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Abstract  
  
Software Cloning as an inconsistency in source code has attracted lot of attention across Software Engineering 
research community. Code Cloning may have adverse effects on software development process and hence a developer 
should be aware about its facets. Present work aims to highlight challenges in processing Abstract Syntax Tree and 
applying deep learning approaches on AST representation of source code towards establishing semantic proximity of 
code fragments. The SeSaMe dataset is used in this work for code clone detection. Results are promising and 
encourage using larger datasets. 
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Introduction 
 
Computers are an intrinsic part of modern revolution. 
They have their own language of communication in the 
form of high or low level programming languages. 
Source code written using various tools has touched 
the lives of millions today in varying aspects. Typically 
programs are written in the form of source code using 
high level languages which are converted to low level 
languages using tools like compilers.  The Indian IT 
sector is poised to become USD $ 225 billion industry 
by 2020. It continues to grow and provide livelihoods 
to many software developers. Generally, software 
undergoes various stages before they are launched for 
intended customers. It is essential to analyze and 
perform various tests on source code of these soft 
wares before it is deployed to the market.  
 

 
 

Fig. 1. Types of Clones [2] 
 
Code Smell is an indicator or hint that something is not 
right with the code. Clone detection is a problem of 
static code analysis used to reduce code smells. Code 
cloning is the most important code smell described in 
the literature and it has received due attention in 
recent times [1].  Research community is yet to find a 
proper and universal definition of the term ‘clone’. 

Similarly, definitions for types of clones are also hazy 
in literature with little distinction amongst them. 
Dominently, 4 major types of clones are identified as 
shown in Fig. 1. As can be seen from Fig. 1, types 3 and 
4 are the most ambiguous types, whereas types 1 and 2 
are easy to identify.There are a variety of reason why 
cloning happens in software development including 
code reuse, inadvertent mistakes, inconsistent source 
code editing etc. Code Cloning can lead to software 
maintenance and management difficulties as observed 
by considerable studies [3]. Cloning can cause harm to 
software development process in long run due to 
vulnerable nature of cloned code. The original code, if 
containing bugs, can lead to spread of bug infested 
code due cloning. Hence it is important to be aware of 
software cloning scenarios and have robust tools for 
code clone detection.Source code can be seen in the 
form of many representations such as Abstract Syntax 
Tree (AST), Program Dependence Graph(PDG) etc. as 
shown in Table 1. Every representation has its pros 
and cons. No representation has been shown to be 
perfect for this task. In present work, the 
representation of AST is used owing to its widespread 
use and prolific availability of AST generator tools. AST 
is an important intermediate representation when 
source code transforms itself from high level language 
to machine understandable binary code. It is seen as a 
condensed form of parse tree generated after syntactic 
analysis phase of code compilation. 
 

Related Literature 
 

A. CNN based approaches 
 
Convolution Neural Networks are an important class of 
algorithms which have proved most useful on images. 
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CNNs are extended versions of simple neural networks 
with additional capabilities. The ImageNet challenge 
propelled CNNs to limelight for successful deep feature 
extraction. CNNs have special layers such as max-
pooling, convolution, fully-connected layers to extract 
higher level features from input. CNNs were 
traditionally defined on image inputs and encounter 
difficulties to work upon ASTs. CNNs show capability to 
extract Deep features but using them on Tree 
Structures like AST is difficult and needs more 
exploration. Source code is a non-conventional input 
for which CNN was NOT made. To modify CNNs right 
from the definition of convolution is a promising way 
to use CNNs over source code. Accordingly [4] propose 
a new architecture called as Tree Based Convolution 
Neural Network with a custom defined Tree based 
convolution layer. The method calls are often 
important in a code snippet to understand meaning of 
the code. An AST has generic nodes to indicate method 
invocation which causes loss of information. Hence, [5] 
again use Tree Based Convolution over api-enhanced 
Abstract Syntax Tree for code clone detection problem. 
The AST used by them contains additional annotations, 
like invoked APIs, to aid in semantic code clone 
detection. 
 

Table I  basic types of code representations 
 

Category Code form Comparison Clone types 

Text based Text String matching Type 1 

Token based Token Token matching Type 1, Type 2 

Metric based Text Metric vector 
Type 1, Type 

2, Type 3 

Abstract 
Syntax Tree 

AST 
Subtree 

matching 
Type 1, Type 

2, Type 3 

Program 
Dependence 

Graph 
PDG 

Isomorphic sub 
graphs 

detection 

Type 1, Type 
2, 

Type 3, Type 4 

 
B. LSTM based approaches 
        
 LSTMs are an improvement over recurrent neural 
networks with additional gates to prevent vanishing / 
exploding gradient problems. They have proven 
successful in capturing long term dependencies in 
Natural Language Processing and hence may prove 
useful for source code as well. [6] try to extract lexical 
and syntactic features from source code in order to 
establish software functional similarity between codes. 
The approach is to use LSTM on AST to generate a 
representation which is hashed to generate a hash 
value of original source code. Thus hash value can be 
used for comparison with another code snippet for 
establishing similarity. Such use of LSTMs on ASTs is 
full of drawbacks as 
 
1. AST is processed as a sequence of tokens by LSTMs 
and the use of AST is only as a guide to indicate order 
of consideration of code tokens. The structure of code 
is not really captured by above technique. 

2. The number of child nodes varies for different 
nodes and hence AST sometimes needs to be converted 
into full binary tree. 
3. Capturing long term context has always been a 
challenge for LSTMs. It becomes more important to 
establish dependencies in the context of code.  
C. RNN based approaches 
Code can be seen as a sequence of tokens just like text 
in NLP. Hence Recurrent Neural Networks can be 
applied on code to capture its meaning. Recursive 
Neural Networks are a slight variation on Recurrent 
Neural Networks which visualize code as a sequence of 
tokens and try to use long range dependencies 
between tokens. RNNs are composed of cells or stages 
which are recursive in nature. Every cell has a well 
defined function that is repeated for all. The sequence 
token is taken as input, and some output is generated 
based upon cell logic. At the same time, hidden inputs 
are passed onto next stage. They have proved 
important in Natural Language Processing and hence 
are applied to source code which is seen as formal 
language. [7] proposed Recursive NN based Siamese 
networks on ASTs to generate code embedding and 
compute cosine similarity between generated 
embedding to determine whether code snippet pair is a 
clone of each other. [7]  combine Lexical and Syntactic 
features learnt using Recurrent NN and Recursive NN 
respectively. The challenge with their approach is 
requirement to convert AST to full binary tree and then 
to Olive trees because of varying number of child nodes 
in an AST. Traditional Recurrent Neural Networks 
suffer from challenges like vanishing gradient and 
inability to capture long range dependencies between 
input. They have limited memory and do NOT retain 
context for a long time. 
 
Proposed Methodology 
 
The broad steps shown in Fig. 2 can be elaborated as 
follows: 
Step 1. Initially, a survey needs to be done of the 
available and usable datasets. Suitable dataset needs to 
be identified and studied for the use of code clone 
detection task. The dataset should ideally contain 
enough variability and capture realistic scenarios of 
code cloning during development process. 
Step 2. For present work, AST is chosen as a 
representation of code, hence AST needs to be 
generated with suitable tools. Different generator tools 
generate ASTs that vary in the level of detail. 
Step 3. The AST generated in step number 2 is referred 
to as raw AST which cannot be used directly. It needs 
to be processed and converted into computationally 
feasible and understandable representation. Here, 
ASTs are converted into adjacency matrices which are 
in turn flattened into vector representations. 
Step 4. It is now possible to train a deep learning model 
for code clone detection task. The training phase takes 
as input code snippets in the form of processed ASTs 
with associated labels. Here, twin arm based 
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architecture Siamese Network based model is used as 
shown in Fig 4. The input to the architecture is a 
labelled code snippet which makes Siamese Networks 
ideal for code clone detection problem. 
Step 5. The trained network predicts whether test 
snippets are clone or not. Results should be analyzed 
for further improvement on pre-processing and clone 
detection logic. 
Fig. 3 shows the high level view of proposed 
architecture used for this task. It is a twin architecture 
which takes as input a 
method clone pair converted into vectors. An 
explanation of various layers used in the architecture is 
as follows: 
1. Input Layer:  The role of this layer is to take the 
input with correct dimensionality and pass it over to 
Embedding layer. 
2. Embedding Layer: This layer maps and converts 
input to vectors of required dimensions. 
3. LSTM Layer: This stage has only one LSTM cell 
which takes as input the embedding layer generated 
vectors. The typical LSTM layer tries to convert input 
vector to vector of embeddings which captures 
semantics of input code snippets. In this embedding 
space, codes which are similar to each other should be 
close, whereas code fragments of different meaning 
should move far away from each other. 
4.  

 
 

Fig. 2. Methodology for Code Clone Detection 
 

5. Cosine Similarity: This layer computes Cosine 
Similaritybetween the embedding vectors as generated 
by previous LSTM layers. 
6. Dense Layer: This is the final layer consisting of only 
one neuron which captures threshold of the cosine 
similarity distance given by previous layer. It decides 
whether the input code snippet is a clone or not 
depending upon learned threshold. 
 
Dataset and Experimentation 
 
For present work, the SeSaMe dataset [8] is used. 
SeSaMe stands for semantically similar Java methods. 
The authors have used manual tagging as well as 
algorithmic efforts to establish similarity amongst Java 
method pairs. They looked at many active project 
repositories in open domain to ensure the dataset 

contains actual development code as against synthetic 
code. The authors assign a similarity score to method 
pairs which indicates how semantically close the 
method pairs are.  The dataset contains Java method 
pairs from active repositories which are semantically 
similar according to following aspects: 

1. Goals of the method 
2. Operations contained inside the method 
3. Effects of the method on rest of the code 

It is reasonable to use above points to establish 
semantic similarity of Java methods. Above points 
make the dataset suitable to be used for semantic code 
clone detection problem. However, there are no other 
approaches making use of SeSaMe dataset for clone 
detection problem as yet. 
In present work, a subset of this dataset is extracted for 
training and test (cross-validation) purposes. 
Currently, a subset of 400 method pairs is extracted for 
this purpose. These method pairs are converted to 
ASTs which are further converted to adjacency 
matrices. These adjacency matrices are flattened into 
vectors for passing them to proposed deep 
architecture. The ASTs are converted to adjacency 
matrices using a dictionary of all possible internal 
types encountered in Java language. Adjacency 
matrices are converted to vectors by flattening the 
matrix. About 350 method pairs are used for training 
and the rest are used for validation purposes. In all, the 
proposed architecture leads to 16, 418 tunable 
paramaters to play with. Training happens using 
Gradient Descent algorithm. 
Many Deep learning frameworks are availabel today 
which are open source and under active development. 
Implementation of proposed Siamese Network is done 
using Keras, a python based framework owing to 
widespread use. Python is chosen as the language of 
implementation as it supports many built-in 
functionalities and packages. The implementation took 
place in stages of pre-processing, training and testing 
phase. 
 

 
Fig. 3. Siamese Architecture 

 
Results and Discussion 
 
The SeSaMe dataset consists of only 900 pairs of 
semantically similar java methods from various active 
repositories, out of which 400 pairs are successfully 
extracted for this task. Due to limited dataset, the 
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accuracy does not go beyond a certain point. The 
‘binary cross-entropy’ loss does reduce to a minimum 
of 0.2889 as observed in 5 epochs. The dataset named 
as BigCloneBench [10] is currently the best known 
benchmark dataset for the task of code clone detection. 
Future work consists of training the proposed 
architecture on such large scale dataset to achieve 
realistic results and accuracy. 
 
Conclusion 
 
The problem of code clone detection is very important 
from industrial point of view. Cloning has diverse 
effects on software maintenance as it can lead to bug 
propogation. This work used Abstract Syntax Tree 
representation of code and deep learning networks for 
identifying semantically similar code snippets. 
Specifically the LSTM based Siamese Neural Networks 
show promise as can be seen by reduction in error 
value on SeSaMe dataset. Code clone detection is still 
an open problem with lots of practical challenges and 
ambiguity with regard to important aspects of source 
code. This work highlights challenges of processing 
code in the form of Abstract Syntax Tree and building 
code detection logic using deep learning.  For deep 
learning networks, it is essential to have large scale 
datasets to learn robust features capturing semantics 
of data. Future work includes scaling of training 
dataset to achieve more accuracy. 
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