
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2021 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

724| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

PPCT-FIM: Prepost Computation Tree Based Frequent Itemset Mining

Mr. Phalke Sagar Balkrishna and Prof. Rajpure Amol. S.

Department of Computer Engineering, Dattakala Group of Institution, Faculty of Engineering,

Received 10 Nov 2020, Accepted 10 Dec 2020, Available online 01 Feb 2021, Special Issue-8 (Feb 2021)

Abstract

Mining regular itemsets might be a significant issue in handling and plays an essential job in many handling
applications. As of late, some itemset portrayals in light of hub sets are proposed, which have demonstrated to be
exceptionally effective for mining visit itemsets. during this paper, we propose a PrePost Computation Tree based
Frequent Itemset Mining (PPCTFIM), calculation for mining incessant itemsets. To see high productivity, PPCT-FIM
finds visit itemsets utilizing a setcount tree with a cross breed search system and legitimately specifies visit itemsets
without up-and-comer age under some case. For assessing the presentation of PPCT-FIM, we've direct broad
examinations to coordinate it against with existing driving calculations on a determination of genuine and
counterfeit datasets. The trial results show that PPCT-FIM is fundamentally quicker than PFIM calculations.

Keywords: Data mining, Frequent itemset, mining massive Data, Pruning Rule, Incremental Update

Introduction

An inspiration of this work is to accomplish high
productivity; PPCT-FIM finds visit itemsets utilizing a
set-identification tree with a half and half pursuit
methodology and straightforwardly specifies visit
itemsets without up-and-comer age under some case.
Visit itemset mining is a significant activity that has
been generally examined in numerous reasonable
applications, for example, information mining [1]-[3],
programming bug location [4], spatiotemporal
information investigation and organic examination [5].
Given an exchange table, wherein every exchange
contains a lot of things, visit itemset mining restores all
arrangements of things whose frequencies (likewise
alluded to as help of the arrangement of things) in the
table are over guaranteed edge. Because of its
commonsense significance, since right off the bat
proposed in [6], visit itemset mining has gotten broad
considerations and numerous calculations are
proposed [7]-[9]. The existing regular itemset mining
calculations can be arranged into two gatherings:
candidategeneration- based calculations [10]-[14] and
design development based calculations [15]-[17]. The
up-and-comer age based calculations initially create
upand-comer itemsets and these competitors are
approved against the exchange table to distinguish visit
itemsets. The against monotone property is used in
competitor age based calculations to prune search
space. However, the competitor age based calculations
require numerous pass table outputs and this will
cause a high I/O cost on gigantic information. The
example development based calculations try not to
create competitors unequivocally.

They build the unique tree-based information
structures to keep the fundamental data about the
successive itemsets of the exchange table. By
utilization of the builtInformation structures, the
successive itemsets can be processed effectively.
Notwithstanding, design development based
calculations have the issue that the built information
structures are unpredictable and generally surpass the
accessible memory on gigantic information. To sum up,
the prevailing algorithms cannot compute frequent
itemsets on massive dataefficiently. In frequent itemset
mining, the quantity of the frequent itemsets normally
issensitive to the price of the support threshold. If the
support threshold is small, there'llbe an outsized
number of frequent itemsets and it's difficult for the
users to make efficientdecisions. On the contrary, if the
support threshold is large, it's possible that no
frequentitemsets are often discovered or the
interesting itemsets could even be missed. Therefore, a
proper support threshold is crucial for the sensible
frequent itemset mining and thus the users oftenneed
to perform frequent itemset mining for several times
before the satisfactory support threshold is set. The
tactic often is interactive. On massive data, the
prevailingalgorithms often need an extended execution
time to compute frequent itemsets and this mightaffect
users’ working efficiency seriously [18]. The most
target of this work is to hunt out a replacementefficient
algorithm to compute frequent itemsets on massive
data quickly. During the time spent execution of PFIM,
three pruning rules are contrived in this work to
diminish the quantity of up-and-comer visit itemsets. A
gradual update procedure is proposed in this work to
rapidly refresh the semi visit itemsets when TO and T1

http://inpressco.com/category/ijcet

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

725| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

are consolidated. The broad analyses are directed on
engineered and genuine informational collections. The
trial results show that, PFIM outflanks the current
calculations altogether; it runs two sets of greatness
quicker than the most recent calculation.

Literature Survey

A. Introduction

The current calculations for visit itemset mining can be
separated into two gatherings for the most part:
applicant age based calculations and example
development based calculations. This segment will
audit the two sorts of calculations separately.

B. Candidate-generation-based algorithms

The competitor age based calculations right off the bat
produce the up-and-comers of the continuous itemsets,
at that point the competitors are approved against the
exchange table, and the continuous itemsets are found.
Apriori calculation [11], [20] receives a level-wise
execution mode. It utilizes the descending conclusion
property, for example any superset of an inconsistent
itemset must likewise be inconsistent, to prune the
pursuit space. By a pass of scan on the transaction
table,it first counts the item occurrences to find the
frequent 1itemsets F1. Subsequently, thefrequent k-
itemsets in Fk are used to generate the candidates
CkC1 of the frequent (kC 1)-itemsets. Another pass of
scan is needed to compute the supports of candidates
inCkC1 to find the frequent (k C 1)-itemsets FkC1. This
process iterates similarly until theFkC1 is empty.
Apriori algorithm often needs multiple passes over
table; it will incur ahigh I/O cost on massive data.
Savasere et al. [12] propose Partition algorithm to
generatefrequent itemsets by reading the transaction
table at most two times.The execution of Partition
comprises of two phases. In the primary stage,
Partition calculation isolates the table into various non-
covering segments as far as the designated memory,
and the nearby continuous itemsets for each segment
are registered. All the neighborhood visit itemsets are
converged toward the finish of first stage to produce
the up-and-comers of continuous itemsets. In the
second stage, another ignore table is performed to gain
the help of the competitors also, the worldwide
continuous itemsets can be found.

C. Pattern-growth-based algorithms

Pattern-growth-based algorithms do not generate

candidate itemsets explicitly but compressthe required

information for frequent itemsets in specific data

structure. The frequentitemsets can be acquired

quickly with the notion of projected databases, a

subsetof the original transaction database relevant to

the enumeration node. Agarwal et al. [26]present

DepthProject algorithm to mine long itemsets in

databases. DepthProject examines the nodes of the

lexicographic tree in depthfirst order. The examination

process ofa node refers to the support counting of the

candidate extension of the node.During the search, the

anticipated exchange sets are kept up for a portion of

the hubs on the way from the root to the hub P as of

now being expanded. Typically, the anticipated

exchange sets just contain the applicable piece of the

exchange database for checking the help at the hub P.

During the time spent profundity first pursuit, the

anticipated database can be decreased further at the

offspring of P and DepthProject can reuse the tallying

work of its past investigation. At the lower levels of the

lexicographic tree, a particular checking strategy called

bucketing is utilized to considerably improve the

tallying time. As pointed in Liu et al. [27], it is difficult

to lessen the traversal cost and the development cost of

the contingent database in design development based

calculations, [27] proposes the AFOPT calculation

which utilizes a conservative information structure,

climbing recurrence requested prefix-tree, to speak to

the contingent databases. The tree is navigated in

topdown profundity first request. It is demonstrated

that the blend of the topdown traversal and the rising

recurrence request is more proficient than FP-tree,

which receives the mix of the base up traversal and

sliding recurrence request. AFOPT is improved further

by fusing the sharp projection system.

Proposed Methodology

A. Architecture

Module description:

1. PPC-Tree Construction
2. Frequent-1 Itemset Extraction
3. Scan PPC-Tree and Frequent-2 Itemset Extraction
4. Mine Frequent-k Itemset

1. PPC-Tree Construction

Given a database and a base help edge, the PPC-tree
development is characterized as follows. PPC-tree is a
tree structure:

(1) It comprises of one root named as "invalid", and a
lot of thing prefixes subtrees as the youngsters of the
root.

(2) Each hub in the thing prefix subtree comprises of
five fields: item name, count, children list, pre-order,
and postrequest. Item name registers which thing this
hub speaks to. check registers the quantity of
exchanges displayed by the segment of the way
arriving at this hub. Kids list enrolls all offspring of the

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

726| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

hub. Pre-request is the pre-request number of the hub
and post-request is the post-request number of the
hub.

Fig: System Architecture

2. Frequent-1 Itemset Extraction

This module separates visit 1 itemset utilizing PPC-
Tree. Sweep Transaction database once to discover F1,
the arrangement of successive 1 things utilizing PPC-
Tree. Followed by, Sort F1 in help sliding arranges as
L1. Erase every single inconsistent thing from T and
afterward sort T as Tf agreeing to the request for L1.

3. Scan PPC-Tree and Frequent-2 Itemset Extraction

This module extracts frequent-2 itemset using PPC-
Tree with Frequent-1 Itemset. First,this module
generates the Node set of each frequent item by
scanning the PPC-tree. Furthermore, Build 2-itemset
DN () to generate the DiffNodeset of each 2itemset.
Followed by, it computes the help of each 2-itemset

4. Mine Frequent-k Itemset

This module extracts frequent-k itemset using PPC-
Tree with Frequent-2 Itemset. First,this module
generates the Nodeset of each frequent item by
scanning the PPC-tree. Furthermore,this module
extracts all frequent k-itemsets (k >= 3) by calling
procedureConstructing Pattern Tree () method to
generate all frequent k-itemsets (k >= 3) extendedfrom
frequent 2-itemsets.

B. Algorithms

Input:Transaction Database (TD), Minimum Support
(minsup)

Output:Frequent Itemsets

Step 1:Initializes F, which is used to store frequent
itemsets, by setting it to be null.

Step 2:Constructs the PPC-tree and finds F1, the set of

all frequent 1- itemset, by callingprocedure Construct
PPC-tree().

Step 3:Generate the Nodeset of each frequent item by
scanning the PPC-tree.

 Step 4:Calls procedure Build 2-itemset DN () to
generate the DiffNodeset of each 2-itemset.

Step 5:Computes the support of each 2-itemset.

Step 6:Check whether ixiy is frequent or not.

Step 7:Generate all frequent k-itemsets (k >= 3) by
calling procedure ConstructingPattern Tree () to
generate all frequent k-itemsets (k > = 3) extended
from frequent2-itemsets.

C. Some Common Mistakes

According to review we have done, in existing papers,
the proposed system assures high efficiency; PPCT-FIM
finds frequent itemsets using a setenumeration tree
with a hybrid search strategy and directly enumerates
frequent itemsets without candidate generation under
some case.

 D. Mathematical Model

1. TD --$>$ Transaction Database
2. minsup --$>$ Minimum Support
3. F1 --$>$ Frequent-1 Itemset
4. F2 --$>$ Frequent-2 Itemset
5. Fk --$>$ Frequent-k Itemset
6. resultLen --$>$ The size of the current itemset
7. nlLenSum --$>$ Node list length of the current
itemset

Result and Discussions

The expected results are an algorithm named PPCTFIM
is proposedto fast find all frequent itemsets in
databases. Compared with Nodeset, the key advantage
Of PPCT-FIM lies in that its size much smaller. This
makes PPCT-FIM more suitable formining frequent
itemsets.

Conclusions

In this work, we present a novel structure called PPCT-
FIM to facilitate the process ofmining frequent
itemsets. Based on PFIM, an algorithm named PPCT-
FIM is proposedto fast find all frequent itemsets in
databases. Compared with Nodeset, the key
advantageof PPCT-FIM lies in that its size much
smaller. This makes PPCT-FIM more suitable formining
frequent itemsets. The extensive experiments show
that PPCTFIM is favorable.PPCT-FIM proves to be
state-of-the-art since it always runs fastest on all
datasets withdifferent minimum supports and
occupied less memory when compared with previous
leading algorithms.

References

[1]. A. Ceglar and J. F. Roddick, ”Association mining,” ACM
Comput. Surv., vol. 38,no. 2, p. 5, 2006.

International Journal of Current Engineering and Technology, Special Issue-8 (Feb 2021)

727| cPGCON 2020(9th post graduate conference of computer engineering), Amrutvahini college of engineering, Sangamner, India

[2]. H. Cheng, X. Yan, J. Han, and P. S. Yu, ”Direct
discriminative pattern mining foreffective classification,” in
Proc. 24th Int. Conf. Data Eng., Apr. 2008, pp. 169-178.
[3]. H.Wang, W.Wang, J. Yang, and P. S. Yu, ”Clustering by
pattern similarity in largedata sets,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, Jun. 2002, pp. 394-405.
[4]. Z. Li and Y. Zhou,”PR-miner: Automatically extracting
implicit programming rulesand detecting violations in large
software code,” in Proc. 10th Eur. Softw. Eng. Conf.Held
Jointly 13th ACM SIGSOFT Int. Symp. Found. Softw. Eng., Sep.
2005, pp.306-315.
[5]. J. T. L. Wang, M. J. Zaki, H. Toivonen, and D. Shasha, Eds.,
Data Mining in Bioinformatics.London, U.K.: Springer, 2005.
[6]. R. Agrawal, T. Imielinski, and A. Swami, “Database
mining: A performance perspective,”IEEE Trans. Knowl. Data
Eng., vol. 5, no. 6, pp. 914-925, Dec. 1993.
[7]. C. C. Aggarwal, Data Mining: The Textbook. Cham,
Switzerland: Springer, 2015.
[8]. C. C. Aggarwal and J. Han, Eds., Frequent Pattern Mining.
Cham, Switzerland:Springer, 2014.
[9]. J. Han, H. Cheng, D. Xin, and X. Yan, ”Frequent pattern
mining: Current status andfuture directions,” Data Mining
Knowl. Discovery, vol. 15, no. 1, pp. 55-86, Aug. 2007.
[10]. R. Agrawal, T. Imieliski, and A. N. Swami, ”Mining
association rules between setsof items in large databases,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 1993, pp.207-
216.

[11]. R. Agrawal and R. Srikant, ”Fast algorithms for mining
association rules,” in Proc.20th Int. Conf. Very Large Data
Bases (VLDB), 1994, pp. 487499.
[12]. A. Savasere, E. Omiecinski, and S. B. Navathe, ”An
efficient algorithm for miningassociation rules in large
databases,” in Proc. 21th Int. Conf. Very Large Data
Bases(VLDB), 1995, pp. 432-444.
[13]. M. J. Zaki, ”Scalable algorithms for association mining,”
IEEE Trans. Knowl. DataEng., vol. 12, no. 3, pp. 372-390, May
2000.
[14]. M. J. Zaki and K. Gouda, ”Fast vertical mining using
diffsets,” in Proc. 9th ACMSIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2003, pp. 326335.
[15]. G. Grahne and J. Zhu, ”Fast algorithms for frequent
itemset mining using FP-trees,”IEEE Trans. Knowl. Data Eng.,
vol. 17, no. 10, pp. 1347-1362, Oct. 2005.
[16]. J. Han, J. Pei, Y. Yin, and R. Mao, ”Mining frequent
patterns without candidategeneration: A frequent-pattern
tree approach,” Data Mining Knowl. Discovery, vol. 8,no. 1,
pp. 53-87, 2004.
[17.] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, ”H-
mine: Hyperstructuremining of frequent patterns in large
databases,” in Proc. IEEE Int. Conf. Data Mining,Nov./Dec.
2001, pp. 441-448.
[18]. I. Triguero, J. A. Saez, J. Luengo, S. Garcıa, and F. Herrera,
“On the characterizationof noise filters for self-training semi-
supervised in nearest neighbor
classification,”Neurocomputing, vol. 132, pp. 30–41, 2014.
[19]. R. C. Fernandez et al., ”Liquid: Unifying nearline and
ofline big data integration,”in Proc. 7th Biennial Conf. Innov.
Data Syst. Res. (CIDR), 2015.

