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Abstract 
  
In this paper object oriented defect datasets have been collected from open source promise data repository. Out of 20 
provided metrics in each dataset, most prominent 14 metrics have been selected using feature selection process. 
These metrics are directly responsible for bug prediction in such systems. In this paper most prompting classifier 
Logistic Regression based on 10-cross validation has been used. The findings have been analyzed using Area under 
Curve (AUC) values. This information can be used by software developers to enhance the quality of a system. WEKA 
tool has been used for finding and analysis of our result. A Comparative study has also been done in terms of AUC 
values obtained by proposed model and Mamdouh Alenezi Model. Our proposed model is providing better result that 
Mamdouh Alenezi Model.  
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1. Introduction 
 

1 Defect as well as cost both are the deriving forces in 
software development. Software defect prediction 
using machine learning approaches are now becoming 
the popular techniques. But before to predict the 
quality we must be ensured that the software metrics 
have empirically validated using machine learning 
methods and they also have the practical relevance in 
the assessment of quality factors. 
 It is very difficult to produce a fault free software 
whereas within the complexity and constraints the 
development environment are increasing gradually. To 
solve such problems we have to focus our prediction 
on some software quality attributes such as fault 
proneness, effort required, testability issues, 
maintainability and reliability factors in the early 
phases of software development.  
 Based on ROC (Receiver operating characteristics) 
analysis, one can easily predict that such models (as 
our model is discussed) can be helpful in planning and 
performing testing issues by focusing resources on 
fault-prone parts at design and coding levels. 
 Rest of the paper is organized as follows: Section 2 
describes about the work done by various person as 
related work. Methodology is described in section3. In 
section 4 different experiments have been done on all 
the datasets. Section 5 describe, summary and 
conclusion portion of the paper. Future scope is 
mentioned is section 6.  
                                                           
*Corresponding author: Dharmendra Lal Gupta is a Research Scholar 

and Kavita Saxena is working as Associate Professor 

2. Related Work 
 
Software defect prediction has been under study for a 
very long time. Various software defect prediction 
models are available in the literature. In the last few 
decades many software developers and researchers 
studies have been carried out in this area of software 
defect prediction. Regression tree, Neural Networks, 
Fuzzy logic etc. and its applications have been used for 
Software quality prediction. 
 Support Vector Machine approaches have been 
used by Xing F et al.., Singh Y et al.. and Gondra I. et al.. 
Classification of software modules based on complexity 
metrics have been used and a module has been 
proposed for early software quality prediction for 
small number of sample data. Singh Y et al.. have 
manifested a SVM based software fault prediction 
model which investigate the relationship between 
object-oriented metrics and fault-proneness. They have 
preferred KC1 a NASA dataset and computed ROC 
(Receiver Operating Characteristics) as performance 
measure. Gondra I. et al.. have shown software fault 
prediction model based on Artificial Neural Network 
using sensitivity analysis and also using SVM and on 
the basis of result it is advocated that SVM is better 
than ANN. 
 Amasaki S. et al.. have used Bayesian belief network 
approach to predict the final quality of software. In this 
paper they have done empirical evaluation based on 
the metrics data gathered from development projects 
in a certain company. As a result of empirical 
evaluation they confirmed that the proposed model can 
predict the amount of residual faults the software 
reliability growth model is unable to handle. 
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Catal C. has reported in his paper about a complete 
survey of 90 research papers regarding the direction of 
research work done during 1990 to 2009. 
 In addition to it he has also focused on machine 
learning approach and statistical data calculation for 
the fault prediction.  
 Chidamber et al.. have shown the key requirements 
of measurement to improve the quality of software 
with the help of new metrics suite which consists of six 
design level metrics named WMC, DIT, NOC, CBO, RFC 
and LCOM. 
 Churcher N. I. et al.. have commented on the metrics 
suite developed by CK (Chidamber S.R., and Kemerer C. 
F.) and they have illustrated their views by counseling 
a fundamental property NOM (Number of Methods in a 
Class) and demonstrated that this is open to a variety 
of interpretations, they have manifested that the 
number of methods per class is required directly for 
the computation of WMC (Weighted Method per Class) 
and indirectly for other metrics provided by CK. 
 Olague H.M. et al. have shown an empirical 
validation of Chidamber & Kemerer , Brito e Abreu’s 
MOOD Metrics and Bansiya and Davis’s Quality Model 
for Object Oriented Design (QMOOD) Metric suite 
which helps during prediction of fault-proneness of 
object-oriented classes. In this paper authors have 
used Mozila Rhino project and its versions as datasets 
and metrics have been collected using SSML (Software 
System Markup Language) Tool. Finally they have 
concluded that CK and MOOD metrics contain almost 
similar components and in these cases product 
statistical models are much effective in the detection of 
error-prone classes. They have also commented that 
the class components in MOOD metrics suite are not to 
good class fault-prone predictors. The authors have 
applied Multivariate binary logistic regression models 
across six Rhino Versions which indicates that these 
models may be useful in assessing the quality in object 
oriented classes shaped using highly iterative software 
development processes. 
 Jureczko M. et al.. have presented an analysis 
regarding defect prediction using clustering technique 
on software projects. They have used a data repository 
with 92 versions of 38 proprietary, academic and open 
source projects. In this paper Hierarchical and K-means 
clustering as well as Kohonen’s neural network has 
used to find the groups of similar projects. Two defect 
prediction models were created for each of the 
identified groups. In this study Ckjm Tool has been 
used for the retrieval of all metrics which will be used 
for defect prediction model. JUnit and FitnNess have 
been used as test Tools. The authors have identified 
two clusters and compared with results obtained by 
other researchers. Finally clustering is suggested and 
applied. 
 Karabulut E. M. et al. have shown the effect of 
feature selection method (in which irrelevant features 
from the original dataset is removed). The authors 
have used 15 datasets from University of California 
Irvine’s. Data Mining Repository to compare three 

classification algorithms with respect to their effect 
from six feature selection filters. The authors have 
done their experimental work using WEKA data mining 
tool. Authors have investigated the impact of feature 
selection on aforementioned classifiers and observed 
that MLP is most effective classifier. It is also 
discovered for classifier that the Gain Ratio, for MLP 
the Chi-square and for J48 the Information Gain is the 
most effective feature selection algorithm. 
 Alenezi M. has empirically investigated the 
relationship between metrics of open source defective 
software systems and their fault proneness. For this, he 
has applied Feature Selection technique on all the 
twenty metrics of datasets and selected nine metrics 
out of twenty for his model which is based on Random 
Forest classifier and he has computed AUC as well as F-
Measure value on eight datasets (Camel 1.6, Ant 1.7, 
Xerces 1.4.4 , jEdit 4.3, POI, Lucene and Synapse)  and 
suggested that by focusing on a small and precise set of 
internal attributes (metrics) the quality of the model 
can be improved as well as quality assurance team can 
also save time and resources while getting high 
accuracy fault proneness predictions.  
 

Table 1: Data Description 
 

S No. Dataset Name Instances *Instances 
after 

Normalization 
1 Camel1.6 965 884 
2 Tomcat 6.0 858 796 
3 Ant 1.7 745 724 
4 jEdit4.3 492 476 
5 Ivy 2.0 352 345 
6 arc 234 215 
7 e-learning 64 57 
8 berek 43 43 
9 forrest 0.8 32 31 

10 zuzel 29 29 
11 Intercafe 27 27 
12 Nieruchomosci 27 26 

 
*These values have been obtained after Normalization. The duplicate 

entries have been deleted except one entry 

 

3. Methodology 
 

In this paper fault proneness have been calculated in 
terms of AUC (Area under Receiver operating 
characteristics Curve) values, by delineating the 
confusion matrix for each of the techniques involved 
separately. All the defect datasets must be having 
relation with their different metrics set and bug values 
corresponding to each and every instances of the 
dataset/datasets. If any instance is lacking the value of 
some metrics then in that case all such metrics values 
will be considered as zero.  
 

3.1 Data Description 
 
12 open source object-oriented defect projects and 
each of which are of Marian Jureczko datasets.  
(Camel1.6, Tomcat 6.0, Ant 1.7, jEdit4.3, Ivy 2.0, arc, e-
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learning, berek, forrest 0.8, zuzel, Intercafe and 
Nieruchomosci) have been taken under study which 
are the latest release of their retrospective versions 
and are collected from Promise Software Engineering 
Repository, which is available at [8] and shown in 
Table 1. Normalized (Duplicity remove) instance 
values of the retrospective datasets are also shown in 
this table. 
 
3.2 Metrics Description 
 
Dependent and Independent Variables 
 
Here Bug is dependent variable which shows that 
whether there is any bug in a class of the each data set 
or not. The independent variables are WMC DIT NOC 
CBO RFC LCOM, CA CE, LOC, LCOM3, NPM DAM MOA 
MFA CAM IC CBM AMC MAX_CC and AVG-CC. 
 
3.3 Feature Selection 
 
First of all we have removed the duplicate entries from 
each of the datasets mentioned in Table 1 and then 
combine all the normalized datasets and named it as 
Combined Dataset. Then feature selection process has 
been applied on the Combined Data set which is having 
3597 instances. In this process correlation attribute 
evaluation is applied which is based on Pearson 
correlation method. Ranker attribute selection is 
selected in WEKAtool. Form this selection most 
prominent and deserving 14 metrics have been found, 
which are WMC, CBO, RFC, LCOM, CA, CE, MFA, LCOM3, 
LOC, DAM, MOA, CAM, MAX_CC and AVG_CC. BUG-
Count value is dependent value, which is actually 
dependent on above mentioned 14 metrics. The most 
prominent metrics or features selection is shown in 
Figure 1. 
 

 
 

Figure 1: Feature selection 
 

3.4 Classifier Selection 
 
In this section all 14 different classifiers Naïve Bayes, 
Logistic Regression, LivSVM (Support Vector Machine), 
Multi-Layer Perceptron, SGD (Stochastic Gradient 

Descent), SMO (Sequential Minimal Optimization), 
Voted Perceptron, Attribute Selected Classifier, 
Classification Via Regression, Logit Boost, Tree 
Decision Stamp, Random forest, Random Tree and REP 
(Reduce Error Pruning) Tree are applied on validated 
combined dataset with 14 most prominent metrics at 
10-cross validation. It is found that Logistic Regression 
is providing best result and it is now kept as the most 
prominent classifier. 
 
3.5 AUC Measurement 
 
ROC (Receiver operating Characteristics) curve is 
commonly used to measure the performance of 
classifier techniques in case of imbalanced classes. 
Generally AUC (Area under receiver operating 
characteristics) is used for single numeric 
measurement to predict the potential of a classifier. 
Commonly a higher AUC is better. It also indicates that 
the used classifier within whole possible range of 
decision threshold has a higher sensitivity or true 
positive rate. It is found that higher the AUC value, the 
better is the performance. 
 
4. Experimental Work 
 
Proposed model with fourteen most prominent metrics 
WMC, CBO, RFC, LCOM, CA, CE, MFA, LCOM3, LOC, 
DAM, MOA, CAM, MAX_CC and AVG_CC with Logistic 
Regression Classifier is applied and it is trained on all 
the validated datasets and tested also on alone. Cross 
project training-testing process is applied. All the 
computed results are mentioned in Table No. 2.  
 
Experiment No. 1 
 
Training is applied on Camel 1.6 with 884 instances 
and cross testing is applied on all the datasets. It is 
found that the proposed model is providing minimum 
AUC value i.e. 0.469 on dataset jEdit 4.3 whereas 
Intercafe dataset is providing maximum AUC value i.e. 
0.837.The Average AUC value provided by the model 
on dataset Camel 1.6 is 0.672.   
 
Experiment No. 2 
 
Model is trained on dataset Tomcat 6.0 (796) and 
tested on all the datasets. It is seen that Dataset 
Nieruchomosci is providing 0.375 AUC value which is 
minimum, whereas berek dataset is providing 
maximum AUC value i.e.0.887. The average value is 
0.704.  

 
Experiment No. 3 

 
Training is applied on Ant 1.7 with 724 instances and 
cross testing is applied on all the datasets. It is found 
that the proposed model is providing minimum AUC 
value i.e. 0.594 on dataset Camel 1.6 whereas berek 
dataset is providing maximum AUC value i.e. 0.958.The 
Average AUC value provided by the model on dataset 
Ant 1.7 is 0.798. 
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Table 2: AUC measured on Training and Testing datasets using Logistic Regression Classifier 
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Table 2: Comparative results of AUC between Proposed Model and MA Model 
 

S. No Datasets Instances 

AUC at 10-cross validation 

Proposed 
Model 

MA Model(maximum value) Average 

NB B NET J48 RF 
AUC of 

MA Model 

1 Camel1.6 884 0.719 0.632 0.584 0.579 0.656 0.61275 

2 Tomcat 6.0 796 0.833 0.781 0.761 0.722 0.803 0.76675 

3 Ant 1.7 724 0.834 0.784 0.79 0.748 0.814 0.784 

4 jEdit 4.3 476 0.859 0.747 0.491 0.398 0.572 0.552 

5 ivy 2.0 345 0.844 0.761 0.78 0.634 0.76 0.73375 

6 Arc 215 0.825 0.704 0.604 0.465 0.681 0.6135 

7 e-learning 57 1 0.458 0.221 0.338 0.596 0.40325 

8 berek 43 1 0.944 0.921 0.862 0.934 0.91525 

9 Forrest 0.8 31 1 0.448 0.221 0.338 0.596 0.40075 

10 zuel 29 0.998 0.856 0.873 0.781 0.877 0.84675 

11 Intercafe 27 1 0.549 0.75 0.598 0.826 0.68075 

12 Nieruchomosci 26 1 0.763 0.472 0.506 0.706 0.61175 

Average AUC 0.909333   0.6601 

 
Experiment No. 4 
 
In cross project training-testing process based on 
dataset jEdit 4.3 it is found that zuzel is showing result 
0.267 AUC value whereas 0.859 AUC is found on 
dataset jEdit 4.3. The average AUC value at this dataset 
is 0.535. 
 
Experiment No. 5 
 
Model is trained on dataset ivy 2.0 (345) and tested on 
all the datasets. It is seen that Dataset Nieruchomosci is 
providing minimum AUC value i.e. 0.400 whereas 
berek dataset is providing maximum AUC value 
i.e.0.887.The average AUC value is 0.737.  
 
Experiment No. 6 
 
Training is applied on Arc with 215 instances and cross 
testing is applied on all the datasets. It is found that the 
proposed model is providing minimum AUC value i.e. 
0.159 on dataset jEdit 4.3 whereas Forrest0.8 dataset is 
providing maximum AUC value i.e. 0.897.The Average 
AUC value provided by the model on dataset Arc is 
0.508. 
 

Experiment No. 7 
 

Model is trained on dataset e-learning (57) and tested 
on all the datasets. It is seen that Dataset Forrest 0.8 is 
providing minimum AUC value i.e. 0.328 whereas e-
learning itself is providing maximum AUC value i.e. 
1.0.The average AUC value is 0.552. 
 
Experiment No. 8 
 
In cross project training-testing process based on 
dataset berek it is found that Forrest 0.8 is showing 
result 0.483 AUC value whereas 1.0 AUC is found on 
dataset berek itself. The average AUC value at this 
dataset is 0.653. 

Experiment No. 9 
 
Model is trained on dataset Forrest 0.8 (31) and tested 
on all the datasets. It is seen that Dataset 
Nieruchomosci is providing minimum AUC value i.e. 
0.313 whereas Forrest 0.8 itself is providing maximum 
AUC value i.e. 1.0.The average AUC value is 0.671. 
 
Experiment No. 10 
 
Training is applied on zuzel with 29 instances and 
cross testing is applied on all the datasets. It is found 
that the proposed model is providing minimum AUC 
value i.e. 0.448 on dataset Forrest 0.8 whereas zuzel 
itself is providing the maximum AUC value  
i.e.0.998.The Average AUC value provided by the model 
on dataset zuzel is 0.687.   
 
Experiment No. 11 
 
In cross project training-testing process based on 
dataset Intercafe it is found that zuzel is showing result 
0.401 AUC value whereas 1.0 AUC is found on itself. 
The average AUC value at this dataset is 0.687. 
 
Experiment No. 12 

 
Model is trained on dataset Nieruchomosci (26) and 
tested on all the datasets. It is seen that dataset Forrest 
0.8 is providing minimum AUC value i.e. 0.276 whereas 
Nieruchomosci itself is providing maximum AUC value 
i.e. 1.0.The average AUC value is 0.623. 
 
Experiment No. 13 
 
Finally training is applied on Combined dataset with 
3597 instances and cross testing is applied on all the 
datasets. It is found that the proposed model is 
providing minimum AUC value i.e. 0.5 on dataset 
Nieruchomosci whereas berek dataset is providing 
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maximum AUC value i.e. 0.951.The Average AUC value 
provided by the model on dataset Combined is 00.771. 
 
Experiment No. 14 
 
Comparative Study of Proposed Model with Mamdouh 
Alenzi Model 
 
It is observed from Table 3 that for all the datasets our 
proposed model is providing better result in terms of 
AUC than the model provided by Mamdouh Alenzi. 
Therefore from mentioned comparative analysis it is 
seen that the proposed model is providing on average 
AUC value i.e. 0.909 whereas Mamdouh Alenzi model is 
providing an average AUC which is 0.660. 
 
Summary and Conclusions 
 
From the experiments computed in previous section it 
is seen that some datasets are providing the similar 
AUC value (prediction result) and some are prompting 
the different result, while cross training-testing 
process is applied on all the datasets. Finally we got 
that our proposed model is providing an average AUC 
value i.e. 0.661.   
 
Future Work 
 
The results gathered from the experiments conducted 
in the paper is based on open source datasets. This 
study may be replicated on different data sets which 
may be some real one to generalize our findings. 
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