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Abstract 
  
Deoxyribonucleic acid (DNA) holds the genetic information that creatures need to live and reproduce themselves. The 
nonlinear dynamics of the double chain DNA model is studied. The double chain model is extended to (2+1)-

dimensions. The travelling wave solution is found by applying the 
  

 
 expansion method. According to the different 

system parameters, two cases are discussed and plotted. The system nonlinear dynamics appears in solitary waves 
and its anti- solitary waves in the DNA strands.  
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1. Introduction 
 

1 Deoxyribonucleic acid (DNA) (Abdelrahman, Zahran et 
al. 2015, Okaly, Mvogo et al. 2018, Shapovalov and 
Obukhov 2018, Dwiputra, Hidayat et al. 2019) is the 
information storage medium dwell in every cell. It 
holds the genetic information that creatures need to 
live and reproduce themselves. DNA structure has been 
extensively studied during the last decades  (Watson 
and Crick 1953, Englander, Kallenbach et al. 1980, 
Peyrard and Bishop 1989, Dauxois, Peyrard et al. 1993, 
Peyrard, Cuesta-López et al. 2008, Alatas and 
Hermanudin 2012, Zdravković, Chevizovich et al. 
2019). The characteristics multiplicity of DNA, result in 
the difficulty of purposing DNA by a specific 
mathematical model. The double helix structure of 
DNA has been stimulated by the pioneer works of 
(Watson and Crick 1953). (Englander, Kallenbach et al. 
1980) studied the open states dynamics of DNA, 
considering only the rotational motion of nitrogen 
bases. (Yomosa 1983) offered a dynamics plane-base 
rotator model. (Takeno and Homma 1984) improved 
Yomosa’s model by considering the degree of freedom, 
describing base rotations in the plane perpendicular to 
the helical axis around the backbone structure. The 
denaturation process of the transverse motions of 
bases along the hydrogen bond was studied in 
(Peyrard and Bishop 1989). The transverse motions 
along the hydrogen bond and longitudinal motions 
along the backbone direction were suggested in (Muto, 
Lomdahl et al. 1990). These two motions made the 
main contribution in the DNA denaturation process.  
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(De-Xing, Sen-Yue et al. 2001) introduced a new 
double-chain model of DNA. They considered that, DNA 
consists of two long elastic homogeneous strands, 
which represent two polynucleotide chains of DNA 
molecule, joined by an elastic membrane 
demonstrating the hydrogen bonds between the base 
pair of these chains. The nonlinear dynamics of this 
model was considered from different perspectives 
(Xian-Min and Sen-Yue 2003, Alka, Goyal et al. 2011, 
Ouyang and Zheng 2014). In (Xian-Min and Sen-Yue 
2003), The exact solutions of this  model were studied 
using Pickering’s truncation expansion and the Conte’s 
Painlevé truncation expansion methods. In (Ouyang 
and Zheng 2014), the traveling wave solutions of this 
double-chain DNA model is considered using the 
method of dynamical systems. The Riccati 
parameterized factorization method is applied in, 
(Alka, Goyal et al. 2011) to find the solitary wave 
solution. 
 Abundant methods are demoralized in studying the 
nonlinear dynamics for several applications. Some of 
these methods are exponential function method 
(Arshed, Biswas et al. 2018, Mabrouk and Rashed 
2019), singular manifold method (Mabrouk and 
Rashed 2017, Saleh, Kassem et al. 2017, Saleh, 
Mabrouk et al. 2018), Hirota’s bilinear method (Cao, 
Malomed et al. 2018, Morales-Delgado, Gómez-Aguilar 
et al. 2018), homogenous balance method (Ji, Wu et al. 

2010, Mabrouk 2019) , 
  

 
 expansion method (Wang, Li 

et al. 2008, Mabrouk 2019), sine–cosine and tanh–coth 
methods (Wazwaz 2006). 

This work is motivated to extend the double-chain 
DNA model (De-Xing, Sen-Yue et al. 2001, Xian-Min and 
Sen-Yue 2003)  to (2+1) dimensions, then solve 
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analytically this extended model by applying the 
  

 
 

expansion method. The paper is planned as follows. 
The second section, presents the double chain DNA 
mathematical model. The third section, briefly 

describes the 
  

 
 expansion method. The method is 

applied to solve DNA dynamical system in the fourth 
section.  The paper ends with conclusions. 
 
2. The double chain DNA model 

The new double-chain DNA model (De-Xing, Sen-Yue 
et al. 2001) is; 
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Where, u(x, y, t) and v(x, y, t) are the difference of the 
longitudinal displacements and the difference of the 
transverse displacements; of the bottom and top 
strands; correspondingly. The constants c1, c2, 1, 2, 1, 
2, 1, 2, 1, 2 and c0 are defined as; 
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 is the mass density,  is the area of the transverse 
cross-section,   is the Yong’s modulus, F, refers to the 

tension density of the strand, , stands for the rigidity 
of the elastic membrane, h is the distance between the 
two strands and l0 is the height of the membrane in the 
equilibrium position.  
 
This system can be extended to (2+1)-dimensions as; 
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Now, consider the transformation; 
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Where, equation (4) is reduced to; 
 
      

       
       (       

 )    (     

       )   (            
 )                                      (7) 

 
Equation (5), is reduced to; 
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Equations (7) and (8) are similar for,  
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Finally, the system of equations (4) and (5) is reduced 
to a single equation; 
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3. Mathematical method  

In this section, the (   ⁄ )-expansion method, which is 
excessively used in finding traveling wave solutions of 
nonlinear equations (Wang, Li et al. 2008, Parkes 
2010, Naher and Abdullah 2014), is briefly 
summarized in the following steps; 
 
i. For  a partial differential equation (PDE); 
 
P(u, ux, uy, ut, uxx, uxy,…) = 0                                               (12)                                                                                              
 
Where p, is a polynomial in u and its partial 
derivatives. 
 
ii. Suppose the solution of the partial differential 
equation (12) is in the form; 
 
u(x, y, t) = u( ) ,   =        .                                     (13)                                                                       
 
The constant  , is the wave velocity. The PDE (12), is 
reduced to a nonlinear ordinary differential equation 
(ODE); which can be integrated many times -If 
possible- with setting the constants of integration 
equal to zero, for simplicity.  
 
iii. Assume the solution of the reduced ODE, is in the 
form; 
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Where G = G( ), satisfies the second order linear ODE; 
 
   ( )      ( )    ( )                                             (15)  
 

Where,    
  

  
      

   

    , ai ,   and  , are real 

constants to be determined. The positive integer m, is 
determined through balancing, the highest order 
linear and nonlinear terms' derivatives, appearing in 
the ODE. Substitute (13) and (15), into the final ODE, 
then collect all terms, with the same order of (   ⁄ )  
and set each coefficient to zero, yield a set of algebraic 
equations for ai,  ,   and   
 

4. Explicit solution of (2+1)-dimensional double 
chain DNA dynamical system 

 
This section is motivated to find the explicit solutions 
of the dynamical system (4), (5). First, use equation 
(13) into equation (10), get; 
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                                                            (16) 
 
Where,    (     

 )                                                   (17) 
 
The balance between     and   , reveals that m = 1, 
and the solution of equation (16) is; 
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Where, a0 and a1 0, substitute (18) using (15) into 
(16) yields; 
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Collect the terms with the same order of (   ⁄ ), and 
set each coefficient to zero yields; a set of algebraic 
equations for a0, a1, A,  and . 
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Solutions of this system of equations result in;  
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The function G(), is found from solving equation (15), 
in the following two cases; 

 
Case 1;       > 0 

 
The solution of the DNA system (4), (5) is; 
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Which can be simplified for C1 = 0 and C2 = 1, to;   
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The longitudinal motion u1 and the transversal motion 
v1 are plotted in Fig.1 and Fig.2, for C = 9, B = 1, a = b = 
1, z=1, t=3 and        . The periodic solution is 
clear for the longitudinal motion and its anti-periodic 
solution appears for the transverse motion. 

 
 

Fig.1 Traveling wave of longitudinal motion for DNA 
system, at C=9, B=1, a=b=1, z=1, t=3 and        . 

 

 
 

Fig.2 Anti-traveling wave of transversal motion for 
DNA system, at C=9, B=1, a=b=1, z=1, t=3 and 

       . 
 

System solution for C1 = 1 and C2 = 0 is;    
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Which is plotted in Fig.3 and Fig.4, showing kink and 
anti-kink solutions for longitudinal and transversal 
motions. 

 
Fig.3 Kink solution of longitudinal motion for DNA 

system, at C=9, B=1, a =b =1, z=1, t=2 and        . 
 

 
Fig.4 Anti-kink solution of transversal motion for DNA 
system, at C=9, B=1, a =b=1, z=1, t=2 and        . 

 
Case 2;       <0 

 
The solution of the DNA system (4), (5) is; 
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Which can be simplified for C1 = 0 and C2 = 1, to;   
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The longitudinal motion u3 and the transversal motion 
v3 are plotted in Fig.5 and Fig.6, for C = 9, B = 1, a = b = 
1, z=1, t=3 and        .  

 

 
Fig.5 Periodic solution for longitudinal motion at C = 

9, B = 1, a = b = 1, z=1, t=3 and        . 
 

 

 
Fig.6 Anti-periodic solution for transversal motion at 

C = 9, B = 1, a = b = 1, z=1, t=3 and        . 

 
The solution for C1 = 1 and C2 = 0, is; 
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This solution is plotted in Fig.7 for longitudinal motion 
and in Fig.8 for transversal motion. 
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Fig.7 multi-soliton solution for longitudinal motion at 
C = 9, B = 1, a = b = 1, z=1, t=3 and        . 

 

 
 

Fig.8 Anti-multi-soliton solution for transversal 
motion at C=9, B=1, a=b = 1, z=1, t=3 and        . 

 

Conclusions 
 

Double chain DNA dynamical system is analytically 
solved. Explicit solutions for longitudinal and 
transversal motions are discussed and plotted. The 
traveling wave solutions appear in solitary wave for 
the longitudinal motion and its anti-solitary wave for 
transversal motion. Two cases are discussed and 
plotted. Different solitary wave solutions are cleared 
in,   soliton, kink, periodic and multi-soliton waves. 

The 
  

 
 expansion method is effective in detecting the 

explicit wave solutions of the Double chain DNA 
dynamical system.  
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