
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2019 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

519| International Journal of Current Engineering and Technology, Vol.9, No.4 (July/Aug 2019)

Optimal Refactoring of Test Case at the Design Level

Abdulrahman Issa*

Department of Computer, Higher Institute of Science and Technology, Nalut, Libya

Received 05 May 2019, Accepted 06 July 2019, Available online 08 July 2019, Vol.9, No.4 (July/Aug 2019)

Abstract

Refactoring is the process of changing a software system aimed at organizing the design of source code, making the
system easier to change and less error-prone, while preserving observable behavior. This concept has become popular
in Agile software methodologies, such as eXtrerne Programming (XP), which maintains source code as the only
relevant software artifact. Refactoring was originally conceived to deal with source code changes. Two key aspects of
eXtreme Programming (XP) are unit testing and merciless refactoring. We found that refactoring test code is
different from refactoring production code in two ways: (M. B. Cohen et al, 2003) there is a distinct set of bad smells
involved, and (John A. Fodeh et al, 2002) improving test code involves additional test code refactoring’s. we describe a
set of code smells indicating trouble in test code and a collection of test code refactoring explaining how to overcome
some of these problems through a simple program modification. The goal of our present investigations is to share our
experience in improving test code with other XP practitioners.

Keywords: Test Smell, Test Case, Refactoring, Unit Testing eXtreme Programming, TDD.

1. Introduction

1 Computer software is an engine of growth of soei-
economy development which requires new techniques
and strategies. The demand for quality in software
applications has grown. lienee testing becomes one of
the essential components of software development
which is the indicator of quality (John A. Fodeh et al,
2002).

"Testing proves the presence, not the absence of bugs"
-- E.W.Dijkstra

The unit test provides the lowest level of testing during
software development, where the individual units of
software are tested in isolation from other parts of
program/software system. Automated Testing is the
other program that runs the program being tested,
feeding it with proper input, and thus checking the
output against the expected. Once the test case is
written, no human intervene is needed thus the test
case does all and indicate (Eugene Volokh, VESOFT,
1990). Adequate testing of software trials prevent this
tragedies to occur. Adequate testing however, can be
difficult if the software is extremely large and complex.
This is because the amount of time and efforts required
to execute a large set of test cases or regression test
cases be significant (S. Elbaum et al, 2000). Therefore,

*Corresponding author’s ORCID ID: 0000-0003-3602-2095
DOI: https://doi.org/10.14741/ijcet/v.9.4.5

the more testing can be done with accuracy of test
cases which assist in corresponding rise in program
transformation.
 Amongst different types of program
transformation, behavior preserving source-to- source
transformations are known as refactorings (Don
Roberts, 1999). Refactoring is the process of changing a
software system in such a way that it does not alter the
external behavior of the code yet improves its internal
structure (Martin Fowler, 1999).
 The refactoring concept was primarily assigned to
source code changes. The refactoring of test case may
bring additional benefits to software quality and
productivity, vis-avis cheaper detection of design flaws
and easy exploration of alternative design decisions.
Consequently, The term code refactoring and test case
refactoring can be made distinct. Thus, one of the main
reasons for wide acceptance of refactoring as a design
improvement technique and its subsequent adoption
by Agile software methodologies, in particular eXtreme
Programming (XP(M. B. Cohen et al, 2003). The XP
encourages the development teams to skip
comprehensive initial architecture or design stages,
guiding them its implementation activities according to
user requirements and thus promoting successive code
refactorings when inconsistencies are detected.

2. Test-Driven Development

Test Driven Development (TDD) is the core part of the
Agile code development approach derived from

https://doi.org/10.14741/ijcet/v.9.4.5

Abdulrahman Issa Optimal Refactoring of Test Case at the Design Level

520| International Journal of Current Engineering and Technology, Vol.9, No.4 (July/Aug 2019)

eXtreme Programming (XP) and the principles of the
Agile manifesto. It provides to guarantee testability to
reach an extremely high test coverage, to enhance
developer confidence, for highly cohesive and loosely
coupled systems, to allow larger teams of
programmers to work on the same code base, as the
code can be checked more often. It also encourages the
explicitpess about the scope of implementation.
Equally it helps separating the logical and physical
design, and thus to simplify the design, when only the
code needed.
 The TDD is not a testing technique, rather a
development and design technique in which the tests
are written prior to the production code. The tests are
added its gradually during its implementation and
when the test is passed, the code is refactored
accordingly to improve the efficacy of internal
.structure of the code. The incremental cycle is
repeated until all functionality is implemented to final.
The TDD cycle consists of six fundamental steps:

1) Write a test for a piece of functionality,
2) Run all tests to see the new test to fail,
3) Write corresponding code that passes these tests,
4) Run the test to see all pass,
5) Refactor the code and
6) Run all tests to see the refactoring did not change

the external behavior.

The first step involves simply writing a piece of code to.
ensure the tests of desired functionality. The second is
required to validate the correctness of test, i.e, the test
must not pass at this point, because the behavior under
implementation must not exist as yet. Nonetheless, if
the lest passes over, means the test is either not testing
correct behavior or the TDD principles have not been
strictly followed. The third step is the writing of the
code.
 However, it should be kept in mind to only write as
little code as possible to enable to pass the test (Astels,
2003). Next, step is to see that the change has not
introduced any of the problems somewhere else in the
system. Once all these tests are passed, then the
internal structure of the code should be improved by
refactoring. The above mentioned cycle is presented in
Figure 1.

Figure1. TDD Cycle

7) Refactoring

Program restructuring is a technique for rewriting
software may be useful either for legacy software as
well as for the production of new systems (Robert S.
Arnold, 1989; William G. Griswold, 1991; B.-K. Kang,
1999). If the internal structure is changed, although the
behavior (what the program is supposed to do) is
maintained. Restructuring re-organizes the logical
structure of source code in order to improve specific
attributes (B.-K. Kang, 1999) or to make it less error-
prone when future changes are introduced (Robert S.
Arnold, 1989).
 Behavior preserving program changes are known
as refactorings which was introduced by Opdyke
(William Opdyke, 1992). Yet its gaining importance by
Fowler's work (Martin Fowler, 1999) and eXtreme
Programming (XP) [IJ, an Agile software development
in context of object-oriented development. In this
context, a refactoring is usually composed of a set of
small and atomic refactorings, after which the largest
source code is better than the original with respect to
particular quality attributes, such as readability and
modularity.
 Thus, refactoring can be viewed as a technique for
software evolution through-out software development
and maintenance. Software evolution can be classified
into the following types (Sheena R et al, 2003):

- Corrective evolution: correction of errors;

- Adaptive evolution: modifications to
accommodate requirement changes;

- Perfective evolution: modifications to enhance
existing features.

Refactoring is mostly applied in perfective software
evolution, though it also affects corrective and adaptive
evolution. First, well- organized and flexible software
allows one to quickly isolate and correct errors.
Second, such software ensures that new functionality
can be easily added to address changing user
requirements.
 A known issue about refactorings is automatization.
Small steps of refactoring have usually been performed
manually using primitive tools such as text editors with
search and replace functionality. This situation
eventually leads to corrupt the design of source code,
mostly due to the fact that manual refactoring is
tedious and prone to errors (Don Roberts, 1999).
Although the choice of which refactoring to apply is
naturally made by human, automatic execution of
refactorings might result in a major improvement in
productivity.
 In addition, concerning behavior preservation, TDD
informally guides refactoring assisted by unit tests,
increasing the correctness of a sequence of
transformations. Furthermore, verification of object-
oriented programs is highly nontrivial. A number of
recent research initiatives have pointed out directions

Abdulrahman Issa Optimal Refactoring of Test Case at the Design Level

521| International Journal of Current Engineering and Technology, Vol.9, No.4 (July/Aug 2019)

for formally justifying refactorings In Opdyke's work,
preconditions for refactorings are analyzed (William
Opdyke, 1992), whereas Robert's work formalizes the
effect of refactorings in terms of pastconditions, in
order to build efficient refactoring tools (Don Roberts,
1999). In contrast, Mens (Tom Mens et al, 2002), apply
graph representation to I.peets that should be
preserved and graph rewriting rules as formal
specification for refactorings.

8) Causes of refactoring

In computer programming, code smell is any symptom
in the source code of a program that possibly indicates
a problem at steep level.
 Often the deeper problem hinted by a code smell

can be uncovered when the code is 'subjected to a

short feedback cycle where it is refactored in small,

controlled steps, and the resulting design is examined

to assist the needs of more rcfactoring. From the

programmer’s point of view, code smells are forecast to

refactor, and what specific refactoring techniques are

to be used. Thus, a code smell is a driver for

refactoring. Code smell hint that provides can be

improved In some where in your code.

 Determining a code smell is often a subjective

judgment lind will often vary by language, developer

and its methodology. There are certain tools, such as

Checkstyle, PMD .and FindBugs for Java, to

automatically evaluate for certain kinds of code smells.

When to apply refactorings to the test code, is different

from refactoring production code and the test code has

a distinct set of smells dealing with the test cases are

organized, to study its implementation and interaction

with each other. Moreover, improving test code

involves a mixture of refactorings from specialized to

test code improvements as well as a set of additional

refactorings involving the modification of test classes,

ways of grouping lest cases; and so on (M. Fowler,

1999).

Refactoring (to Patterns)

- Simple Design -> Code Smell -> Refactor

- Refactoring (to Patterns) is the ability to transform
a "Code Smell" into a positive design pattern.

Following arc the examples of some of the Dad
Resource Interface

Such wars arise when the tests execute you are the
only one testing which fails when more programmers
run them. This is most likely caused by Resource
Interference: some tests in your suite allocate
resources such as temporary files that are also used by
others. Jdentified Uniquely is one of the test code
refactoring method used to overcome Resource
Interference.

Code Smells that are encountered in case
(unit/class) design

 Duplicated Code
 Methods too big
 Nested "if' statements
 Classes with too many instance variables
 Classes with too much code
 Strikingly similar subclasses
 Too many.private (or protected) methods
 Similar looking code sections
 Dependency cycles
 Passing Nulls To Constructors
 Classes with too little code

9) Test case code smells

This section gives an overview of bad code smells that
are specific for test code.

Self Contained

When a test uses external resources, such as file
containing test data, the test is no longer self contained.
Consequently, there is no enough information to
understand the test functionality, to use it as test
documentation.
 Moreover, external resources introduces hidden
dependencies: if some force mutates such a resource,
tests start failing. Chances for this increase becomes
more when more tests use the same resource. The use
of external resources can be thus eliminated using
refactoring Intregral Resource.

Resource Optimism

Test code that makes optimistic assumptions about the
existence (or absence) and state of ex tema I resources
(such as particular directories or database tables) can
cause nondeterministic behavior in test outcomes. The
situation where tests run fine at one time and fail
miserably at the other time needs to be avoided.
Resource Allocation refactoring used to allocate and/or
initialize all resources that are to be used.

Resource Interface

Such wars arise when the tests execute you are the
only one testing which fails when more programmers
run them. This is most likely caused by Resource
Interference: some tests in your suite allocate
resources such as temporary files that are also used by
others. Jdentified Uniquely is one of the test code
refactoring method used to overcome Resource
Interference.

Setup Method

In the JUnit framework a programmer can write a
setUp method that can be executed before each test
method to create a fixture for the tests to run. Things

Abdulrahman Issa Optimal Refactoring of Test Case at the Design Level

522| International Journal of Current Engineering and Technology, Vol.9, No.4 (July/Aug 2019)

start to smell when the setUp fixture is too general and
different tests only access part of the fixture. Such
setUps are harder to read and understand.
 Moreover, they may make tests run more slowly
(because they do unnecessary work). The danger of
having tests that take too much time to complete is that
testing starts interfering with the rest of the
programming process and programmers eventually
may not run the tests at all.

Splitting Method

When a test method checks methods of the object to be
tested, it is hard to read and understand, and therefore
more difficult to use as documentation. Moreover, it
makes tests more dependent on each other and harder
to maintain.

The solution is simple:

separate .. the test code into test methods that test only
one method. Note that splitting into smaller methods
Which can slow down the tests due to increased
letup/teardown overhead.

Assertion Roulette

"Guess what's wrong?" This smell comes from having a
number of assertions in a test method that have no
explanation. If one of the assertions fails, it becomes
difficult to know the cause of concern. Usc Asertion
Explanation to remove this smell.

Class-to-be-tested

A test class is' supposed to test its counterpart in the
production code. It starts to smell when a test class
contains methods that actually perform tests on other
objects (for example because there are references to
them in the classIo-be-tested) .. I'he smell which arises
also indicates the problems with data hiding in the
production code. Note that opinions differ on indirect
testing. Some people do not consider it a smell but a
way to guard tests against changes In the: "lower"
classes. We feel that there are more losses than gains to
this approach: It is much harder to test anything that
can break in an object from a higher level. Moreover,
understanding and debugging indirect tests is much
harder.

Duplication across Test Class

Test code may contain undesirable duplication. In
particular the parts that set up test fixtures are
susceptible to this problem. Solutions are similar to
those for normal code duplication as described by
Fowler [3, p. 76]. The most common case for test code
will be duplication of code in the same test class. For
duplication across test classes, it may prove helpful to
mirror the class hierarchy of the production code into

the test class hierarchy. A word of caution however can
introduce dependencies between tests moving
duplicated code from two separate classes to a
common class.
 A special case of code duplication is test implication:
test A and B cover the same production code and A fails
if and only if B fails. A typical example occurs when the
production code gets refactored before such
refactoring.

10) Test code refactoring

Bad smell seems to arise more often in production code
than in test code. The main reason for this is that,
production code is adopted and refactored more
frequently allowing these smells to escape.
 One should not, however, underestimate the
importance of having fresh test code. Especially when
new programmers are added to the team or when
complex refactorings need to be performed clear test
code is invaluable. To maintain this freshness, test code
also needs to be refactored. We define test refactorings
as changes (transformations) of test code that: (1) do
not add or remove test cases, and (2) make test code
better understandable/readable and/or maintainable.
The production code can be used as a (simple) test case
for the refactoring: If a test for a piece of code succeeds
before the test refactoring, it should also succeed after
the refactoring. This, obviously also means that you
should not modify production code while refactoring
test code (similar to not changing tests when
refactoring production code). While working on our
lest code, the following refactorings are encountered:

Integral Resource

To remove the dependency between a test method and
some external resource, we incorporate the resource in
the test code. This is done by setting up fixture in the
test code that holds the same contents as the resource ,
This fixture is then can be used instead Of the resource
to run the test . A simple example of this refactoring ss
to put the contents of a file that is used into some string
in test code.

Resource Allocation

If it is necessary for a test to rely on external resources,
such as directories, databases or files , make sure the
test that uses them explicitly creates or allocate these
resources before testing and releases them when done
(take precautions to ensure the resource is also
released when tests fail).

Identified Uniquely

Lot of problems originate from tho use of overlapping
resource names; either between different tests run
done by the same user or between simultaneous tests
run done by different users. Such problems can easily
be overcome using unique identifiers for all resources

Abdulrahman Issa Optimal Refactoring of Test Case at the Design Level

523| International Journal of Current Engineering and Technology, Vol.9, No.4 (July/Aug 2019)

that are allocated, such as including a time-stamp.
When you also include the name of the test responsible
for allocating the resource in this identifier, you will
have less problems finding tests that do not properly
release their resources.

Minimize Data

Minimize the data that is setup in fixtures to bare
essentials, this will have two advantages :

1) In making them better suitable for documentation

and consequently.
2) The tests will be less sensitive to changes.

Assertion Explanation

Assertions in the Unit framework have an optional first
argument to give an expanatory message to the user
when the assertion fails , Testing becomes much easier
when you use this message to distinguish between
different assertions that occur in Ihe saem test. May be
this argument should not have been optional,

Add Equality Method

If an object structure needs to be checked for equality
in test . an implementatlon for the "equals' method for
the object's class needs to be added, you then can
rewrite the tests that use string equality to to use htis
method. If an expected test value is only represented as
astring. explicitly construct an object containing the
expected value and use the new equals method to
compare it to the actually computed object.

Conclusions

By end large, refactoring can improve overall quality of
a test case using these set of smells choices. The only
concern needs to be understand is the selection of
refactoring chices. But which refactoring choices
should be implemented? We advocates program slicing
in conjunction with code smell' to guide refactoring
process. By slicing the software system one or more
bad smells, different refactoring options can examined
and evaluated using these sets of smells. Thus the
combination of program slicing and set of code srhells
guides the refactoring process.

A software system essentially needs the refactoring
systems for its better performance. Thus this
refactoring process assist in its high quality and can
prove to be more maintainable techniques. This ref
acto ring process thus can be executed in lower error
rates, fewer test cases per module and to increased
over all understandability and maintainability in
return. In both the design and maintenance phases,
these advantages can be realized almost immediately.

References

M. B. Cohen, P. B. Gibbons, W. B. Mugridge and C.J. Colbourn.

(2003), Constructing Test Suites for Interaction Testing, 25th
International Conference on Software Engineering (ICSE'30),
pp. 38-49, Portland, Oregon, United States, IEEE Computer
Society.

John A. Fodeh and Niels B. Svendsen. (2002), Release Metrics:
When to Stop Testing with a clear conscience, Journal of
Software Testing Professionals, March.

Eugene Volokh, VESOFT. (1990), Automated Testing When and
How, Interact Magazine.

Don Roberts. Practical Analysis for Refactoring. (1999), PhD
thesis, University of Illinois at Urbana-Champaign.

S. Elbaum, A. G. Malishevsky and G. Rothermel. (2000),
Prioritizing Test Cases for Regression Testing, ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp.
102-112, Portland, Oregon, United States, ACM Press.

M. Fowler. Refactoring. (1999), Improving the Design of Existing
Code. Addison-Wesley.

Robert S. Arnold. (1989), Software Restructuring. Proceedings of
the IEEE, 77(4):607{617, April}.

William G. Griswold. (1991), Program Restructuring as an Aid to
Software Maintenance. PhD thesis, University of Washington.

B.-K. Kang and J. M. Bieman. (1999), A Quantitive Framework for
Software Restructuring. Journal of Software Maintenance, 11
:245 {284}.

Martin Fowler. (1999), Refactoring improving the design of
existing code. Addison Wesley.

William Opdyke. (1992), Refactoring Object-Oriented
Frameworks. PhD thesis, University of JII inois at Urbana-
Champaign.

Tom Mens, Serge Demeyer, and Dirk Janssens. (2002),
Formalising Behaviour Preserving Program Transformations.
In Proceedings of the First International Conference on Graph
Transformation, pages 286{301. Springer-Verlag.

Sheena R. Judson, Doris L. Carver, and Robert France. (2003), A
Metamodeling' Approach to Model Refactoring, Submitted to
UML.

Frederick P. Brooks Jr. (1995),The Mythical Man-Month
(Anniversary Ed.). Addison- Wesley Longman Publishing Co.,
Inc.

Martin Fowler. (1999), Refactoring: Improving the Design of
Existing Code, Addison Wesley Longman, Inc., Pub.

