
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2021 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

1181| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

AST based Semantic Code Clone Detection using Deep Learning

Sudip Mahajan, Dr. Geetanjali V. Kale and Sudarshan Bhide

Computer Department Pune Institute of Computer Technology Pune, India

Received 10 Nov 2020, Accepted 10 Dec 2020, Available online 01 Feb 2021, Special Issue-8 (Feb 2021)

Abstract

Software Cloning as an inconsistency in source code has attracted lot of attention across Software Engineering
research community. Code Cloning may have adverse effects on software development process and hence a developer
should be aware about its facets. Present work aims to highlight challenges in processing Abstract Syntax Tree and
applying deep learning approaches on AST representation of source code towards establishing semantic proximity of
code fragments. The SeSaMe dataset is used in this work for code clone detection. Results are promising and
encourage using larger datasets.

Keywords: Software clone; code clone detection; deep learning

Introduction

Computers are an intrinsic part of modern revolution.
They have their own language of communication in the
form of high or low level programming languages.
Source code written using various tools has touched
the lives of millions today in varying aspects. Typically
programs are written in the form of source code using
high level languages which are converted to low level
languages using tools like compilers. The Indian IT
sector is poised to become USD $ 225 billion industry
by 2020. It continues to grow and provide livelihoods
to many software developers. Generally, software
undergoes various stages before they are launched for
intended customers. It is essential to analyze and
perform various tests on source code of these soft
wares before it is deployed to the market.

Fig. 1. Types of Clones [2]

Code Smell is an indicator or hint that something is not
right with the code. Clone detection is a problem of
static code analysis used to reduce code smells. Code
cloning is the most important code smell described in
the literature and it has received due attention in
recent times [1]. Research community is yet to find a
proper and universal definition of the term ‘clone’.

Similarly, definitions for types of clones are also hazy
in literature with little distinction amongst them.
Dominently, 4 major types of clones are identified as
shown in Fig. 1. As can be seen from Fig. 1, types 3 and
4 are the most ambiguous types, whereas types 1 and 2
are easy to identify.There are a variety of reason why
cloning happens in software development including
code reuse, inadvertent mistakes, inconsistent source
code editing etc. Code Cloning can lead to software
maintenance and management difficulties as observed
by considerable studies [3]. Cloning can cause harm to
software development process in long run due to
vulnerable nature of cloned code. The original code, if
containing bugs, can lead to spread of bug infested
code due cloning. Hence it is important to be aware of
software cloning scenarios and have robust tools for
code clone detection.Source code can be seen in the
form of many representations such as Abstract Syntax
Tree (AST), Program Dependence Graph(PDG) etc. as
shown in Table 1. Every representation has its pros
and cons. No representation has been shown to be
perfect for this task. In present work, the
representation of AST is used owing to its widespread
use and prolific availability of AST generator tools. AST
is an important intermediate representation when
source code transforms itself from high level language
to machine understandable binary code. It is seen as a
condensed form of parse tree generated after syntactic
analysis phase of code compilation.

Related Literature

A. CNN based approaches

Convolution Neural Networks are an important class of
algorithms which have proved most useful on images.

http://inpressco.com/category/ijcet

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

1182| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

CNNs are extended versions of simple neural networks
with additional capabilities. The ImageNet challenge
propelled CNNs to limelight for successful deep feature
extraction. CNNs have special layers such as max-
pooling, convolution, fully-connected layers to extract
higher level features from input. CNNs were
traditionally defined on image inputs and encounter
difficulties to work upon ASTs. CNNs show capability to
extract Deep features but using them on Tree
Structures like AST is difficult and needs more
exploration. Source code is a non-conventional input
for which CNN was NOT made. To modify CNNs right
from the definition of convolution is a promising way
to use CNNs over source code. Accordingly [4] propose
a new architecture called as Tree Based Convolution
Neural Network with a custom defined Tree based
convolution layer. The method calls are often
important in a code snippet to understand meaning of
the code. An AST has generic nodes to indicate method
invocation which causes loss of information. Hence, [5]
again use Tree Based Convolution over api-enhanced
Abstract Syntax Tree for code clone detection problem.
The AST used by them contains additional annotations,
like invoked APIs, to aid in semantic code clone
detection.

Table I basic types of code representations

Category Code form Comparison Clone types

Text based Text String matching Type 1

Token based Token Token matching Type 1, Type 2

Metric based Text Metric vector
Type 1, Type

2, Type 3

Abstract
Syntax Tree

AST
Subtree

matching
Type 1, Type

2, Type 3

Program
Dependence

Graph
PDG

Isomorphic sub
graphs

detection

Type 1, Type
2,

Type 3, Type 4

B. LSTM based approaches

 LSTMs are an improvement over recurrent neural
networks with additional gates to prevent vanishing /
exploding gradient problems. They have proven
successful in capturing long term dependencies in
Natural Language Processing and hence may prove
useful for source code as well. [6] try to extract lexical
and syntactic features from source code in order to
establish software functional similarity between codes.
The approach is to use LSTM on AST to generate a
representation which is hashed to generate a hash
value of original source code. Thus hash value can be
used for comparison with another code snippet for
establishing similarity. Such use of LSTMs on ASTs is
full of drawbacks as

1. AST is processed as a sequence of tokens by LSTMs
and the use of AST is only as a guide to indicate order
of consideration of code tokens. The structure of code
is not really captured by above technique.

2. The number of child nodes varies for different
nodes and hence AST sometimes needs to be converted
into full binary tree.
3. Capturing long term context has always been a
challenge for LSTMs. It becomes more important to
establish dependencies in the context of code.
C. RNN based approaches
Code can be seen as a sequence of tokens just like text
in NLP. Hence Recurrent Neural Networks can be
applied on code to capture its meaning. Recursive
Neural Networks are a slight variation on Recurrent
Neural Networks which visualize code as a sequence of
tokens and try to use long range dependencies
between tokens. RNNs are composed of cells or stages
which are recursive in nature. Every cell has a well
defined function that is repeated for all. The sequence
token is taken as input, and some output is generated
based upon cell logic. At the same time, hidden inputs
are passed onto next stage. They have proved
important in Natural Language Processing and hence
are applied to source code which is seen as formal
language. [7] proposed Recursive NN based Siamese
networks on ASTs to generate code embedding and
compute cosine similarity between generated
embedding to determine whether code snippet pair is a
clone of each other. [7] combine Lexical and Syntactic
features learnt using Recurrent NN and Recursive NN
respectively. The challenge with their approach is
requirement to convert AST to full binary tree and then
to Olive trees because of varying number of child nodes
in an AST. Traditional Recurrent Neural Networks
suffer from challenges like vanishing gradient and
inability to capture long range dependencies between
input. They have limited memory and do NOT retain
context for a long time.

Proposed Methodology

The broad steps shown in Fig. 2 can be elaborated as
follows:
Step 1. Initially, a survey needs to be done of the
available and usable datasets. Suitable dataset needs to
be identified and studied for the use of code clone
detection task. The dataset should ideally contain
enough variability and capture realistic scenarios of
code cloning during development process.
Step 2. For present work, AST is chosen as a
representation of code, hence AST needs to be
generated with suitable tools. Different generator tools
generate ASTs that vary in the level of detail.
Step 3. The AST generated in step number 2 is referred
to as raw AST which cannot be used directly. It needs
to be processed and converted into computationally
feasible and understandable representation. Here,
ASTs are converted into adjacency matrices which are
in turn flattened into vector representations.
Step 4. It is now possible to train a deep learning model
for code clone detection task. The training phase takes
as input code snippets in the form of processed ASTs
with associated labels. Here, twin arm based

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

1183| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

architecture Siamese Network based model is used as
shown in Fig 4. The input to the architecture is a
labelled code snippet which makes Siamese Networks
ideal for code clone detection problem.
Step 5. The trained network predicts whether test
snippets are clone or not. Results should be analyzed
for further improvement on pre-processing and clone
detection logic.
Fig. 3 shows the high level view of proposed
architecture used for this task. It is a twin architecture
which takes as input a
method clone pair converted into vectors. An
explanation of various layers used in the architecture is
as follows:
1. Input Layer: The role of this layer is to take the
input with correct dimensionality and pass it over to
Embedding layer.
2. Embedding Layer: This layer maps and converts
input to vectors of required dimensions.
3. LSTM Layer: This stage has only one LSTM cell
which takes as input the embedding layer generated
vectors. The typical LSTM layer tries to convert input
vector to vector of embeddings which captures
semantics of input code snippets. In this embedding
space, codes which are similar to each other should be
close, whereas code fragments of different meaning
should move far away from each other.
4.

Fig. 2. Methodology for Code Clone Detection

5. Cosine Similarity: This layer computes Cosine
Similaritybetween the embedding vectors as generated
by previous LSTM layers.
6. Dense Layer: This is the final layer consisting of only
one neuron which captures threshold of the cosine
similarity distance given by previous layer. It decides
whether the input code snippet is a clone or not
depending upon learned threshold.

Dataset and Experimentation

For present work, the SeSaMe dataset [8] is used.
SeSaMe stands for semantically similar Java methods.
The authors have used manual tagging as well as
algorithmic efforts to establish similarity amongst Java
method pairs. They looked at many active project
repositories in open domain to ensure the dataset

contains actual development code as against synthetic
code. The authors assign a similarity score to method
pairs which indicates how semantically close the
method pairs are. The dataset contains Java method
pairs from active repositories which are semantically
similar according to following aspects:

1. Goals of the method
2. Operations contained inside the method
3. Effects of the method on rest of the code

It is reasonable to use above points to establish
semantic similarity of Java methods. Above points
make the dataset suitable to be used for semantic code
clone detection problem. However, there are no other
approaches making use of SeSaMe dataset for clone
detection problem as yet.
In present work, a subset of this dataset is extracted for
training and test (cross-validation) purposes.
Currently, a subset of 400 method pairs is extracted for
this purpose. These method pairs are converted to
ASTs which are further converted to adjacency
matrices. These adjacency matrices are flattened into
vectors for passing them to proposed deep
architecture. The ASTs are converted to adjacency
matrices using a dictionary of all possible internal
types encountered in Java language. Adjacency
matrices are converted to vectors by flattening the
matrix. About 350 method pairs are used for training
and the rest are used for validation purposes. In all, the
proposed architecture leads to 16, 418 tunable
paramaters to play with. Training happens using
Gradient Descent algorithm.
Many Deep learning frameworks are availabel today
which are open source and under active development.
Implementation of proposed Siamese Network is done
using Keras, a python based framework owing to
widespread use. Python is chosen as the language of
implementation as it supports many built-in
functionalities and packages. The implementation took
place in stages of pre-processing, training and testing
phase.

Fig. 3. Siamese Architecture

Results and Discussion

The SeSaMe dataset consists of only 900 pairs of
semantically similar java methods from various active
repositories, out of which 400 pairs are successfully
extracted for this task. Due to limited dataset, the

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

1184| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

accuracy does not go beyond a certain point. The
‘binary cross-entropy’ loss does reduce to a minimum
of 0.2889 as observed in 5 epochs. The dataset named
as BigCloneBench [10] is currently the best known
benchmark dataset for the task of code clone detection.
Future work consists of training the proposed
architecture on such large scale dataset to achieve
realistic results and accuracy.

Conclusion

The problem of code clone detection is very important
from industrial point of view. Cloning has diverse
effects on software maintenance as it can lead to bug
propogation. This work used Abstract Syntax Tree
representation of code and deep learning networks for
identifying semantically similar code snippets.
Specifically the LSTM based Siamese Neural Networks
show promise as can be seen by reduction in error
value on SeSaMe dataset. Code clone detection is still
an open problem with lots of practical challenges and
ambiguity with regard to important aspects of source
code. This work highlights challenges of processing
code in the form of Abstract Syntax Tree and building
code detection logic using deep learning. For deep
learning networks, it is essential to have large scale
datasets to learn robust features capturing semantics
of data. Future work includes scaling of training
dataset to achieve more accuracy.

Acknowledgement

This work is sponsored by Embold Software Private
Limited.

References

[1]. A. Gupta, B. Suri, and S. Mishra, -A Systematic Literature,

Int. Conference on Computational Science and Its
Applications, pp. 665-682, July 2017.

[2]. E. Kodhai and S. Kanmani, -Method-level code clone
detection for java through hybrid approach, Int. Arab. J.
Inf. Technol., pp. 914-922., Jan 2014.

[3]. M. Morshed, M. Rahman, S. Ahmed, -A literature review
of code clone analysis to improve software maintenance
process, arXive preprint, May 2012.

[4]. L. Mou, G. Li, L. Zhang, T. Wang, Z. Jin, -Convolutional
neural networks over tree structures for programming
language processing, Thirtieth AAAI Conf. On Artificial
Intelligence, Feb 2016.

[5]. L. Chen, W. Ye, S. Zhang, -Capturing source code
semantics via tree-based convolution over API-enhanced
AST, Proceedings of 16th ACM International Conference
on Computing Frontiers, pp. 174-182, April 2019.

[6]. H. Wei, M. Li, -Supervised Deep Features for Software
Functional Clone Detection by Exploiting Lexical and
Syntactical Information in Source Code,In IJCAI, pp.
30343040, Aug 2017.

[7]. L. Buch, A. Andrzejak, -Learning-based recursive
aggregation of abstract syntax trees for code clone
detection, IEEE 26 th

[8]. Int. Conf. On Software Analysis, Evolution and
[9]. Reengineering. SANER, pp. 95-104, Feb 2019.
[10]. M. White, M. Tufano, C. Vendome, D. Poshyvanyk, -

Deep learning code fragments for code clone detection,
IEEE/ACM Int. Conf. On Automated Software
Engineering . ASE., pp 8798, Sep 2016.

[11]. M. Kamp, P. Kruetzer and M. Philippsen, -SeSaMe: a
data set of semantically similar Java methods, IEEE/ACM
16th Int. Conf. On Mining Software Repositories, pp. 529-
533 , May 2019.

[12]. J. Svajlenko, J. Islam, I. Keivanloo, C. Roy, M. Mia, -
Towards a big data curated benchmark in inter-project
code clones, IEEE Int. Conf. On Software Maintenance
and Evolution, pp. 476-480, Sep 2014.

