑟𝑒𝑠𝑠𝑓𝑙𝑢𝑖𝑑 = (𝐸(2.62𝜓 − 8.85 𝜓2 +
12.83 𝜓3) + 𝜐 ∗ 𝑃1)          (44) 
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4. Axially Loaded Lubricated Condition 
 
Lubrication is provided to the O-ring in order to 
increase the life of the O-ring safeguarding the O-ring 
against wear and fatigue. When lubrication is provided 
to an O-ring, the fluid will tend to swell up the O-ring 
which will result in the increase in cross-section 
diameter of the O-ring. The increased diameter is then 
calculated taking into consideration the percentage of 
swell (sw) and thereafter using eq. (44). 
 

𝑑1 = 𝑑√1 + 0.01𝑆𝑤          (44) 
 
Squeeze for lubricated O-ring after loading: With the 

change in diameter, the equivalent squeeze also changes 

and therefore, it is calculated using eq. (45). 

 

𝑠𝑞𝑢𝑒𝑒𝑧𝑒 =  𝜓 ∗ 𝑑1          (45) 

 

Load per unit length for lubricated O-ring: The load 

changes with the change in the cross-sectional diameter 

and is given by the expression below: 

 

𝐿 = 𝐸 ∗ 𝑑1 ∗ (1.25 ∗ 𝜓1.5 + 50 ∗ 𝜓6)     (46) 

 

After calculating the load per unit length, the total 

compressive force can be estimated by multiplying the 

load per unit length with the circumference (𝜋 ∗ 𝐷). This 

is represented in eq. (47). 

 

𝐶𝑜𝑚𝑝_𝐹𝑜𝑟𝑐𝑒 =  𝜋 ∗ 𝐿 ∗ 𝐷        (47) 

 

The contact width and the contact stress generated for 

the O-ring have the same formula’s which have been 

covered in Eq. (38), (41), (42), (43) and (44) 

respectively. 

 
5. Radially Loaded O-Ring 
 

  
 

Fig. 6 Radial O-ring without Groove 
 
The arrangement for the radial no groove arrangement 
is depicted in figure (6). The arrangement functions 
such that the O-ring is free to expand axially as a result 
of which the corresponding shape of the O-ring under 
load changes to the figure 7, given below: 

 Fig. 7 
Deformed shape of O-ring 

 
The applied compression on the O-ring will result in the 
change in the cross-section of the O-ring as shown in 
figure (7). In order to define the change in the O-ring 
shape, a parameter called as Compression ratio (ψ) is 
introduced which is defined as the change in the cross-
sectional diameter divided by the original cross-
sectional diameter.  
 

𝜓 =  
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
        (48) 

 
There are two possible installations of the O-ring into 
the assembly: (i) Unlubricated condition and (ii) 
Lubricated condition. Both of these conditions have 
been discussed separately. 
 
6. Radially Loaded Unlubricated Condition 
 
The unlubricated condition pertains to the installation 
of the O-ring inside the assembly without lubrication 
being provided to its surface. For static applications, 
where the movement between the sealing faces and the 
O-ring surface is negligible, unlubricated O-rings do not 
drastically affect the life of the O-ring. 

Inner Diameter of the O-ring: The initial requirement 
are the inner diameter of the cylinder and the distance 
between the sealing faces for the calculation of the inner 
diameter of the O-ring. 
 
𝐼𝐷𝑂−𝑟𝑖𝑛𝑔 =  𝐼𝐷𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 − 2𝐶       (49) 

 
Squeeze: The O-ring under compression will undergo an 
effective squeeze which is calculated from the product 
of compression ratio (ψ) and O-ring diameter (d). The 
formulation is given in equation (50). 

 
𝑠𝑞𝑢𝑒𝑒𝑧𝑒 =  𝜓 ∗ 𝑑          (50) 
 
Young’s Modulus (E): The Young’s Modulus for the O-
ring can be calculated using two methods: (i) Using 
hardness and (ii) Using Stress-Strain values. Both of 
these methods have been discussed in detail earlier 
Contact Width: The contact width is a function of the 
squeeze imposed on the O-ring. Contact width 
generated increases with the increase in the 
compression ratio and is given by eq. (51). 
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𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑊𝑖𝑑𝑡ℎ = 1.5 ∗ 𝜓2/3       (51) 
 
Load per unit length: With the increase in the 
compression within elastic limits, the load per unit 
length can be easily estimated as a function of the 
Young’s Modulus cross-section diameter and the 
compression ration of the O-ring. 
 
𝐿 = 𝐸 ∗ 𝑑 ∗ (1.25 ∗ 𝜓1.5 + 50 ∗ 𝜓6)     (52) 
 
After calculating the load per unit length, the total 
compressive force can be estimated by multiplying the 
load per unit length with the circumference (𝜋 ∗ 𝐷). This 
is represented in eq. (53). 
 
𝐶𝑜𝑚𝑝_𝐹𝑜𝑟𝑐𝑒 =  𝜋 ∗ 𝐿 ∗ 𝐷         (53) 
 
Average stress over the O-ring: The contact stress 
generated will be distributed over the contact width. 
The average stress can be evaluated using: 
 

𝑆𝑡𝑟𝑒𝑠𝑠 = 𝐸 ∗ √
8

3𝜋
∗  [1.25 ∗ 𝜓1.5 + 50 ∗ 𝜓6]   (54) 

 
Peak contact stress: The contact stress generated will be 
distributed in such a way that the maximum stress 
generated will be at the center of the contact width 
which will be evaluated using eq. (55). 
 
 𝑀𝑎𝑥𝐶𝑜𝑛𝑡𝑆𝑡𝑟𝑒𝑠𝑠 = (𝐸(3.4𝜓 − 11.28 𝜓2 + 21.75 𝜓3)) (55) 
 
The sealed fluid pressure further deforms the O-ring 
and due to the elastic nature of the material, it results in 
an increase in the contact stress thereafter generated. 
This increase is calculated using eq. (56). 
 
𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑟𝑒𝑠𝑠 =  𝜐 ∗ 𝑃1         (56) 
 
𝑀𝑎𝑥𝐶𝑜𝑛𝑡𝑆𝑡𝑟𝑒𝑠𝑠𝑓𝑙𝑢𝑖𝑑 = (𝐸(3.4𝜓 − 11.28 𝜓2 +
21.75 𝜓3) + 𝜐 ∗ 𝑃1)          (57) 
 
7. Radially Loaded Lubricated Condition 
 
When lubrication is provided to an O-ring, the fluid will 
tend to swell up the O-ring which will results in the 
increase in cross-section diameter of the O-ring. The 
increased diameter is then calculated taking into 
consideration the percentage of swell (sw) and 
thereafter using eq. (58). 
 

𝑑1 = 𝑑√1 + 0.01𝑆𝑤          (58) 
 
Squeeze under lubricated conditions: With the change 
in diameter, the equivalent squeeze also changes and 
therefore, is calculated using eq. (59). 

 
𝑠𝑞𝑢𝑒𝑒𝑧𝑒 =  𝜓 ∗ 𝑑1          (59) 
 
Load per unit length under lubrication: With the 
provision for the lubrication of the O-ring, the load per 

unit length acting on the O-ring will vary as it is a 
function of the cross-section diameter of the O-ring. 
With the increase in the compression within elastic 
limits, the load per unit length can be easily estimated 
as a function of the Young’s Modulus cross-section 
diameter and the squeeze of the O-ring. 
 
𝐿 = 𝐸 ∗ 𝑑1 ∗ (1.25 ∗ 𝜓1.5 + 50 ∗ 𝜓6)     (60)  
 
After calculating the load per unit length, the total 
compressive force can be estimated by multiplying the 
load per unit length with the circumference (𝜋 ∗ 𝐷). This 
is represented in eq. (61). 
 
𝐶𝑜𝑚𝑝_𝐹𝑜𝑟𝑐𝑒 =  𝜋 ∗ 𝐿 ∗ 𝐷        (61) 
 
The contact width and the contact stress generated for 
the O-ring have the same formula’s which have been 
covered in Eq. (51), (54), (55), (56) and (57) 
respectively. 
 
Conclusion 
 
In this paper, the design of the O-ring inside a no groove 
assembly has been considered. Both axial as well as 
radial loading of the O-ring has been taken into 
consideration with the case of a lubricated O-ring dealt 
with separately for each case. The design includes the 
calculation of the compression imposed upon the O-ring 
following which the values of the contact width, contact 
stress, and Young’s Modulus were estimated. The effect 
of the sealed fluid pressure on the contact stress was 
also taken into consideration. Various tolerances 
involved during the design process were also 
incorporated.  
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