
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2021 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

1191| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

SAS Command Line Interface Code Generator

Ritupriya Andurkar1, Pravin S. Game2, Rakesh Jadhav3 and Arvind Jagtap4

1,2Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India
3,4Department of Business Intelligence & Platforms R&D SAS R&D, India Pvt. Ltd Pune, India.

Received 10 Nov 2020, Accepted 10 Dec 2020, Available online 01 Feb 2021, Special Issue-8 (Feb 2021)

Abstract

Command line interfaces (CLIs) provide easy to use abstraction on top of REST (Representational State Transfer)
APIs (Application Programming Interfaces) and they are helpful in automation. Hence CLIs are used as interfaces for
administrative work. In the latest SAS platform, a CLI framework is introduced which supports a structure of
commands, subcommands, and flags. Currently, CLIs are developed manually by programmers. This requires a lot of
time and cost. To ease the CLI development automation is being considered as per ‘12-factor app’ methodology which
says, ‘use declarative formats setup automation, to minimize time and cost for new developers joining the project’.
This work involves developing a tool to generate CLI code. CLIs are mainly driven by REST endpoints. The Input will
be swagger file which contains API specification and CLI code will be generated as output. One CLI command will be
generated for each REST endpoint. This tool can be helpful to CLI developers for quick start with generation of
boilerplate code. As most of the code will be generated automatically, efforts required for CLI development will be
reduced, thus saving the involved time and cost. This tool will also help to maintain the consistency in CLI code for
different services.

Keywords: Code Generators, Command line Interfaces, Representational State Transfer (REST)

Introduction

A code generator is a tool which generates code based
on some specification. Several code generators are
found in literature. They generate source codes from
specifications such as UML diagrams, XML documents,
etc. Command line Interface is a textbased interface
between user and computer where a line of text (called
command line) is passed between the two for
communication [1]. An application programming
interface (API) is a code that allows two software
programs to communicate with each other. An API
defines the correct way for a developer to request
services from an operating system (OS) or other
application and expose data within different contexts
and across multiple channels [2]. In the latest SAS
platform, a CLI framework is introduced which
supports a structure of commands, subcommands, and
flags. SAS APIs are based on REST architecture. REST
(REpresentational State Transfer) is a distributed
programming architectural style in which the World
Wide Web is viewed generally as a large distributed
application. In this style, the application is distributed
as structured data rather than by explicitly invoking
remote procedure calls on remote objects. Each data
element is a resource, addressed by a URI (Uniform
Resource Identifier), which may be provided in
multiple representations. The state is defined by

resources consumed by the client rather than being
hidden behind a session identifier in a service tier. A
limited vocabulary of standard verbs is used to
manipulate that state. (By contrast, Web Services,
whether SOAP or XML-RPC, tend to use domain-
specific verbs: uniquely-named remote procedure calls
or remote object methods.) A limited vocabulary of
return values describes the context of the results. [3]
OpenAPI Specification (formerly Swagger
Specification) is an API description format for REST
APIs. An OpenAPI file allows you to describe your
entire API, including:
• Available endpoints (/users) and operations on
each endpoint (GET /users, POST
/users)
• Operation parameters Input and output for each
operation
• Authentication methods
• Contact information, license, terms of use and other
information.
API specifications can be written in YAML or JSON.
[4]
Manual development of Command line interfaces
(CLIs) requires a lot of time and effort. It also requires
some initial learning for understanding the Application
Programming Interfaces (APIs) for which CLIs are to be
developed and the SAS CLI framework which is used in
development of CLIs. Automation can help to ease CLI

http://inpressco.com/category/ijcet

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

1192| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

development. Study of existing CLI code shows that
there exists a pattern in CLI code for different services.
They all provide functionality for common operations
such as create, read, update and delete. This pattern
can be used to create a template which will help in the
generation of the CLI code. This will help to reduce
developer‟s efforts required for CLI development and
will also help to maintain consistency in CLIs of
different services. In this work, a code generator will
be developed which will generate command line
interface (CLI) code for web services which are
exposed through REST APIs. The input to the tool will
OpenAPI specification (swagger document) and the
output will be CLI code in Go language.

Literature Survey

Kundu et al. [5] proposed an approach to generate code
from UML sequence diagrams. It consists of two steps:
construction of „graph model‟ from UML sequence
diagrams and code generation from the „graph model‟.
It is used to generate code within class methods. The
proposed approach is most effective for controller
classes as compared to entity and boundary classes.
 J. Jagadeesan and G.M. Kadhar Nawaz [6] proposed a
mechanism to make a generalized system of
MultiLanguage Source Code Generation. It takes
database structure as input and produces source code
in Java,
Java script, JSP, PHP and ASP. Database connectivity
code and SQL queries are generated using template-
based approach where application specific code is
inserted in standard templates. The generated code can
be utilized for both web based and pc-based
applications.
S. Viswanathan and P. Samuel [7] proposed an
algorithm to generate code from the combined model
of activity and sequence diagrams consisting of
concurrent activities. The proposed algorithm can
generate class definition, method definition and
control flow. A case study is also presented that
demonstrates the generation of Java code for ATM
operation.
J. Hoyos and F. Restrepo-Calle [8] proposed an
approach to automatically generate a web application
prototype running business processes using a
restricted natural language specification. The code
generation process consists of three phases: lexical
syntactic analysis, information extraction and source
code generation. This helps in fast prototyping based
on initial user requirements which can further be
refined by examining the generated prototype.
 Sunitha E.V. and P. Samuel [9] proposed an
architecture of the code generator and the process of
code generation from UML state Chart diagrams. They
proposed a two-phase approach: In the first phase
State chart diagrams are converted to XML documents
and in the second phase code is generated using this
XML document. A design pattern for implementation of
state diagram which includes hierarchical, concurrent,

and history states is also proposed. Code generator
generated code from UML state chart diagrams with
the help of this design pattern.

Proposed Methodology

The development of proposed tool is based on
template-based approach. In this work, templates are
used which provide the skeleton for CLI code and
specific tokens in these templates are replaced with
values extracted from swagger specification. This leads
to generation of service specific CLI code from generic
templates.

Fig 1. Block Diagram of proposed Code Generator

The input to the code generator will be OpenAPI
specification (swagger document). This document will
be converted to an intermediate model and then CLI
code will be generated using this intermediate model
and the code templates. The above figure illustrates
these steps.

Conclusion

The proposed tool will generate command line
interface code in go language provided an OpenAPI
specification (swagger specification) of a web service.
This will help to reduce the time and effort required for
command line interface development. It will also help
to maintain consistency in command line interfaces of
different web services.

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

1193| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

References

[1]. “Command Line Interface,” available at

https://www.defit.org/command-line-interface/,
accessed on 15/10/2019

[2]. “Application Program Interface,” available at https://
searchapparchitecture.techtarget.com/definition/
applica tion-program-interface-API, accessed on
15/10/2019

[3]. “REST,” available at http://sww.sas.com/saspedia
/REST, accessed on 15/10/2019

[4]. “What is OpenAPI,” available at https://swagger.io
/docs/specification/about/, accessed on 15/10/2019.

[5]. D. Kundu, D. Samanta, R. Mall, “Automatic code
generation from unified modelling language sequence
diagrams,” IET Software, vol.7, Issue. 1, pp.12-28, 2013.

[6]. J. Jagadeesan, G.M. Nawaz, “Multilanguage source code
Generator for Database oriented application using JSP,”
International Journal of Research in Engineering and
Technology, Vol. 4, Issue 7, pp. 407 – 410, 2015.

[7]. S. Viswanathan, P. Samuel, “Automatic code generation
using unified modelling language activity and sequence
models,” IET software, Vol. 10, Issue 6, pp. 164-172,
2016.

[8]. J. Hoyos and F. Restrepo-Calle, “Automatic source code
generation for web-based process-oriented information
systems,” 12th international Conference on Evaluation of
Novel Approaches to software Engineering, pp. 103 –
113, 2017.

[9]. Sunitha E.V. and P. Samuel, “Automatic Code Generation
from UML State Chart Diagrams,” IEEE Access, Vol. 7, pp.
8591- 8608, 2019.

