
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2021 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

728| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

Shared Data Plane: Tenant-Aware, Shared Context for Functions in
Serverless Computing

Satwik Kolhe and Dr. Snehal Kamlapur

Department of Computer Engineering K.K.W.I.E.E.R Nashik, India Savitribai Phule Pune University

Received 10 Nov 2020, Accepted 10 Dec 2020, Available online 01 Feb 2021, Special Issue-8 (Feb 2021)

Abstract

Software architecture has evolved from monoliths to microservices; Serverless computing, specifically Functions as a
Service (FaaS), brings in a completely new approach in terms of granularity of functional modules and their
execution pattern. Tough serverless computing is understood as an event-driven model, it has a lot to offer than just
deploying event-driven systems. For any application, data is an integral part that shapes the design and execution
pattern. Serverless Architecture confines the size and methods in which data can be shared between individual
functions. Current FaaS platforms like AWS Lambda, Azure Functions, Apache OpenWhisk; provide a limited scope in
which data can be shared between individual functions; which is often addressed interchangeably as Execution
Context or Shared Context. The nature of the execution context is ephemeral, which introduces additional latency to
cold starts. The restricted and finite amount of space made available for execution context also confine application
design, limiting the types of applications that could benefit from serverless computing. This paper addresses such
issues by introducing a methodology to define tenant aware, function-specific shared data plane. This shared data
plane is transparent to function code and provides localized data referencing. This paper describes the architecture of
Shared Data Plane together with optimizations to Apache OpenWhisk exemplified on an inference use-case requiring
a large size pretrained model. This approach of shared data plane shows improvements to the architectural design of
serverless applications with increased performance and throughput of highly parallel stateless function invocations.

Keywords: Serverless Computing, Functions as a Service (FaaS), Apache OpenWhisk, Ceph

Introduction

Cloud Computing has evolved into a superset of
technologies and methodologies to run applications in
this internet connected world. Cloud Service Providers
have largely shaped the ecosystem by constantly
updating landscape of service offerings and technology
to run applications, essentially reducing the application
development and maintenance overheads.
Infrastructure as a service model is the starting point
where applications were run on shared infrastructure
or cluster of virtual machines as single tier or multi-tier
applications. With the introduction of managed
services, all essential support functions other than
business logic like, API management, Load Balancing,
Database management etc. were provided as services
giving rise to PaaS and SaaS offerings. Technological
advancements and new software design patterns led
new software architecture notably microservices and
cloud-native applications. A generic services is also
responsible for loosely coupled application
architecture. As cloud offerings mature new
technologies and managed services are offered under
the jargon of anything as a service. Under such

circumstances, the idea of serverless computing
emerged. Serverless referred to as Cloud Events [1], in
many ways is the next reductive step in IaaS
abstraction; replacing coder’s concerns about
hardware and software dependencies with
conceptually simpler function calls to act upon various
other cloud services or cloud resident data sets. In
broader terms, Serverless computing refers to the
concept of building and running applications that do
not require server management [2]. Serverless
computing is majorly categorized as Backend as a
Service and Functions as a Service, while the latter is
usually referred to when discussed about serverless.
Functions as a service is described as a finegrained
model, where application consists of one or more
functions, which are deployed on a platform that are
executed and scaled on demand. In FaaS at the atomic
level, each application requirement is realized as an
individual functions, which collectively perform as a
single application as a whole.

Related Work

Amazon Web Services, were the pioneers in providing
Functions as a Service back in late 2014. AWS Lambda

http://inpressco.com/category/ijcet

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

729| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

is an event-driven serverless computing platform that
allows to run code in response to an event. AWS
Lambda starts a Lambda instance supporting
programming languages like Python, Node.js and Java
[3] etc. AWS Lambda provides Lambda Context object
that essentially allows a function to store function
metadata which is limited to function properties and
execution environment. Another shared object
provided by AWS Lambda is Execution Context [4],
which is a temporary execution environment that
initializes any dependencies the function code
requires. Additionally a 512MB disk space in /tmp
directory is provided to the function that can persist if
this execution context is frozen. This directory can act
as a cache to share data between multiple function
invocations if configured. Microsoft Azure Functions, is
a similar event-driven serverless computing platform
provided by Microsoft Azure. Azure Functions [5]
provide language dependent Execution context which
needs to be defined within the function for the
functions to be aware about it. For sharing large files
Azure provides
EXECUTION_CONTEXT_FUNCTIONDIRECTORY (as
addressed in case of python function) which cloud be
shared between multiple function invocations. Google
Cloud Platform provides two services under the
umbrella of serverless computing, Cloud Functions and
Cloud Run.
Google Cloud Functions [6] store function code and
required dependencies in a read-only directory and
provide a /tmp directory via tmpfs to read-write data.
This /tmp directory is ephemeral and available only for
individual function invocation. Google Cloud Run [7]
allows subsequent use of variables by the use of global
variables which are defined as part of function code.
Cloud Run reuses container instances in which function
is executed, but does not encourage the use of global
variables as a mechanism to share data between
multiple function invocations. Other than CSPs
providing serverless computing platforms under
Functions as a Service model, there are opensource
projects that implement serverless computing. Among
these OpenFaaS, Apache OpenWhisk, Knative, Kubeless
are a few. OpenFaaS implements serverless computing
using kubernetes native objects, essentially starting a
container environment to execute function code. Even
so OpenFaaS do not provide volume mounting
capabilities to implement data sharing and localized
referencing for function code. Apache OpenWhisk, is
another opensource serverless computing platform
which allows execution of functions – referred to as
actions, in response to trigger or HTTP(s) API calls.
OpenWhisk reuses container environment in which
action is executed, thus global variables defined in the
action code can share context information across
frequent subsequent action invocations. This does not
guarantee reliable context sharing and is limited only
to data with small size. This approach is also not
appropriate in terms of parallel execution of functions
where sharing context through global variables will
impact business logic.

Apache Openwhisk Architecture

Apache OpenWhisk is an open source, distributed
Serverless platform that executes functions in response
to events at any scale [8]. OpenWhisk manages the
infrastructure, servers and scaling using Docker
containers. OpenWhisk platform supports a
programming model in which developers write
functional logic (called Actions), in any

Figure 1 Architecture of Apache

OpenWhisk supported programming language, that can
be dynamically scheduled and run in response to
associated events (via Triggers) from external sources
(Feeds) or from HTTP requests. Apache OpenWhisk
provides a platform neutral implementation of
serverless computing, which can be deployed using
Kubernetes, Docker Engine or as a cluster of Virtual
Machine. Apache OpenWhisk, supports wide variety of
programming languages, where actions are executed in
a containerized environment.
Apache OpenWhisk has following key components [9],
1) Nginx: A high-performance web server and reverse
proxy.
2) Controller: This is the main component that manages
entities, handles trigger fires, route action invocation.
3) CouchDB: A scalable, document-oriented NoSQL
database.
4) Kafka: A distributed, high-performing
publish/subscribe messaging system.
5) Invoker: Launching the containers to execute the
actions.
6) Action Containers: Actual execution of action, which
is a self-contained docker container.
Apache OpenWhisk stores action properties and
context information as Action Metadata. Action
Metadata is transparent to action code, but not
implemented with the purpose to share across function
executions.

Shared Data Plane Framework

A. Shared Context

In OpenWhisk, Shared context is a piece of information
that is shared between function invocations. This
information is independent of input parameters, thus
being transparent to multiple function calls along the
call tree. This context is made available to function
code allowing inter-function communication and

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

730| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

localized referencing. Shared context can be explicitly
added to a function allowing sharing of information to
functions that previously did not have.

Figure 2Conceptual Data Flow of Shared Context

B. Dynamic Volume Provisioning

Kubernetes orchestrates pods, which are collection of
one or more containers. These pods can be stateless or
stateful. Stateless pods, as the name suggests are not
persistent and data generated by these pods lives as
long as the pod exists. Stateful pods on the other hand
store data permanently onto disk, by using a method
known as “volume mount”. In case of docker, volume
mounting is a method to attach a mount point of host
machine into a destination path inside the container,
allowing the processes running inside this container
environment to locally access this directory in the
container environment, while read-writes to files are
made to host machine mount-point that is persistent to
host machine disk. Kubernetes generalized this
concept of volume mount as persistent volumes. A
PersistentVolume (PV) is a piece of storage in the
cluster that has been provisioned by an administrator
or dynamically provisioned using Storage Classes [10].
These volumes have a lifecycle independent of the pod,
essentially allowing data persistence across pod
restarts. These volumes can be manually created or
dynamically created by a storage class through a
persistent volume claim (PVC). Persistent volume claim
defines the requirement of a persistent volume which
are provisioned by kubernetes via Container storage
interface. Container storage interface is an abstraction
provided by kubernetes to implement volume
management and integration of different storage
technologies like NFS, iSCSI, Ceph etc. in kubernetes.
These technologies (say Ceph) is then responsible for
providing objects to store data files which can be
separately managed from kubernetes. Kubernetes CSI
also allow to implement storage operators that enable
dynamic volume provisioning and software defined
storage capabilities for provisioning persistent
volumes. Rook is one example of storage operators that
orchestrates Ceph abstracting the complexity of
deploying ceph cluster and integrating with kubernetes
CSI.
C. Proposeed changes to implement Shared Data Plane
1) OpenWhisk Controller – Extending the invocation
API (REST) to include a context field. Creation of
context when an invocation request is received.
Embedding the context in the activation record.
2) OpenWhisk Invoker - Adding the context to the
environment variables of the container. Defining

configuration to volume mount-points for Action
Containers. 3) OpenWhisk Client Libraries - Extend
library API with optional context parameter.
Transparent copying of the client’s context
(environment variable) into the context field of
invocation requests.

Figure 3 in Kubernetes Dynamic Volume Provisioning

with Rook

Figure 4 Architectural approach to implement Shared
Data Plane in Apache OpenWhisk

Experimental Setup

Shared Data platform for serverless computing focuses
on data objects that are shared and accessed by
functions in runtime. To test the system as proposed in
this paper, the major objective was to dynamically
provide mount points for function containers to access
data objects from those mount points. These mount
points are block or filesystem volumes that store data
as files in them. These volumes are mounted to
function containers with read-only or read-write
permissions depending upon the use-case. In this
experimental setup, read-only filesystem volumes are
considered for an inference use case implemented
using machine learning. A major challenge that needs
to be addressed is making a volume available to a
function container running in a distributed
environment. Apache OpenWhisk is a collection of
opensource technologies functioning as a single system
in co-ordination with Controller and Invoker. Apache
OpenWhisk can be deployed as a cluster of virtual
machines where individual services like Kafka,
CouchDB and Nginx can be configured in a highly-
available cluster. Apache OpenWhisk deployment using
docker containers deployed by Docker Compose,

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

731| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

allows to setup a development environment with
default settings. Another deployment method is using a
Container Orchestration Platform like Kubernetes [11],
which allows greater configuration options and allows
deployment of production ready environment. To
perform tests as proposed in this paper, Apache
OpenWhisk was deployed using kubernetes and helm
charts [12] on a cluster of four bare-metal nodes.
Updates enabling shared data object management
capabilities were pushed to controller and invoker
modules as custom docker containers. For dynamic
volume provisioning a storage-class was implemented
that abstracts volume provisioning as a set of APIs
interacting with Ceph – distributed storage platform.

Table 1 Cluster configuration of Experimental Setup

Hostname
K8s

version
OS Image

Kernel
Version

Docker
version

Ceph
version

bm-k8s-master v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3

bm-k8s-slave-1 v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3

bm-k8s-slave-2 v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3

bm-k8s-slave-3 v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3

In this experimental setup, Apache OpenWhisk version
8eb922f and Rook v1.2 was used. The user while
creating a function also need to create a shared data
object. This shared data object is created using
modified ‘wsk’ cli, which is also used to create a
function. The controller creates a function and creates
associated shared data object. Metadata of this shared
data object is stored as part of function annotation in
CouchDB. The controller is responsible to create a
volume on the distributed storage platform and
initialize it with the provided data files. The
appropriate mount points are updated in function
metadata after successful provisioning of this volume
in CouchDB. The function can be invoked using wsk cli
or by making a HTTP request using function’s API. This
function API can be defined using the same wsk cli.
Regardless of the method used to invoke the function,
the controller instructs invoker instance to execute the
request. The controller is also responsible to instruct
the container orchestration platform to mount the
shared volume when invoker instance is started.
Depending upon the programming language the
invoker instance is chosen to execute the function
request. The invoker decodes function metadata
provided by Controller and extracts information like
default parameters, function resource limits, execution
timeout and shared data object mount point. As the
shared data object volume is locally mounted inside
invoker’s container environment, the function makes
local references to those files. For the inference use
case discussed above, a function is implemented in
python which detects objects in an image. This function
is written in python, which uses tensorflow r2.0,
numpy, matplotlib and pillow python libraries. The
function accepts an image as input and output a json

object that contains percent probability of objects that
are present in the input image. This function is created
as a docker action on the serverless platform discussed
above. The function requires a large 1.5GB ‘model.h5’
file, which contains weights required for object
detection task. A shared data object is created which is
initialized by this model.h5 file. A POST API is created
for the inference function which is used to invoke it via
API call. The size of docker action which included
function code and required libraries was around 1.3GB.
Multiple function invocation were called to test cold-
start performance of the function. These function calls
were made using curl and bash script. In the interval of
15 minutes, 5 consecutive function API calls were
made, capturing the request duration – start and end
time of the HTTP request. The request duration
included the time required for the function to process
the image and output the results. To generate baseline
results, another test was performed on a standard
Apache OpenWhisk platform, which did not support
shared data objects. Due the same reason the docker
action created for the inference function, had a size of
2.8GB where 1.5GB is the size of the model.h5 weights
used by the function and remaining 1.3GB was the size
of tensorflow and other libraries included as code in
docker action. On similar grounds, multiple function
invocation were called to test the cold-start
performance of this standard docker action. The same
curl and bash script was executed in intervals of 15
minutes to make 5 consecutive function API calls.

Results and Discussion

Apache OpenWhisk allows to create functions that
require external libraries that are not available as
standard libraries for any specific programming
language. In the case of inference function discussed in
experimental setup, these libraries included
tensorflow, numpy etc. To deploy such function
OpenWhisk allows two options, deploying function
code and required libraries as a zip package or
deploying the function as a docker container image, the
later is suitable in case of much more complex function
implementations as in the case discusses here. To
deploy a function as docker container, called as docker
action, the container needs to be built using a
Dockerfile, which essentially packages all files as per
the instructions defined in that Dockerfile and
generates a docker image. For the inference function,
tensorflow and other libraries were installed while
building the docker action container image. The size of
these file in itself is around 1.3GB. Additionally the
inference function required weights file (model.h5)
which generated by training the machine learning
model. Thus for the function to execute this weights file
need to be packaged inside the docker action container,
increasing the image size of the action container to a
total of 2.8GB. This increase in size of docker action
container image becomes a major issue considering the
fact that every time the inference function is executed

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

732| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

this docker image needs to be pulled from a remote
docker container repository leading to unnecessary
network utilization.

Figure 5 Graph showing function request time for 5

consecutive API calls made in the interval of 15
minutes

Table 2 Experimental results showing HTTP request

duration, actual function execution time and cold-start
latency

Environment
API
Call

Request
Duration

Fn

execution
time

cold-
start

latency

Serverless
Platform with
Shared Data

Plane
Framework

 1 11.4 9.9 1.5

 2 9.3 9.1 0.2

 3 8.9 8.7 0.2

 4 9.2 9 0.2

 5 9.1 8.9 0.2

 6 12.1 10 2.1

 7 9.1 9 0.1

 8 8.8 8.7 0.1

 9 9.2 9 0.2

 10 8.9 8.7 0.2

 11 11.2 9.9 1.3

 12 8.9 8.7 0.2

 13 9.2 9.1 0.1

 14 8.9 8.7 0.2

 15 9.3 9.1 0.2

Standard
Serverless
Platform

 1 15.9 9.8 6.1

 2 10.2 9.9 0.3

 3 9.9 9.7 0.2

 4 8.9 8.7 0.2

 5 9.2 9 0.2

 6 16.1 9.9 6.2

 7 9.5 9.3 0.2

 8 9.1 8.9 0.2

 9 8.9 8.6 0.3

 10 9 8.8 0.2

 11 16.2 9.6 6.6

 12 9.2 8.9 0.3

 13 9.1 8.8 0.3

 14 8.9 8.7 0.2

 15 9.2 9 0.2

Thus the shared data object allowed the function to be
deployed as two separate entities of code and data,
where this data is essentially only required to initialize
the function variables. Due to which the size of
function’s docker action container was reduced by
almost 46% reducing the data footprint of the function
created in serverless platform. This is also ideal for
frequent updating of function code, where changes are
only made to the code and the data stays the same. In
serverless computing, cold-start is referred to as the
time required to initialize the function environment
where that function will be executed. In the
experimental setup discussed above, network

bandwidth was of 1GBps, which is a very ideal case
from the point of view of infrastructure. In other cases
where network bandwidth is less than this would
hamper the cold-start latency while executing a
function. The table above show results from
experiment conducted in two different environments.
First tests was conducted on serverless platform with
shared data plane framework and the second test was
conducted on standard Apache OpenWhisk serverless
platform.

Due to reduced data footprint, this cold-start latency is

significantly decreased. From the experimental results,

for a function created with a shared object, this cold-

start latency is decreased to by 67% as compared with

the latency observed when the same function created

as a single docker action on standard Apache

OpenWhisk environment. This capability to separate

code from shareable objects in serverless computing

creates an opportunity for application to run on this

new programming model which previously was not

possible. As demonstrated here, serverless computing

allows to implement a highly scalable object detection

function capable of handling parallel requests. Data

isolation implemented at the level of Apache

OpenWhisk, Ceph and Kubernetes reduces the security

risks associated in any computing platform. The results

discussed here are showcasing the benefits of shared

data plan in serverless platform from only one single

use-case of a machine learning workload. Where as in

other cases this could lead to highly granular

implementation of application which could benefit

from separating code and data objects. Nonetheless

this requires adoption of new serverless programming

model which has a learning curve associated with it.

This makes it difficult for developers to adopt

serverless computing as a mainstream application

development strategy even after experiencing its

benefits. Serverless computing also does not fit in right

for every application because of latency associated

with executing a function. On the brighter side

serverless computing provides zero server

maintenance, out of the box scalability and cost

savings.

Figure 6 Graph showing comparison between cold - start

latency

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

733| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

Conclusion and Future Work

This paper introduced the concept of Shared Data
Plane, a framework allowing to create shared objects
that enable separation of code and data objects
required by a function defined in serverless platform.
The work described in this paper also addressed the
problem of cold-start associated with serverless
platform, and demonstrated improvements in
performance of serverless platform to server functions
in response to API calls. Due to separation of code and
data, the data footprint of functions deployed on
Apache OpenWhisk was reduced improving developer
experience and management of functions. Serverless
Computing is a new programming model which is
largely considered to be eventdriven restricting the
types of applications that can be developed using
serverless architecture. The concept of Shared Data
Plane brings in opportunities with respect to the type
of applications that can be deployed using serverless
technology. As exemplified in this paper, a machine
learning use-case can be implemented on serverless
platform, which previously was hindered due to
constraints with function deployment methods and
function execution efficiency bottlenecks affecting the
end user experience. The experiment described in this
paper, shows reduction in docker action image size,
leading to reduced cold-start latency. But evidently in
this case, the data footprint of inference function which
is around 1.3GB, is still considerably large because of
the fact that required libraries take that much space.
With the goal of reducing this data footprint, shared
data plane could also provide sharing these libraries
across multiple function execution environments
further reducing the deployable function size. To
achieve this serverless platform can utilize Docker’s
capability to mount multiple volumes to the same
container. But these libraries need to be available to
the function with minimum nanosecond latency as
possible, as the function logic could require access
these libraries frequently, and any latency introduced
in this would lead to decrease in function execution
efficiency.

Acknowledgment

The authors would like to thank all collaborators and
supporters of this work. Satwik K. would like to thank
K.K.W.I.E.E.R to provide an opportunity and their
collaboration. Satwik K. would also like to thank ESDS
Software Solution Pvt. Ltd. to sponsor this research
work.

References

[1]. Garrett McGrath in Cloud Event Programming Paradigms,
2016 IEEE 9th International Conference on Cloud Computing.
[2]. CNCF Serverless Whitepaper
 https://github.com/cncf/wgserverless/blob/master/whi
tepapers/serverlessoverview/cncf_serverless_whitepaper_v1
.0.pdf
[3]. AWS Lambda FAQs, What programming language does
AWS Lambda support? as accessed in January 2020,
https://aws.amazon.com/lambda/faqs/.
[4]. AWS Lambda Execution Context as accessed in January
2020,
https://docs.aws.amazon.com/lambda/latest/dg/running-
lambdacode.html.
[5]. Retrieving information about the currently running
function as accessed in January 2020
https://github.com/Azure/azure-
functionshost/wiki/Retrieving-information-about-the-
currently-runningfunction.
[6]. Cloud Function Execution Environment, File system, as
accessed in January 2020,
https://cloud.google.com/functions/docs/concepts/exec.
[7]. Development Tips, Using Global Variables, as accessed in
January 2020, https://cloud.google.com/run/docs/tips.
[8]. What is Apache OpenWhisk? as accessed in January 2020,
https://openwhisk.apache.org/.
[9]. Serverless and OpenWhisk Architecture, as accessed in
January 2020,
https://www.oreilly.com/library/view/learning-
apacheopenwhisk/9781492046158/ch01.html.
[10]. Persistent Volumes, in Kubernetes, as accessed in
January 2020,
https://kubernetes.io/docs/concepts/storage/persistent-
volumes/.
[11]. OpenWhisk deployment on Kubernetes, as accessed
in January 2020, https://github.com/apache/openwhisk-
deploy-kube.
[12]. Helm Package manager Quickstart Guide, as accessed
in January 2020, https://helm.sh/docs/intro/quickstart/..

https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/lambda/faqs/
https://docs.aws.amazon.com/lambda/latest/dg/running-lambda-code.html
https://docs.aws.amazon.com/lambda/latest/dg/running-lambda-code.html
https://docs.aws.amazon.com/lambda/latest/dg/running-lambda-code.html
https://docs.aws.amazon.com/lambda/latest/dg/running-lambda-code.html
https://docs.aws.amazon.com/lambda/latest/dg/running-lambda-code.html
https://docs.aws.amazon.com/lambda/latest/dg/running-lambda-code.html
https://docs.aws.amazon.com/lambda/latest/dg/running-lambda-code.html
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://github.com/Azure/azure-functions-host/wiki/Retrieving-information-about-the-currently-running-function
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/run/docs/tips
https://cloud.google.com/run/docs/tips
https://cloud.google.com/run/docs/tips
https://cloud.google.com/run/docs/tips
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://www.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html
https://www.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html
https://www.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html
https://www.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html
https://www.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html
https://www.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html
https://www.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://github.com/apache/openwhisk-deploy-kube
https://github.com/apache/openwhisk-deploy-kube
https://github.com/apache/openwhisk-deploy-kube
https://github.com/apache/openwhisk-deploy-kube
https://github.com/apache/openwhisk-deploy-kube
https://github.com/apache/openwhisk-deploy-kube
https://github.com/apache/openwhisk-deploy-kube
https://github.com/apache/openwhisk-deploy-kube
https://helm.sh/docs/intro/quickstart/
https://helm.sh/docs/intro/quickstart/

