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Abstract  
  
Software architecture has evolved from monoliths to microservices; Serverless computing, specifically Functions as a 
Service (FaaS), brings in a completely new approach in terms of granularity of functional modules and their 
execution pattern. Tough serverless computing is understood as an event-driven model, it has a lot to offer than just 
deploying event-driven systems. For any application, data is an integral part that shapes the design and execution 
pattern. Serverless Architecture confines the size and methods in which data can be shared between individual 
functions. Current FaaS platforms like AWS Lambda, Azure Functions, Apache OpenWhisk; provide a limited scope in 
which data can be shared between individual functions; which is often addressed interchangeably as Execution 
Context or Shared Context. The nature of the execution context is ephemeral, which introduces additional latency to 
cold starts. The restricted and finite amount of space made available for execution context also confine application 
design, limiting the types of applications that could benefit from serverless computing. This paper addresses such 
issues by introducing a methodology to define tenant aware, function-specific shared data plane. This shared data 
plane is transparent to function code and provides localized data referencing. This paper describes the architecture of 
Shared Data Plane together with optimizations to Apache OpenWhisk exemplified on an inference use-case requiring 
a large size pretrained model. This approach of shared data plane shows improvements to the architectural design of 
serverless applications with increased performance and throughput of highly parallel stateless function invocations.  
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Introduction 

 
Cloud Computing has evolved into a superset of 
technologies and methodologies to run applications in 
this internet connected world. Cloud Service Providers 
have largely shaped the ecosystem by constantly 
updating landscape of service offerings and technology 
to run applications, essentially reducing the application 
development and maintenance overheads. 
Infrastructure as a service model is the starting point 
where applications were run on shared infrastructure 
or cluster of virtual machines as single tier or multi-tier 
applications. With the introduction of managed 
services, all essential support functions other than 
business logic like, API management, Load Balancing, 
Database management etc. were provided as services 
giving rise to PaaS and SaaS offerings. Technological 
advancements and new software design patterns led 
new software architecture notably microservices and 
cloud-native applications. A generic services is also 
responsible for loosely coupled application 
architecture. As cloud offerings mature new 
technologies and managed services are offered under 
the jargon of anything as a service. Under such 

circumstances, the idea of serverless computing 
emerged. Serverless referred to as Cloud Events [1], in 
many ways is the next reductive step in IaaS  
abstraction; replacing coder’s concerns about 
hardware and software dependencies with 
conceptually simpler function calls to act upon various 
other cloud services or cloud resident data sets. In 
broader terms, Serverless computing refers to the 
concept of building and running applications that do 
not require server management [2]. Serverless 
computing is majorly categorized as Backend as a 
Service and Functions as a Service, while the latter is 
usually referred to when discussed about serverless. 
Functions as a service is described as a finegrained 
model, where application consists of one or more 
functions, which are deployed on a platform that are 
executed and scaled on demand. In FaaS at the atomic 
level, each application requirement is realized as an 
individual functions, which collectively perform as a 
single application as a whole.  
 

Related Work  
 

Amazon Web Services, were the pioneers in providing 
Functions as a Service back in late 2014. AWS Lambda 
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is an event-driven serverless computing platform that 
allows to run code in response to an event. AWS 
Lambda starts a Lambda instance supporting 
programming languages like Python, Node.js and Java 
[3] etc. AWS Lambda provides Lambda Context object 
that essentially allows a function to store function 
metadata which is limited to function properties and 
execution environment. Another shared object 
provided by AWS Lambda is Execution Context [4], 
which is a temporary execution environment that 
initializes any dependencies the function code 
requires. Additionally a 512MB disk space in /tmp 
directory is provided to the function that can persist if 
this execution context is frozen. This directory can act 
as a cache to share data between multiple function 
invocations if configured.  Microsoft Azure Functions, is 
a similar event-driven serverless computing platform 
provided by Microsoft Azure. Azure Functions [5] 
provide language dependent Execution context which 
needs to be defined within the function for the 
functions to be aware about it. For sharing large files 
Azure provides 
EXECUTION_CONTEXT_FUNCTIONDIRECTORY (as 
addressed in case of python function) which cloud be 
shared between multiple function invocations.  Google 
Cloud Platform provides two services under the 
umbrella of serverless computing, Cloud Functions and 
Cloud Run.  
Google Cloud Functions [6] store function code and 
required dependencies in a read-only directory and 
provide a /tmp directory via tmpfs to read-write data. 
This /tmp directory is ephemeral and available only for 
individual function invocation. Google Cloud Run [7] 
allows subsequent use of variables by the use of global 
variables which are defined as part of function code. 
Cloud Run reuses container instances in which function 
is executed, but does not encourage the use of global 
variables as a mechanism to share data between 
multiple function invocations. Other than CSPs 
providing serverless computing platforms under 
Functions as a Service model, there are opensource 
projects that implement serverless computing. Among 
these OpenFaaS, Apache OpenWhisk, Knative, Kubeless 
are a few. OpenFaaS implements serverless computing 
using kubernetes native objects, essentially starting a 
container environment to execute function code. Even 
so OpenFaaS do not provide volume mounting 
capabilities to implement data sharing and localized 
referencing for function code. Apache OpenWhisk, is 
another opensource serverless computing platform 
which allows execution of functions – referred to as 
actions, in response to trigger or HTTP(s) API calls. 
OpenWhisk reuses container environment in which 
action is executed, thus global variables defined in the 
action code can share context information across 
frequent subsequent action invocations. This does not 
guarantee reliable context sharing and is limited only 
to data with small size. This approach is also not 
appropriate in terms of parallel execution of functions 
where sharing context through global variables will 
impact business logic.  

Apache Openwhisk Architecture  
 
Apache OpenWhisk is an open source, distributed 
Serverless platform that executes functions in response 
to events at any scale [8]. OpenWhisk manages the 
infrastructure, servers and scaling using Docker 
containers. OpenWhisk platform supports a 
programming model in which developers write 
functional logic (called Actions), in any  

Figure 1 Architecture of Apache 
 
OpenWhisk supported programming language, that can 
be dynamically scheduled and run in response to 
associated events (via Triggers) from external sources 
(Feeds) or from HTTP requests. Apache OpenWhisk 
provides a platform neutral implementation of 
serverless computing, which can be deployed using 
Kubernetes, Docker Engine or as a cluster of Virtual 
Machine. Apache OpenWhisk, supports wide variety of 
programming languages, where actions are executed in 
a containerized environment.   
Apache OpenWhisk has following key components [9],   
1) Nginx: A high-performance web server and reverse 
proxy.  
2) Controller: This is the main component that manages 
entities, handles trigger fires, route action invocation.  
3) CouchDB: A scalable, document-oriented NoSQL 
database.  
4) Kafka: A distributed, high-performing 
publish/subscribe messaging system.  
5) Invoker: Launching the containers to execute the 
actions.  
6) Action Containers: Actual execution of action, which 
is a self-contained docker container.  
Apache OpenWhisk stores action properties and 
context information as Action Metadata. Action 
Metadata is transparent to action code, but not 
implemented with the purpose to share across function 
executions.   
 

Shared Data Plane Framework  
 
A. Shared Context  
 
In OpenWhisk, Shared context is a piece of information 
that is shared between function invocations. This 
information is independent of input parameters, thus 
being transparent to multiple function calls along the 
call tree. This context is made available to function 
code allowing inter-function communication and 
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localized referencing. Shared context can be explicitly 
added to a function allowing sharing of information to 
functions that previously did not have.  
 

 
 

Figure  2Conceptual Data Flow of Shared Context 
 
B. Dynamic Volume Provisioning  
 
Kubernetes orchestrates pods, which are collection of 
one or more containers. These pods can be stateless or 
stateful. Stateless pods, as the name suggests are not 
persistent and data generated by these pods lives as 
long as the pod exists. Stateful pods on the other hand 
store data permanently onto disk, by using a method 
known as “volume mount”. In case of docker, volume 
mounting is a method to attach a mount point of host 
machine into a destination path inside the container, 
allowing the processes running inside this container 
environment to locally access this directory in the 
container environment, while read-writes to files are 
made to host machine mount-point that is persistent to 
host machine disk. Kubernetes generalized this 
concept of volume mount as persistent volumes. A 
PersistentVolume (PV) is a piece of storage in the 
cluster that has been provisioned by an administrator 
or dynamically provisioned using Storage Classes [10]. 
These volumes have a lifecycle independent of the pod, 
essentially allowing data persistence across pod 
restarts. These volumes can be manually created or 
dynamically created by a storage class through a 
persistent volume claim (PVC). Persistent volume claim 
defines the requirement of a persistent volume which 
are provisioned by kubernetes via Container storage 
interface. Container storage interface is an abstraction 
provided by kubernetes to implement volume 
management and integration of different storage 
technologies like NFS, iSCSI, Ceph etc. in kubernetes. 
These technologies (say Ceph) is then responsible for 
providing objects to store data files which can be 
separately managed from kubernetes.  Kubernetes CSI 
also allow to implement storage operators that enable 
dynamic volume provisioning and software defined 
storage capabilities for provisioning persistent 
volumes. Rook is one example of storage operators that 
orchestrates Ceph abstracting the complexity of 
deploying ceph cluster and integrating with kubernetes 
CSI.  
C. Proposeed changes to implement Shared Data Plane   
1) OpenWhisk Controller – Extending the invocation 
API (REST) to include a context field. Creation of 
context when an invocation request is received. 
Embedding the context in the activation record.  
2) OpenWhisk Invoker - Adding the context to the 
environment variables of the container. Defining 

configuration to volume mount-points for Action 
Containers. 3) OpenWhisk Client Libraries - Extend 
library API with optional context parameter. 
Transparent copying of the client’s context 
(environment variable) into the context field of 
invocation requests. 
 

 
 

Figure 3 in Kubernetes  Dynamic Volume Provisioning 

with Rook 
 

 
 

Figure 4 Architectural approach to implement Shared 
Data Plane in Apache OpenWhisk 

 
Experimental Setup  
 

Shared Data platform for serverless computing focuses 
on data objects that are shared and accessed by 
functions in runtime. To test the system as proposed in 
this paper, the major objective was to dynamically 
provide mount points for function containers to access 
data objects from those mount points. These mount 
points are block or filesystem volumes that store data 
as files in them. These volumes are mounted to 
function containers with read-only or read-write 
permissions depending upon the use-case. In this 
experimental setup, read-only filesystem volumes are 
considered for an inference use case implemented 
using machine learning. A major challenge that needs 
to be addressed is making a volume available to a 
function container running in a distributed 
environment. Apache OpenWhisk is a collection of 
opensource technologies functioning as a single system 
in co-ordination with Controller and Invoker. Apache 
OpenWhisk can be deployed as a cluster of virtual 
machines where individual services like Kafka, 
CouchDB and Nginx can be configured in a highly-
available cluster. Apache OpenWhisk deployment using 
docker containers deployed by Docker Compose, 
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allows to setup a development environment with 
default settings. Another deployment method is using a 
Container Orchestration Platform like Kubernetes [11], 
which allows greater configuration options and allows 
deployment of production ready environment. To 
perform tests as proposed in this paper, Apache 
OpenWhisk was deployed using kubernetes and helm 
charts [12] on a cluster of four bare-metal nodes. 
Updates enabling shared data object management 
capabilities were pushed to controller and invoker 
modules as custom docker containers. For dynamic 
volume provisioning a storage-class was implemented 
that abstracts volume provisioning as a set of APIs 
interacting with Ceph – distributed storage platform.  
   

Table 1 Cluster configuration of Experimental Setup 
 

Hostname 
K8s 

version 
OS Image 

Kernel 
Version 

Docker 
version 

Ceph 
version 

bm-k8s-master v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3 

bm-k8s-slave-1 v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3 

bm-k8s-slave-2 v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3 

bm-k8s-slave-3 v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3 

  
In this experimental setup, Apache OpenWhisk version 
8eb922f and Rook v1.2 was used. The user while 
creating a function also need to create a shared data 
object. This shared data object is created using 
modified ‘wsk’ cli, which is also used to create a 
function. The controller creates a function and creates 
associated shared data object. Metadata of this shared 
data object is stored as part of function annotation in 
CouchDB. The controller is responsible to create a 
volume on the distributed storage platform and 
initialize it with the provided data files. The 
appropriate mount points are updated in function 
metadata after successful provisioning of this volume 
in CouchDB. The function can be invoked using wsk cli 
or by making a HTTP request using function’s API. This 
function API can be defined using the same wsk cli. 
Regardless of the method used to invoke the function, 
the controller instructs invoker instance to execute the 
request. The controller is also responsible to instruct 
the container orchestration platform to mount the 
shared volume when invoker instance is started. 
Depending upon the programming language the 
invoker instance is chosen to execute the function 
request. The invoker decodes function metadata 
provided by Controller and extracts information like 
default parameters, function resource limits, execution 
timeout and shared data object mount point. As the 
shared data object volume is locally mounted inside 
invoker’s container environment, the function makes 
local references to those files. For the inference use 
case discussed above, a function is implemented in 
python which detects objects in an image. This function 
is written in python, which uses tensorflow r2.0, 
numpy, matplotlib and pillow python libraries. The 
function accepts an image as input and output a json 

object that contains percent probability of objects that 
are present in the input image. This function is created 
as a docker action on the serverless platform discussed 
above. The function requires a large 1.5GB ‘model.h5’ 
file, which contains weights required for object 
detection task. A shared data object is created which is 
initialized by this model.h5 file. A POST API is created 
for the inference function which is used to invoke it via 
API call. The size of docker action which included 
function code and required libraries was around 1.3GB.  
Multiple function invocation were called to test cold-
start performance of the function. These function calls 
were made using curl and bash script. In the interval of 
15 minutes, 5 consecutive function API calls were 
made, capturing the request duration – start and end 
time of the HTTP request. The request duration 
included the time required for the function to process 
the image and output the results. To generate baseline 
results, another test was performed on a standard 
Apache OpenWhisk platform, which did not support 
shared data objects. Due the same reason the docker 
action created for the inference function, had a size of 
2.8GB where 1.5GB is the size of the model.h5 weights 
used by the function and remaining 1.3GB was the size 
of tensorflow and other libraries included as code in 
docker action. On similar grounds, multiple function 
invocation were called to test the cold-start 
performance of this standard docker action. The same 
curl and bash script was executed in intervals of 15 
minutes to make 5 consecutive function API calls.  
 
Results and Discussion  
 
Apache OpenWhisk allows to create functions that 
require external libraries that are not available as 
standard libraries for any specific programming 
language. In the case of inference function discussed in 
experimental setup, these libraries included 
tensorflow, numpy etc. To deploy such function 
OpenWhisk allows two options, deploying function 
code and required libraries as a zip package or 
deploying the function as a docker container image, the 
later is suitable in case of much more complex function 
implementations as in the case discusses here. To 
deploy a function as docker container, called as docker 
action, the container needs to be built using a 
Dockerfile, which essentially packages all files as per 
the instructions defined in that Dockerfile and 
generates a docker image. For the inference function, 
tensorflow and other libraries were installed while 
building the docker action container image. The size of 
these file in itself is around 1.3GB. Additionally the 
inference function required weights file (model.h5) 
which generated by training the machine learning 
model. Thus for the function to execute this weights file 
need to be packaged inside the docker action container, 
increasing the image size of the action container to a 
total of 2.8GB. This increase in size of docker action 
container image becomes a major issue considering the 
fact that every time the inference function is executed 
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this docker image needs to be pulled from a remote 
docker container repository leading to unnecessary 
network utilization.  
 

 
Figure 5 Graph showing function request time for 5 

consecutive API calls made in the interval of 15 
minutes 

 
Table 2 Experimental results showing HTTP request 

duration, actual function execution time and cold-start 
latency 

 

Environment 
API 
Call 

 
Request 
Duration 

 
Fn 

execution 
time 

 
cold-
start 

latency 
 

Serverless 
Platform with 
Shared Data 

Plane 
Framework 

 1  11.4  9.9  1.5 

 2  9.3  9.1  0.2 

 3  8.9  8.7  0.2 

 4  9.2  9  0.2 

 5  9.1  8.9  0.2 

 6  12.1  10  2.1 

 7  9.1  9  0.1 

 8  8.8  8.7  0.1 

 9  9.2  9  0.2 

 10  8.9  8.7  0.2 

 11  11.2  9.9  1.3 

 12  8.9  8.7  0.2 

 13  9.2  9.1  0.1 

 14  8.9  8.7  0.2 

 15  9.3  9.1  0.2 

Standard 
Serverless 
Platform 

 1  15.9  9.8  6.1 

 2  10.2  9.9  0.3 

 3  9.9  9.7  0.2 

 4  8.9  8.7  0.2 

 5  9.2  9  0.2 

 6  16.1  9.9  6.2 

 7  9.5  9.3  0.2 

 8  9.1  8.9  0.2 

 9  8.9  8.6  0.3 

 10  9  8.8  0.2 

 11  16.2  9.6  6.6 

 12  9.2  8.9  0.3 

 13  9.1  8.8  0.3 

 14  8.9  8.7  0.2 

 15  9.2  9  0.2 

 
Thus the shared data object allowed the function to be 
deployed as two separate entities of code and data, 
where this data is essentially only required to initialize 
the function variables. Due to which the size of 
function’s docker action container was reduced by 
almost 46% reducing the data footprint of the function 
created in serverless platform. This is also ideal for 
frequent updating of function code, where changes are 
only made to the code and the data stays the same. In 
serverless computing, cold-start is referred to as the 
time required to initialize the function environment 
where that function will be executed. In the 
experimental setup discussed above, network 

bandwidth was of 1GBps, which is a very ideal case 
from the point of view of infrastructure. In other cases 
where network bandwidth is less than this would 
hamper the cold-start latency while executing a 
function.  The table above show results from 
experiment conducted in two different environments. 
First tests was conducted on serverless platform with 
shared data plane framework and the second test was 
conducted on standard Apache OpenWhisk serverless 
platform.  
 

 
Due to reduced data footprint, this cold-start latency is 

significantly decreased. From the experimental results, 

for a function created with a shared object, this cold-

start latency is decreased to by 67% as compared with 

the latency observed when the same function created 

as a single docker action on standard Apache 

OpenWhisk environment. This capability to separate 

code from shareable objects in serverless computing 

creates an opportunity for application to run on this 

new programming model which previously was not 

possible. As demonstrated here, serverless computing 

allows to implement a highly scalable object detection 

function capable of handling parallel requests. Data 

isolation implemented at the level of Apache 

OpenWhisk, Ceph and Kubernetes reduces the security 

risks associated in any computing platform. The results 

discussed here are showcasing the benefits of shared 

data plan in serverless platform from only one single 

use-case of a machine learning workload. Where as in 

other cases this could lead to highly granular 

implementation of application which could benefit 

from separating code and data objects. Nonetheless 

this requires adoption of new serverless programming 

model which has a learning curve associated with it. 

This makes it difficult for developers to adopt 

serverless computing as a mainstream application 

development strategy even after experiencing its 

benefits. Serverless computing also does not fit in right 

for every application because of latency associated 

with executing a function. On the brighter side 

serverless computing provides zero server 

maintenance, out of the box scalability and cost 

savings.  

Figure  6   Graph showing comparison between cold - start 

latency 
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Conclusion and Future Work  
 
This paper introduced the concept of Shared Data 
Plane, a framework allowing to create shared objects 
that enable separation of code and data objects 
required by a function defined in serverless platform. 
The work described in this paper also addressed the 
problem of cold-start associated with serverless 
platform, and demonstrated improvements in 
performance of serverless platform to server functions 
in response to API calls. Due to separation of code and 
data, the data footprint of functions deployed on 
Apache OpenWhisk was reduced improving developer 
experience and management of functions. Serverless 
Computing is a new programming model which is 
largely considered to be eventdriven restricting the 
types of applications that can be developed using 
serverless architecture. The concept of Shared Data 
Plane brings in opportunities with respect to the type 
of applications that can be deployed using serverless 
technology. As exemplified in this paper, a machine 
learning use-case can be implemented on serverless 
platform, which previously was hindered due to 
constraints with function deployment methods and 
function execution efficiency bottlenecks affecting the 
end user experience.  The experiment described in this 
paper, shows reduction in docker action image size, 
leading to reduced cold-start latency. But evidently in 
this case, the data footprint of inference function which 
is around 1.3GB, is still considerably large because of 
the fact that required libraries take that much space. 
With the goal of reducing this data footprint, shared 
data plane could also provide sharing these libraries 
across multiple function execution environments 
further reducing the deployable function size. To 
achieve this serverless platform can utilize Docker’s 
capability to mount multiple volumes to the same 
container. But these libraries need to be available to 
the function with minimum nanosecond latency as 
possible, as the function logic could require access 
these libraries frequently, and any latency introduced 
in this would lead to decrease in function execution 
efficiency.  
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