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Abstract 
   
The discovery of fractal geometry has been one of the major developments in mathematics. Fractals, defined as self-
similar structures, provide a new approach to the understanding of irregular structures. The dimensions of complete 
fractals can be easily calculated as real numbers with the fractal geometry approach. However, most of the structures 
in nature do not demonstrate self-similarity fully, and different approaches are needed for dimension calculations. 
These structures with semi-fractal properties are known as quasi fractals. Fractals derived from time series are called 
statistical fractals and they are an example for quasi fractals.  Various methods have been developed to estimate the 
dimensions of statistical fractals. In this study, the methods which predict dimension in statistical fractals were 
investigated and the most suitable method for time series was identified.  Fractal dimensions were calculated by 
using ECGs of 236 individuals, and the data set was divided into four disease groups and a control group of healthy 
individuals. Various statistical analyses were performed using the fractal dimensions of the graphs computed with 
MATLAB.  Statistical hypothesis tests showed that the differences between the group mean of fractal dimensions are 
significant. Fractal dimensions of ECGs have the potential to be used as a diagnostic tool in the diagnosis of heart 
diseases. 
 
Keywords: Fractals, Statistical fractals, Fractal dimension, ECG, Cardiac diseases.  
 
 
1. Introduction 
 

1 Fractals are non-geometric shapes that are self-similar 
in different scales. With his fractal geometry theory, 
Mandelbrot was able to create mathematical models 
for the irregular structures found in nature 
(Mandelbrot, 1982). His work brought a new 
perspective for the way mathematicians interpreted 
physical structures.  
      A lot of the physiological processes in the human 
body have fractal structures. Cancer cells can be 
diagnosed with fractal analysis without detailed 
examination. Blood flow shows fractal structure as 
well. Through Electrocardiography (ECG), the electrical 
activity of the heart is measured by placing electrodes 
on the patient’s skin. Recent studies have shown that 
heartbeat, shows fractal structure as well (Lapidus, et 
al, 2004). Classical analysis such as the mean and 
standard deviation have been proven insufficient, but 
fractal dimension analysis can be used as a 
distinguishing factor alongside blood pressure and 
pulse for check-ups (Acharya, et al, 2005). This paper 
aims to find an efficient method for fractal dimension 
calculations of statistical fractals of ECGs. The end-goal 
is to investigate the possibility of using the fractal 
                                                           
*Corresponding author’s ORCID ID: 0000-0002-4767-5692 
DOI: https://doi.org/10.14741/ijcet/v.9.3.13  

dimension as a diagnostic tool in the diagnosis process 
of some heart diseases. For this purpose, ECGs of four 
heart disease groups and a control group of healthy 
individuals were analyzed.  All the data about the 
patients is taken from MIT Physonet Public Database. 
Various fractal dimension calculation approaches were 
examined to determine the most appropriate method 
that could be used for the ECG data.  

 
2. Earlier work 

 
Mandelbrot’s fractal theory suggests that Euclid 
geometry is not sufficient enough to define various 
complex structures that exist in the nature. Euclidean 
theory satisfies an engineer’s needs perfectly. 
However, nature does not always follow simple rules 
(Gaddis, et al, 1986). Benoit B. Mandelbrot came up 
with the Fractal theory, because “clouds are not 
spheres, mountains are not cones, coastlines are not 
circles and bark is not smooth, nor does lightning 
travel in a straight line…” (Mandelbrot, 1982). 
Mandlbrot’s theory; however, is successful in building 
mathematical models for natural structures.  
     In recent years, researches have been carried out on 
fractal dimension analysis of the signals originating 
from heartbeat. According to Acharya et al, (2005), 
heartbeat signals with rapid changes in their fractal 
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structures can be a precursor of a disease, and the 
fractal model is better than the other mathematical 
methods used to diognose such diseases. Tulppo et al, 
(2005) proved that there is a relationship between the 
changes in the fractal structure of heartbeat and some 
cardiac disorders. Abishekh et al (2013) asserted that 
in the electroconvulsive treatment of patients, a 
negative relationship exists between the results of 
psychiatric evaluation and fractal dimension. Esteban 
et al (2016), summarizing the applications of fractal 
dimension in the field of clinical neuroscience, pointed 
out that fractal dimension contributes significantly to 
the diagnosis of various nerve diseases. However, 
fracal dimensions were estimated from the ECG data 
using image based methods in these studies. As 
explained in Section 4, these methods are purely 
geometric notion and not sensitive to time series data 
such as ECG samples. 
 
3. Background 
 
In Euclidean geometry, dimensions of objects are 
expressed with integers. A point is zero-dimensional, a 
line is one-dimensional, a triangle is two-dimensional, 
and a cube is three-dimensional. Fractal dimensions 
are rational numbers. A coastline’s fractal dimension is 
a real number between 1 and 2. If we examine a small 
piece of a fractal structure under magnifying glass, the 
shape we see will be the same as the bigger picture, 
because fractal structures repeat themselves in every 
scale. In other words, they show self-similarity. 
     Mandelbrot (1982) noticed that there was a 
relationship between the scale parameter and the 
number of self-similar copies in fractal structures. 
When a line segment is repeatedly divided into three 
pieces to create a shape with four line segments, the 
scale parameter is s= 3, and the number of pieces 
obtained in the second step is n = 4. This curve is 
known as the von Koch curve (Fig.1). Each step of a 
fractal follows the n=sd relation. n and s will be n = 16 
and s = 9 in the third step, and n = 64 and s = 27 in the 
fourth step. In this equation fractal dimension (d), 
applies to every step of the fractal. If we solve for the 
second step where n=4 and s=3, 4 = 3d, we find that d = 
log(4)/log(3)=1,26. Therefore, von Koch curve’s fractal 
dimension is d=1.26. Similarly, if the initial line 
segment is divided into three parts and only. 
  

 
 

Fig.1 Von Koch curve obtained by various number of 
repetitions 

 
 
Fig.2 Various fractal shapes. Exact fractals: Mandelbrot 
set (top left), Julia set (top right), Approximate (Quasi) 

fractal: Ferns (lower left), Statistical fractal: ECG 
signals (lower right). (Images adopted from free-

source sites). 
 
the middle piece is discarded, a fractal known as the 
Cantor set is obtained. For this case, n = 2, s = 3 fractal 
dimension is d = 0.631 since 2 =3d. If we cut a line 
segment into three, and didn’t fold the middle part to 
form a v shape, n=3, s=3 and 3=3d would give us d= 1, 
which is the topological dimension of the line.  This 
also applies to squares and cubes. If one edge of the 
square is reduced by ½, then 4 smaller squares are 
obtained, which would give us 4=2d and d=2. If one side 
of the cube was reduced at the same scale, n would 
equal 8, and 8=2d would give us d=3. The topological 
dimensions of such geometric shapes and their fractal 
dimensions are the same. However, as seen in the von 
Koch curve, fractal and topological dimensions differ as 
they are irregular.  
     In addition to the von Koch curve, many more fractal 
samples have been developed. Mandelbroth and Julia 
sets (Fig.2, upper row) and the Sierpinski triangle are 
other well-known fractals with exact smilarity 
properties. These fractals appear identical at different 
scales. Exact fractals are created through an iterative 
procces. However, self-similarity is observed only to a 
certain extent in fractal-like structures seen in nature. 
Fractals that have an incomplete form of self-similarity 
are called quasi or approximate fractals. Some other 
fractals, called statistical fractals, have numerical 
measures. Dimensions of quasi or statistical fractals 
can be estimated approximately (Panigrahy et al., 
2017). Examples of exact, approximate and statistical 
fractals are presented in Fig.2. 

 

4. Dimension Calculations of Approximate and 
Statistical Fractals  
 
Fractal dimension depends on the complexity of 
fractals. More complex fractals have higher fractal 
dimensions. For example, von Koch curve is more 
complex than the Cantor set; therefore, von Koch’s  
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fractal dimension is greater than Cantor’s. Similarly, if 
we looked at the map, we would expect Portugal’s 
coastline to have a smaller fractal dimension than 
England’s coastline, because England’s coastline is 
more indented. In other words, if we didn’t have a map, 
we could say that the coastline that has a greater 
fractal dimension belongs to England. 
      Exact fractals’ dimensions can be found with more 

simple methods, as it is explained for von Koch and 

Cantor Sets. However, we do not know the initial 

shapes of statistical and natural fractals. Since we don’t 

know their initial steps, we can not make predictions 

about how these fractal structures reach their final 

form.  

     A well-known method called box-counting method 

and its modifications are used to calculate the 

dimensions of approximate and statistical fractals. For 

these fractals, there are other ways of calculating 

fractal dimension. Box counting method is more 

suitable for 2 dimensional shapes. It gives fractal 

dimension through counting the number of boxes the 

image covers. This method can be used on the two-

dimensional images of approximate fractal structures 

(Mandelbrot, 1982, Panigrahy et al, 2017). However, 

this method’s success depends on the resolution of the 

images. Preliminary analyses showed that ECG graphs 

are not suitable for box-counting method, as this 

method fails to capture the differences between 

different ECG graphs due to the sudden changes in the 

graph. Box-counting can’t distinguish the differences in 

the pixels smaller than the unit boxes it uses to analyze 

the image. 

     For time series, (Katz, 1988) had a different 

approach on the analysis of fractal structures. Apart 

from the resolution of the image, he took the total 

length of the line graph, and the distance between each 

of the two points (on the sharp ends of the graph) into 

consideration while coming up with his function, which 

he used to calculate fractal dimension. Even though the 

dimensions obtained through Katz method are lesser 

than the expected values, his method can capture the 

difference of fractal structures of ECG graphs 

(Raghavendra et al, 2010).  

     Higuchi method is another method that is frequently 

used for the analysis of fractal structures in ECGs.This 

algorithm estimates fractal dimensions more 

accurately compared to Katz and Box Counting 

methods (Higuchi, 1988). Therefore, in this study, 

Higuchi method was used to analyze fractal dimensions 

of ECG data. This method is suitable for the analysis of 

fractal structures in time series, and has higher 

accuracy compared to the other methods. 

     A time series sample is chosen where               

are recorded at equally spaced time intervals. Sub-

samples      are obtained from this series as follows: 

     :                 , 
  ⌊
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where k is the time interval. m = 1,2, …, k and ⌊∙⌋ is an 
operator to round the number to the lower integer. For 
k = 4 and n =25 following sub-samples can be created 
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The length of the curve corresponding to sub-sample 
     is defined as 
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absolute value operator. 
    The length of the curve for the time interval k is 
defined as the average value over k sets of       (m = 
1,2, …, k) that is 
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For all time intervals k, if   k     , the curve has a 
fractal dimension d.  To find d, the logarithm of   k is 
plotted against the logarithm of k and the line of best fit 
is drawn to find the linear regression. d is the absolute 
value of the slope of the line of best fit.  

 
5. Material 

 
Using a reliable data set for fractal analysis is a major 
issue for this study. The data is taken from PTB 
Diagnostic ECG Database of MIT Computational 
Physiology Laboratory, which is a public database 
(Goldberger et al, 2000). To download data from this 
database, and draw graphs of the signal values, WFDB 
Toolbox application was used (WFDB Toolbox is 
provided by MIT Computational Physiology Labora-
tory’s Phsio Net organization).     
 In this database, there are ECGs of 294 patients. 
These patients are divided into a total number of 9 
groups: 8 groups of patients and a control group that 
consists of 46 healthy individuals. Some of these 
groups had 7 or less patients. Groups with inadequate 
number of patients or incomplete records, are 
excluded from our study. Information regarding the 5 
groups is in order to have enough evidence to draw 
conclusions. As a result, 236 patients’ ECGs were 
analyzed. The number of patients in each group, and 
their ages are given in Table1. 
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Table 1. Number of patients and their age distribution by gender and disease groups 
 

 
Groups 

Female Male 
No. of patient Min. age Max. age Mean age No. of  patient Min. age Max.age Mean age 

Control 7 22 67 39.5 39 17 81 45.3 
Myocar.Infarc. 39 42 85 64.0 109 26 86 59.0 
Cardio-Myop. 7 32 80 59.4 7 52 82 63.0 

Bundle Branch 4 56 64 59.7 10 29 76 53.0 
Dysrhyt 4 35 75 60.2 10 17 87 47.0 

 

 
 

Fig.3 Fractal dimensions calculated through Higuchi 
and Box-counting methods vs time intervals of the ECG 

graph 
 
In an ECG, 1000 signals are recorded per second. For 
each patient, the signals are standardized to have a 
mean value of 0. 120-second-long recordings are used. 
Therefore about 120 000 recorded signals are used for 
each patient’s fractal dimension calculations.  
 

 
 

Fig 4.  Images used to calculate fractal dimensions at 
different resolutions. Left: Lena, right: ECG graph for 

the first 30 seconds (patient 232). 
 

 
 

Fig.5 ECG graphs for patients in the control and patient 
groups. Left: Patient from the control group. Right: 

Patient with myocardial infarction. 

6. Results 
 
The first step of this work was to find a suitable 
method to calculate the dimensions of statistical 
fractals. The first method used to analyze ECGs was the 
box-counting method. Box-counting method is widely 
used to calculate the fractal dimensions of exact and 
approximate fractals. However, after comparing the 
Higuchi method and box-counting methods by 
analyzing data with both of them, it was evident that 
box-counting is not suitable for analyzing ECG graphs. 
In Fig.3, change in fractal dimension with time is 
shown for patient 232. It can be inferred from the 
graph that Box-counting fails to capture fractal 
dimension, whereas Higuchi’s output is consistent after 
10s. These results were similar with other patients as 
well. 
     Due to their sharp ends, Box-counting can’t calculate 
fractal dimensions of ECG graphs. Image based 
methods depend on the resolution of the image, and 
comparisons were made between the fractal dimension 
results of different sizes of the same picture. For Lena 
in Fig.4, fractal dimensions for its 512x512, 256x256 
and 128x128 resolutions were calculated as d = 1.937, 
1.934 and 1.929 respectively. For the ECG graphs like 
in Fig.4, box-counting calculates their fractal 
dimensions as d=1.440, 0.993 and 0.454. Thus, fractal 
dimensions of ECG graphs calculated through Box-
counting method is not accurate since there can’t be 
such a big fractal dimension difference between ECGs’ 
fractal dimensions. Higuchi algorithm; however, is not 
image-based, and it calculates fractal dimension 
directly from the data that is already on the graph. 
 

 

Fig.6 Left: Plots of average curve lengths against time 
intervals. Right: Plots on the logarithmic scale and the 

corresponding fitted regression line(patient01). 

 
Fractal dimensions regarding 46 controls and the 190 
other patients in the 4 disease groups were calculated. 
Graphs in Figure 5 are presented to give an idea about 
the signal values obtained from the database. Graph on 
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the left belongs to a person in the control group, and 
Graph on the right belongs to a patient that is 
diagnosed with myocardial infarction. These graphs 
show the signals recorded in 4 seconds.  
     The Higuchi algorithm in MATLAB was used for 

finding fractal dimensions of the ECGs. Higuchi 

algorithm first computes the length of the curve (  k) 

for the time interval k=1, 2, …, kmax, then fits a 

regression line to the logarithm of these values. Fractal 

dimension is the absolute value of the slope of this line. 

   

Table 2. Mean and standard deviations of the 
fractal dimension for control and patient groups 

 

 Control 
Myocar- 
infarc. 

Cardio-
myop. 

Bundle 
branch 

Dysrhy- 
thmia 

Mean 1.696 1.7230 1.662 1.631 1.691 
Standard 

dev. 
0.047 0.078 0.106 0.090 0.062 

 

The slope of the regression line is found by using the 
following formula: 

 

  
∑ (      )(      )
    
   

∑ (      )
    
   

             (5) 

 
where       ( ), zk = log(  k)            kmax.    and    

are the corresponding sample averages. For kmax=400 

corresponding plots of   k versus k are shown in Fig.6 

for patient01. In this graph, scatter plots tend to be 

linear on the double logarithmic scale. The slope of the 

regression line is m=-1.776. Fractal dimension is 

calculated as d=1.776. 

     In order to be able to make a comparison between 

the groups by using the Higuchi method, the optimum 

k value (number of sub-samples) must be determined. 

In this study, each patient’s fractal dimensions for 

k=50, 100, 150, …2000 are calculated. The change in 

fractal dimension according to k parameter of a patient 

in the control group is given in Fig.7. Fractal dimension 

increases until k reaches 1000, and the following 

values are steady. kmax=400, where there is a 

prominent increase in fractal dimension is chosen for 

comparison. 

 To compare the groups, fractal dimensions were 

calculated for each person and k value. For k=100, 200, 

300… 1000, average dimensions for each group is 

shown in Fig.8. In order to calculate fractal dimension 

with the Higuchi method, k is determined as 400. 

Graphs based on fractal dimension, and statistical 

hypothesis tests are conducted through MATLAB. Level 

of significance (P) was chosen as 0.05 to test the 

hypotheses. 

 
 

Fig.7 Graph of fractal dimensions obtained using 
Higuchi method, with respect to the k-parameter. 

(patient01) 
 

 
Fig.8 Graph of group means of fractal dimensions,  

against k-values. 

 
Fractal dimensions were calculated separately for each 
patient. Mean and standard deviation of fractal 
dimension for control and disease groups are given in 
Table 2. Based on the mean values in Table 2 and Fig.8, 
some differences are observed between the groups. 
     Box plots were drawn to explain the differences 

between the groups (Fig.9). Drawing box plots is a 

technique to summarize the distribution of the data. 

The lower side of the box stand for 25th percentile, the 

line segment in the middle is the median, and the 

upper side of the box stands for 75th percentile. The 

lower and upper end point of the dashed line segment 

represents the minimum and maximum points 

respectively. The values outside the region between 

the minimum and maximum points are considered to 

be extreme values or outliers. It can be inferred from 

these box plots that the maximum difference between 

the groups is in between myocardial infection and 

bundle branch block. The control group stands in the 

middle of all 5 groups. 
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Moreover, 9 extreme values are found in the 
myocardial group. Regarding that these extreme values 
may be useful for further research, they are not 
discarded from this graph. t-tests were made to 
compare the groups in terms of observed variables.  
     The effect of gender and age on fractal dimension 
was inspected. Fractal dimension averages and 
standard deviation for male and female patients were 
(    1.7057, S1 =0.0863) and (    1.7071, S2 =0.0773) 
respectively. A two-sample t-test indicated that the 
difference between male and female group averages 
was not significant (P>0.05).  
     Pearson correlation coefficient (r), was computed to 
determine the relationship between age and fractal 
dimension. 

  

 
 

Fig.9 Box plots for control and patient groups. 
  
 
A t distribution with n-2 degrees of freedom, was used 
to test if there was a correlation between age and 
fractal dimension. The t-test indicated that there is a 
positive correlation between age and fractal dimension 
(r=0.171, n = 236, P<0.01). The scatterplot in Figure 10 
summarizes the results. These results indicate a weak 
correlation between age and fractal dimension.  
 

 
 

Fig.10 Scatter plots for fractal dimensions and ages 
based on 236 patients 

Since gender and age do not make a significant 
difference on fractal dimensions, group comparisons 
were made without taking these factors into 
consideration. Then, t-tests were performed for group 
comparisons. Independent sample tests indicated that 
Bundle branch block and Cardiomyopathy were 
different from Myocardial infarction; Dysrhythmia was 
different from Bundle branch block, and control group 
was different from Myocardial infarction and Bundle 
branch block (P<0.05).  
  
Conclusions 
 
Various irregular structures in nature can be modeled 
and analyzed more effectively with new approaches 
offered by fractal geometry. The classical dimension 
concept defined in the Euclidean geometry was 
generalized by using the self-similarity of the fractals. 
Furthermore, it has been found that there is an order in 
which irregular structures are formed.  
The methods developed for calculating the fractal 
dimension were generally image-based and they were 
not suitable to accurately calculate the dimensions of 
the statistical fractals based on ECG data. In this work,  
we preferred to use the Higuchi method, which takes 
into account the general characteristics of ECG graphs 
and calculates the fractal size more precisely for these 
data.  
     In general, ECG graphs are evaluated according to 
scale-based statistics such as minimum, maximum, 
mean and standard deviation. However, these statistics 
are insufficient to explain the dynamics that generate 
the underlying signals. Two patients with the same 
mean and standard deviation can exhibit different 
diseases. It has been pointed out in many studies that 
the fractal dimension plays an important role in 
understanding of such irregular structures.  
     In this study, fractal dimensions were calculated by 
using the test data for four different heart diseases. 
Based on the statistical analysis it was concluded that 
the differences between the certain disease groups 
were statistically significant.  
     These results suggest that the fractal dimension has 
the potential to be an important indicator and 
diagnostic tool that can be used at the first instance, 
such as pulse and blood pressure in patient 
examinations. 
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