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Abstract 
  
The numerous increase in offshore operational activities demands improved wave forecasting techniques. If the 
accurate wave data is available, it is possible to carry out the marine activities easily and safely (i.e. offshore drilling, 
offshore platforms and pipelines installation, naval operations, near shore construction activities, etc.).  This paper 
focuses on the prediction of significant wave heights (  ) by support vector machine (SVM), using various kernel 
functions. This study aims to evaluate the influence of fetch and meteorological data over SVM approach and also 
perform a comparison between SVM kernel methods. Measured sea waves off Alexandria, west coast of Egypt, and 
meteorological data are used in this study. Six SVM (linear kernel) models comprising of various input combinations 
for wind speed, fetch, sea level pressure and air temperature have been performed to evaluate the wave height 
prediction performance of fetch and meteorological parameter. The results indicated that the SVM model (linear 
kernel function) gave the satisfactory results with all parameters (wind speed, fetch, sea level pressure and air 
temperature). Furthermore, the analysis showed that wind speed is the most important parameters for wave 
prediction. The results showed also that the fetch could also be useful for the wave height estimations, especially 
when used in combined with wind speed.  Furthermore, the SVM kernels named sigmoid and a radial basis function 
(RBF) comprising all parameters were investigated. The results indicated that the SVM (linear kernel) gave the same 
results extracted from the SVM (sigmoid kernel). However, SVM (RBF kernel) gave the best prediction performance 
over other SVM kernels. Their results indicated that the error statistics of SVM models are generally within an 
acceptable range. Therefore, SVM can be used successfully for prediction of Hs.  
 
Keywords: Deep waves height, wave prediction, support vector machines, linear kernel function,  radial basis 
function, Alexandria waves heights. 
 
 
1. Introduction 
 

1 The waves are considering the most effective factor in 
many activities related to the ocean environment such 
as the offshore structures installation, port and 
terminal, maritime transportation and navigation, 
shoreline protection etc.  
For this propose, there are several empirical and 
numerical methods described in literature, such as; 
SMB (Bretschneider, 1970), Wilson (Wilson, 1965), 
JONSWAP (Hasselmann et al., 1973), (Donelan, 1980), 
Shore Protection Manuel (SPM, 1984), Coastal 
Engineering Manuel (CEM, 2003), Kinsman (1965), 
World Meteorological Organization (WMO, 1988) and 
Goda (2003). 
 These methods aim to provide us the most suitable 
probability distributions and predicting the most 
appropriate wave characteristics, such as; wave height 
                                                           
*Corresponding author: Tamer Elgohary 

and wave period from fetch length and meteorological 
data. Usually; the empirical methods are developed 
based on the dimensionless parameters which are 
affecting on the wave generation. These simplified 
methods are particularly preferred for solving of the 
practical engineering problems. Numerical models are 
generally based on a form of the spectral energy or 
action balance equation. However, due to their 
complexity of implementation, high amount of 
processor time is required, and the need for accurate 
local bathymetric surveys, their implementation is not 
an easy task (Browne et al., 2007).  
 When the enormous amount of information is not 
available and the computational resources and 
expertise are limited, data mining and machine 
learning approaches would be very good choices 
(Mahjoobi and Mosabbeb, 2009). Empirical model is 
meant to learn and infer the behavior of the problem. 
The performance of this empirical model depends on 
quantity and quality of the data used. In traditional 
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statistical methods for problem solving, one needs to 
make some prior model assumptions, such as 
normality, linearity, .etc. On the other hand, the 
machine learning approaches these assumptions are 
not required. This is also expressed in the statistical 
learning theory (Vapnik, 1995) in other words, which 
tries to minimize the empirical risk of the model built 
over the data that minimizes the error on the training 
data. SVMs applications were developed to solve the 
classification problems, but recently they have been 
extended to the domain of regression problems 
(Vapnik, 1998). Support vector machines have been 
applied in many applications in the field of water 
engineering. Mohandes et al. (2004) used SVM for wind 
speed prediction and compared the results with multi-
layer perceptron (MLP) neural network. They 
indicated that SVM outperforms MLP for their purpose. 
Another work on soil classification (Bhattacharya and 
Solomatine, 2006) used three different machine 
learning models namely ANN, SVM and decision trees. 
This work acquired nearly the same results for the tree 
models. Asefa et al. (2006) utilized SVM for multi-time 
scale stream flow predictions. They have achieved 
better results compared to those of physical models. Yu 
et al. (2006) also used SVM but for real-time flood 
stage forecasting and obtained satisfactory results. One 
important point that they have noted is that the SVM 
model is not easily understood and interpreted. This is 
one of the shortcomings of SVM in comparisons to 
traditional ANN. Also, SVMs are used for estimation of 
discharge and end depth in trapezoidal channel in Pal 
and Goel (2007). They noted that in comparisons to 
back propagation neural network, both radial basis 
function (RBF) and polynomial kernel-based 
approaches work better for different datasets. In 
addition, they have introduced a smaller computational 
time for SVM comparing with ANN. 
 A comprehensive review of support vector machine 
applications in ocean engineering was performed by J. 
Mahjoobi and Ehsan Adeli Mosabbeb (2009) and M. S. 
Elbisy (2013). They indicated in their paper that SVM 
can provide a good alternative to traditional statistical 
regression, numerical methods and approaches of this 
kind. The advantages are due to the improved 
accuracy, less complexity, smaller computational 
efforts and in several cases reduced data requirements. 
Mahjoobi and Mosabbeb (2009) used a support vector 
machine (SVM) to predict significant wave height. 
These authors compared the SVM results with those of 
NNs (Multilayer Perceptron and Radial Basis Function, 
or RBF) and reported that the SVM model was superior 
to the NN model. Moreover, this previous study 
concluded that using optimization algorithms, such as 
genetic algorithms (GAs), to select SVM parameters 
and choosing alternate kernel functions improves SVM 
model performance. 
 Elbisy, M.S. (2013) predicted the sea wave 
parameters by using SVM for different kernel 
functions. A genetic algorithms (GAs) was used in this 
study to determine the optimal values of the 
parameters for the different kernel functions of the 

SVMs and compared these results with those obtained 
from the field data and a Back-Propagation Neural 
Network (BPNN) and a Cascade-Correlation Neural 
Network (CCNN) models. The results showed that the 
SVM (RBF kernel) model out-performed the other 
methods. Furthermore, the SVM (RBF kernel) model 
has the highest accuracy and better generalization 
performance than the CCNN and BPNN models for all 
wave height and period ranges. The results obtained in 
this investigation demonstrated that the SVM (RBF 
kernel) model is a promising alternative to NN for 
wave parameter forecasting. 
 The effects of the meteorological factors such as; 
sea level pressure and air temperature were implicitly 
included in wind data measurement. Consequently, the 
evaluation of the effect of the meteorological data 
explicitly may be useful through the machine learning 
approach. 
 In this paper, the 3 hourly significant wave heights 
(  ) were predicted from fetch data (F) and 
meteorological data such as wind speed (u), sea level 
pressure (p), and air temperature (  ) based on hourly 
observations data by using the SVM approach 
(software package for predictive model) with different 
kernel functions. 
 This paper is organized as follows: the next section 
introduces method used in this study. Section 3 
describes the studied area and data used. Section 4 
presents the results of the SVM methods. Finally, 
conclusions are reported in the last section. 
 
2. SVM Method 
 
SVMs are methods of supervised learning, which are 
commonly used for classification and regression 
purposes. A Support Vector Machine (SVM) is a 
relatively modern approach that has shown great 
promise at generating accurate models for a variety of 
engineering problems. The original Support vector 
machine algorithm was created in 1963 by Vladimir N. 
Vapnik and Alexey Ya. Chervonenkis. In 1992, 
Bernhard E. Boser, Isabelle M. Guyon and Vladimir N. 
Vapnik suggested a technique to make nonlinear 
classifiers by applying the kernel trick to maximum-
margin hyper planes (separating lines of data sets). 
The modern SVM depending on the soft margin was 
developed by Corinna Cortes and Vapnik in 1993 and 
published in 1995. 
 SVM models are built around a kernel function 
(Linear, Radial Basis Function (RBF), Sigmoid (S-
shaped) and Polynomial) that transforms the input 
data into an n-dimensional space where a hyper plane 
can be constructed to partition the data.  
 Using SVMs requires an understanding of how they 
work. When training an SVM we need to make a 
number of decisions; how to preprocess the data, what 
kernel to use, and finally, selecting the parameters of 
the SVM and the kernel. In some cases, uninformed 
choices may be reduced the results performance. 
 A SVM constructs a separating hyper plane between 
the classes in the n-dimensional space of the inputs. 
This hyper plane maximizes the margin between the 
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two data sets of the two input classes. The margin is 
defined as the distance between the two parallel hyper 
planes, on each side of the separating one, pushed 
against each of the two datasets. Simply, the largest 
margin gives the minimum error of the datasets. 
 Figure1 shows the distance between the dashed 
lines which is called the margin. The vectors (points) 
that constrain the width of the margin are the support 
vectors. An SVM analysis finds the hyper plane (i.e. a 
line) that is oriented so that the margin between the 
support vectors is maximized. In the figure below, the 
line in the right side is superior to the line in the left 
side. For the case of regression the only difference is 
that the SVM attempts to fit a curve, according to the 
kernel function applied, on the data points such that 
the points lie between the two marginal hyper planes 
to minimize the regression error. 
 

 
 

Fig.1 Illustrates Two-Dimensional Example 
 
3. SVM Concepts 
 
However, for simplification SVM concepts, we can 
describe SVM for two-class classification problems 
only. Assume that we have some data points, that each 
is a member of a class. The target is determining which 
class a new data point is belonging to. Hence the 
objective is maximizing the separation margin. It is 
expected that the data points will give several 
separating lines as shown in figure 2, but the one gives 
the largest margin of these data (see figure 3). This 
separating line (say hyper plane) in figure 3 is 
considered the best one relative to the separating lines 
in figure 2. 
 

 
 

Fig.2 several possible separating lines (hyper planes) 

So, the idea of support vector machine is to create a 
hyper plane in between data sets to indicate which 
class it belongs to. 
 

 
 

Fig.3 The maximum separating line (hyper plane) 

For example, If we have a dataset of n points as       , 
where (i= 1, 2, 3, ... n),      and    {     }. Any 
hyperplane can be written as the set of points   
satisfying: 

                       (1) 

Where w is known as the weight vector and b is called 
the bias. The bias b translates the hyper plane away 

from the origin. The parameter 
 

‖ ‖
determines the 

offset of the hyper plane from the origin which is called 
“hard margin”. If the data is found in the linearly 
separable case, with the hard margin, such as in figure 
4, these hyper plane can be described by the equations: 

                               (2) 

                              (3) 
 
Geometrically, the distance between these two hyper 

planes is 
 

‖ ‖
 . Therefore to maximize the distance 

 

‖ ‖
 (between the origin line and one hyper plane), we 

want to minimize‖ ‖ (for one hyper plane) or 

minimize the value ‖ ‖ 
 (between two hyper planes). 

By combining of equations 2 and 3 in one set of 

inequalities, we can be rewritten as: 

                                              (4) 
  
The SVM gets an optimal separating hyper plane with 
the maximum margin using the following optimization 
problem: 
 

         
 

 
‖ ‖ 

                                 (5) 

 
In figure 4, the data points lying on the marginal hyper 
planes are called the support vectors. 
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Fig.4 The linearly separable case (hard margin) and 
the support vectors points 

 
To extend SVM to covers also the data in non-linearly 
separable cases in an attempt to build a hyper plane 
with the smallest number of errors. Therefore the non-
negative slack variables (              ) were 
introduced by (Haykin, 1999) to obtain the following 
formal setting of this problem: 

                                   (6) 

                                        (7) 

where     is slack variables that allow an example to 
be in the margin (      , also called a margin 
error) or to be misclassified (    ). Since an example 
is misclassified if the value of its slack variable is 
greater than 1, ∑      is a bound on the number of 
misclassified examples. Our objective of maximizing 

the margin, i.e. minimizing  
 

 
‖ ‖ 

 will be amplified 

with a term  ∑     to penalize misclassification and 
margin errors (where C and   are SVM parameters).  

The optimization problem now is: 
 

         
 

 
‖ ‖ 

   ∑   
 
              (8) 

 
                                               
 
This formulation (equation 8) is called the soft-margin 
SVM, and was introduced by Boser et al., 1992 and 
Cortes and Vapnik, 1995. 
 Where C is the parameter determines the tradeoff 
between increasing in the margin-size and the 
ensuring that the     lie on the correct side of the 
margin. Therefore, for sufficiently small values of C, the 
soft-margin SVM will behave identically to the hard-
margin SVM if the input data are linearly classifiable, 
but will still learn a feasible classification rule if not.
 By using the Lagrange multipliers, we can find the 
dual formulation which is expressed in terms of 
variables     (also known as the dual representation of 
the decision boundary): 

         ∑   
 
    

 

 
 ∑   ∑              

      
 
   

 
        (9) 

               ∑                 
     

where ϕ(.) denotes a set of nonlinear transformation 
between the input space and the feature apace. So we 

can define the kernel function as  (     )  

     
       , which is induced by Mercer’s theorem 

(Haykin, 1999). Accordingly, Kernel functions are used 
to compute a non-linearly separable function and then 
transform into a higher dimension linearly separable 
function (see figure 5). 

So the problem is changed to be: 

         ∑   
 
    

 

 
 ∑   ∑          (     )

 
   

 
      (10) 

Kernel functions are used to change the dimensionality 
of the input space, in order to perform the 
classification (or regression) task with more 
confidence. Some common kernel functions are used: 

 Linear (homogeneous)               :  (     )       

 Polynomial(inhomogeneous:  (     )  

          

 Radial basis function (Gaussian):   

       (     )     (   ‖     ‖
 
) for γ > 0 

  Sigmoid (Hyperbolic tangent):    (     )  

    (        ) for γ > 0 and ν ≤ 0 

 
Where γ, p and ν are kernel parameters 
 

 
 

Fig.5 The kernel functions transform nonlinear into 
linear by ϕ 

 
3. Parameters Selection 
 
It is well-known that SVM accuracy depends on a 
selection of SVM parameters C and ε and kernel 
parameters γ, p and ν. The choices of C and ξ control 
the prediction (regression) model complexity. The 
problem of optimal parameter selection is further 
complicated by the fact that SVM model complexity 
depends on above parameters (Smola and Scholkopf, 
1998). The penalty constant C is a positive constant 



Tamer Elgohary, Amir Mubasher and Hassan Salah             Significant Deep Wave Height Prediction by using Support Vector Machine Approach  

 

139| International Journal of Current Engineering and Technology, Vol.7, No.1 (Feb 2017) 

 

that can be close to infinity; however, C =1000 and 
slack variable (or relaxation factor) ξ = 0.0001 are 
adequate for many operations (Mao et al., 2005 and 
Elbisy, M.S. 2015). In 2009, Mahjoobi and Mosabbeb 
used SVM parameters C =100, ξ = 0.001 and kernel 
parameters p =1.0, γ = 0.01 in significant wave height 
prediction.  
 The assumption of SVM parameters will be used in 
this study are C =500, ξ = 0.0001 and for kernel 
parameters γ =5, p =20 and ν=0. 
 
4. Study area and data 
 
The meteorological, fetch and wave data were gathered 
from deep water location in Ras El-Teen coastal zone, 
open sea area, located at the west of Alexandria on the 
North West Egyptian Nile delta coast (Figure 6).  
 

 
 

Fig.6 The Study Area Location 
 
The data used in this study was measured from 1 
January, 2010 to 31 December, 2012. The offshore data 
set was collected from S4DWI buoy (31° 10’ 60” N and 
29° 50’ 00” E), where the buoy is owned and 
maintained by Egyptian Navy Forces, Meteorological 
and Oceanographic Division, through the specialized 
people in this area. 
 Since the water depth and wave direction does not 
affect the form of waves in deep water zone, so they 
are not used in this study. The 3 hourly significant 
wave heights (  ) accompanied with wind speed (u), 
fetch data (F), sea level pressure (p), and air 
temperature (  ) used in this study based on hourly 
observations data were provided by the buoy 
mentioned above.  
 The table represents the values of the minimum, 
maximum, and mean values of parameters u, F, p,    
and    of data sets for 3 years (from 2010 to 2012). 
 

Table 1 Min, Max. and Mean values for datasets 
 

Parameter Min. value 
Max. 
value 

Mean value 

u (m/s) 0.00 23.66 5.90 

F (m) 0.00 5720 2826.4 

p (Kg/m2) 10012 10286 10128.3 

   (°C) 9.60 40.20 21.90 

   (m) 0.00 15.02 1.15 

6. Results and discussions 
 
6.1 Models accuracy 
 
For comparison of models accuracy correlation 
coefficient (R), mean square error (MSE), mean 
absolute error (MAE) and scatter index (SI) are used. 
These statistical measures are defined as follows:- 
 
Correlation coefficient (R) 
 

   
∑       ̅      ̅  
   

√∑      ̅  ∑      ̅   
   

 
   

            (1) 

 
Mean Square Error (MSE) 
 

     
 

 
∑        

  
                (2) 

 
Mean Absolute Error (MAE) 
 

     
 

 
∑ |       |

 
               (3) 

 
Scatter Index 
 

    
     

 ̅
                 (4) 

 
In all formulas, the   ’s represent the observation 
value, the   ’s represent the predicted value, n is the 
total number of observations,  ̅ is the mean of   and  ̅ 
is the mean of Pi. 
 
6.2 Results of SVM (Linear) 
 
Six combinations of the u, F, p and    parameters were 
used as inputs to predict   using SVM approach, linear 
kernel function, in an attempt to evaluate the 
parameters importance, impact on the results accuracy 
and models performance. The parameters 
combinations are illustrated in Table 2. 
 

Table 2 Parameters combinations used in the 
prediction of    

 

Model 
No. 

Wind 
speed        

u (m/s) 

Fetch  
F (m) 

Sea level 
pressure    p 

(Kg/m2) 

Air 
temperature              

   (°C) 

1 Yes - - - 

2 - Yes - - 

3 - - Yes - 

4 - - - Yes 

5 Yes Yes - - 

6 Yes Yes Yes Yes 

 
The R, MSE (m), MAE (m) and SI (%) values of the 
models results for data used in this study (3 years) are 
shown in Table 3. 
 The first four models, in table 3 above, were 
performed to evaluate the prediction performance of 
   relative to each parameter (u, F, p and   ) 
separately.  
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Table 3 Results values of statistical measures for each model 
 

Model No. Inputs R MSE (m) MAE (m) SI (%) SVM 
Kernel 

Function 
1 u 0.940 0.152 0.214 12.6 Linear 

2 F 0.866 0.300 0.274 24.9 Linear 

3 p 0.143 1.181 0.731 98.09 Linear 

4    0.165 1.184 0.754 98.3 Linear 

5 u, F 0.955 0.121 0.171 10.05 Linear 

6 u, F, p,    0.957 0.111 0.180 9.20 Linear 

 
For these models; the results of R, MSE, MAE and SI% 
revealed that the performance of model (1), with the 
input of wind speed (u) only, gave the best 
performance comparing with the other models (2), (3) 
and (4). This indicates that the wind action is the 
dominant factor in the wind-waves growth as a fact. 
 Also, the performance of the fetch data used in 
model (2), when used as a single input, was fairly close 
to model (1) (e.g. the correlation value of model (2) 
equal 0.866 relative to correlation value of model (1) 
equal 0.940). So, the reasonable results of fetch model 
(2) indicated that the fetch could also be useful in the 
wave height prediction. It is obvious that the 
performance of model (5) did not significantly different 
the performance of model (1) (R equal to 0.955 and 
0.940 for models (5) and (1) respectively) where the 
effect of the fetch located in deep water area (open sea) 
is not valuable relative to, which is located in shallow 
water area, as well as the confined water areas such as 
the lakes and bays. 
 The results from model (3), with sea level pressure 
(p) only, and also model (4), with Air 
temperature      only, showed that p and     are not 
effective on the    prediction using SVM method when 
used as individual input. As shown in table 3, model (3) 
and (4) give smallest correlation values R (0.143 and 
0.165 for model (3) and (4) respectively) and highest 
values of MSE, MAE and SI%. Accordingly, these results 
showed that the models (3) and (4) have poorer 
performance than models (1) and (2). Although the sea 
level pressure and the Air temperature did not affect 
significantly the performance of models (3) and (4) 
where it is implicitly included in the measurements of 
the waves and wind speed, but they increase slightly 
the accuracy of model when used in participation with 
the fetch and wind speed as will be shown later in the 
results of model (5). 
 Based on the satisfactory results from models (1) 

and (2), wind speed (u) and fetch (F) will be used as 

inputs to build model (5). The value of correlation for 

model (5) is equal (0.955) which is higher than models 

from (1) and (2). Also, the values of MSE, MARE and 

SI% values gave smaller values than the first two 

models, which means that the model (5) has slightly 

better performance than model (1), with wind speed 

only, while it increased the prediction performance 

comparing with model (2), with fetch only. 

 Model (6) was performed to evaluate the 

performance of all parameters together. The results 

revealed that the model (6) gave the highest value in 

the correlation factor (0.957) and the smallest values 

for MSE, MAE and SI% comparing with the first five 

models stated in table 3.From the above results, it can 

be concluded that using the combinations of u, F, p and 

    increased the prediction performance of model. The 

model (5) used u and F in the input data provided 

results values nearly identical for model (1). Sea level 

pressure (p) and air temperature      have a minor 

effective on the wave height prediction when used as 

single input such as in models (3) and (4) respectively, 

however if they used in combination such as in model 

(6) they increased the model accuracy. Model (6) 

whose input data consists of u, F, p and    provided the 

best prediction performance. Figures 7 (a ~ d) present 

the correlation between the actual (observed) and the 

predicted values of Hs for data used in models (1), (2), 

(5) and (6) respectively (also called a Residual Chart). 

In models (3) and (4) respectively the graphs showed 

that both sea level pressure (p) and air temperature 

(Ca) give the poor prediction performance for 

significant wave height (Hs) when used, each one 

individually, as a single input. Accordingly; they were 

evaluated as out of preferable results. 

 In Figures 7 (a ~ d) generally, the X coordinate of a 

point is the actual target (observed) value and Y 

coordinate of the point is the corresponding predicted 

target value. The points (in blue) are offset from the 

diagonal line show the different for some of the 

predicted values against the actual values, and the 

vertical distance (in red) from the line to the point 

corresponds to the error (residual). 
 

 
 

Fig.7.a  for Actual and Predicted values of Hs (Model 1) 
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Fig.7.b  for Actual and Predicted values of Hs (Model 2) 

 

 
 

Fig.7.c  for Actual and Predicted values of Hs (Model 5) 
 

 
 

Fig.7.d  for Actual and Predicted values of Hs (Model 6) 
 

From Figures 7 (a ~ d), it is obvious that the 
correlation between the observed and the predicted 
values of Hs for all represented models decreased 
while the significant wave height (Hs) increased, 
especially for Hs values more than 5.0 m. Correlations 
in figures (7.a), (7.c) and (7.d) gave the nearly models 
results, however model (1) in figure (7.a) was slightly 
less performance than models (5) and (6) in figures 
(7.c) and (7.d) respectively. 
 Figure 8 presents the overall importance of 
parameters for model (6) relative to Hs using the linear 
SVM method. The results revealed that the weight of 
fetch relative to prediction of Hs is about 8% while the 
sea level pressure and air temperature are equal 0.23% 
and 0.01 % respectively. Also, the graph confirmed that 

the wind speed is the important factor can be affected 
in the prediction of the significant wave height (Hs) 
 

 
 

Fig.8 parameters importance in linear SVM model (6) 
 

The results of R, MSE, MAE and SI%, stated in table 4, 
showed that the performance of model (7) using 
sigmoid kernel function gave the same performance for 
model (6) with the linear kernel function, while the 
results of model (8) using RBF kernel function gave the 
better performance than models (6) and (7). 
  

Table 4 Results values of statistical measures for 
Sigmoid and RBF 
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Correlation factor “R” in model (8) gave the highest 
value of “R” relative to all previous models, where it 
closed to 1.00 and also gave the smallest values of MSE, 
MAE and SI%, where they closed to zero. Accordingly, 
model (8) indicated that the SVM with RBF gave the 
superior performance which is more near from the 
measured data. 
 Figures (8.a) and (8.b) present the actual 
(observed) versus predicted Hs values for data used in 
models (7) and (8) respectively. 
 Figure (8.a) gave the same results of correlation 
value such as value in figure (7.d) stated in section 4.2, 
which means that the SVM with sigmoid kernel 
function does not improve the model accuracy over 
SVM with linear kernel function. 
 Figure (8.b) showed that the correlation between 
the observed and the predicted values of Hs close to 
1.00 when using SVM with RBF. Therefore, model (8) is 
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considered as the perfect model where almost of all 
points located on the diagonal line (in green). 
 Furthermore, a comparison of the correlation (R) 
values between the three models (6), (7) and (8) 
illustrated in figure (9) hereafter. A comparison shows 
that the highest R in the three models (linear, sigmoid 
and RBF) is observed with the RBF in model (8). 
 

 
 

Fig.8.a  for Actual and Predicted values of Hs (Model 7) 
 

 
 

Fig.8.b  for Actual and Predicted values of Hs (Model 8) 
 

 
 

Fig.9 comparison of the correlation (R) of the linear, 
sigmoid and RBF models 

 
Conclusions 
 
Significant wave height prediction is an essential step 
to study of many projects whether in the offshore or in 
the coastal area. In this study, the prediction of 3 

hourly significant wave heights (Hs) based on fetch 
data and the meteorological data named as u, p and Ca 
was investigated by using SVM with linear, sigmoid and 
radial basis function methods.  It was concluded from 
the six models of SVM (linear kernel function) that: 
 
1) The best prediction performance was obtained 

from the SVM model (6) including fetch and all 
meteorological data as the inputs.  

2) The results of model (1) confirmed that the wind 
speed is the most effective factor on wave height 
prediction which gave the satisfactory results.  

3) On the other hand, models (3) and (4) revealed 
that the mean sea level pressure (p) and air 
temperature (Ca) were not effective on wave 
height prediction in case of used each one as single 
input in the model. Nevertheless, when add p and 
Ca into input combination with fetch and wind 
speed data, the performance of SVM model 
increased.  

4) The fetch data showed good prediction 
performance for both single and two input cases in 
models (5) and (6) and could be useful for wave 
height prediction. 
Based on the results from SVM (linear kernel), all 
parameters were used during the new SVM kernel 
functions named sigmoid and RBF. The 
comparison between the three models concluded 
that: 

5) The results from models (6) and (7) showed that 
there is no difference in the results between SVM 
linear method and SVM sigmoid method.  

6) The results from model (8) for SVM RBF method 
gave the best results for all model combinations 
used in this study.  

 
Finally, this study has confirmed the following: 
 
7) SVM linear and sigmoid approaches could not gave 

good results with the high wave ranges and it 
works well in the small and medium wave height 
ranges.  

8) SVM linear approach could not gave good results 
with the high wave ranges, but it works well with 
the small and medium wave height ranges. On the 
contrary, SVM RBF kernel approach gives a very 
good results with any range of wave height. 

9) The SVM (RBF kernel) in the wave height 
prediction gave a superior performance comparing 
with the SVM (linear and sigmoid kernel). SVM 
(RBF kernel) has the highest accuracy as well as 
gave a lower predicting error. 

 
Recommendations 

 
1) Theoretical analysis study for deep wave 

prediction in Alexandria region should be achieved 
to compare it with support vector machine 
approach methods. 

2)    Both Theoretical analysis and support vector 
machine approach methods for shallow wave 
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prediction in Alexandria region should be 
achieved. 

3)    Study the effect of sea water salinity on deep 
wave prediction should be achieved. 

4)    Study the effect of sea water level rise due to 
climate changes on deep wave prediction should 
be achieved. 
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