
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2016 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

1728| International Journal of Current Engineering and Technology, Vol.6, No.5 (Oct 2016)

AUC based Software Defect Prediction for Object-Oriented Systems

Dharmendra Lal Gupta#* and Kavita Saxena#

#Department of Computer Science & Engineering, Meware University, Chittorgarh, Rajasthan, India

Accepted 24 Sept 2016, Available online 25 Sept 2016, Vol.6, No.5 (Oct 2016)

Abstract

In this paper object oriented defect datasets have been collected from open source promise data repository. Out of 20
provided metrics in each dataset, most prominent 14 metrics have been selected using feature selection process.
These metrics are directly responsible for bug prediction in such systems. In this paper most prompting classifier
Logistic Regression based on 10-cross validation has been used. The findings have been analyzed using Area under
Curve (AUC) values. This information can be used by software developers to enhance the quality of a system. WEKA
tool has been used for finding and analysis of our result. A Comparative study has also been done in terms of AUC
values obtained by proposed model and Mamdouh Alenezi Model. Our proposed model is providing better result that
Mamdouh Alenezi Model.

Keywords: Software Bug, Software Defect Prediction, AUC

1. Introduction

1 Defect as well as cost both are the deriving forces in
software development. Software defect prediction
using machine learning approaches are now becoming
the popular techniques. But before to predict the
quality we must be ensured that the software metrics
have empirically validated using machine learning
methods and they also have the practical relevance in
the assessment of quality factors.
 It is very difficult to produce a fault free software
whereas within the complexity and constraints the
development environment are increasing gradually. To
solve such problems we have to focus our prediction
on some software quality attributes such as fault
proneness, effort required, testability issues,
maintainability and reliability factors in the early
phases of software development.
 Based on ROC (Receiver operating characteristics)
analysis, one can easily predict that such models (as
our model is discussed) can be helpful in planning and
performing testing issues by focusing resources on
fault-prone parts at design and coding levels.
 Rest of the paper is organized as follows: Section 2
describes about the work done by various person as
related work. Methodology is described in section3. In
section 4 different experiments have been done on all
the datasets. Section 5 describe, summary and
conclusion portion of the paper. Future scope is
mentioned is section 6.

*Corresponding author: Dharmendra Lal Gupta is a Research Scholar

and Kavita Saxena is working as Associate Professor

2. Related Work

Software defect prediction has been under study for a
very long time. Various software defect prediction
models are available in the literature. In the last few
decades many software developers and researchers
studies have been carried out in this area of software
defect prediction. Regression tree, Neural Networks,
Fuzzy logic etc. and its applications have been used for
Software quality prediction.
 Support Vector Machine approaches have been
used by Xing F et al.., Singh Y et al.. and Gondra I. et al..
Classification of software modules based on complexity
metrics have been used and a module has been
proposed for early software quality prediction for
small number of sample data. Singh Y et al.. have
manifested a SVM based software fault prediction
model which investigate the relationship between
object-oriented metrics and fault-proneness. They have
preferred KC1 a NASA dataset and computed ROC
(Receiver Operating Characteristics) as performance
measure. Gondra I. et al.. have shown software fault
prediction model based on Artificial Neural Network
using sensitivity analysis and also using SVM and on
the basis of result it is advocated that SVM is better
than ANN.
 Amasaki S. et al.. have used Bayesian belief network
approach to predict the final quality of software. In this
paper they have done empirical evaluation based on
the metrics data gathered from development projects
in a certain company. As a result of empirical
evaluation they confirmed that the proposed model can
predict the amount of residual faults the software
reliability growth model is unable to handle.

Dharmendra Lal Gupta et al AUC based Software Defect Prediction for Object-Oriented Systems

1729| International Journal of Current Engineering and Technology, Vol.6, No.5 (Oct 2016)

Catal C. has reported in his paper about a complete
survey of 90 research papers regarding the direction of
research work done during 1990 to 2009.
 In addition to it he has also focused on machine
learning approach and statistical data calculation for
the fault prediction.
 Chidamber et al.. have shown the key requirements
of measurement to improve the quality of software
with the help of new metrics suite which consists of six
design level metrics named WMC, DIT, NOC, CBO, RFC
and LCOM.
 Churcher N. I. et al.. have commented on the metrics
suite developed by CK (Chidamber S.R., and Kemerer C.
F.) and they have illustrated their views by counseling
a fundamental property NOM (Number of Methods in a
Class) and demonstrated that this is open to a variety
of interpretations, they have manifested that the
number of methods per class is required directly for
the computation of WMC (Weighted Method per Class)
and indirectly for other metrics provided by CK.
 Olague H.M. et al. have shown an empirical
validation of Chidamber & Kemerer , Brito e Abreu’s
MOOD Metrics and Bansiya and Davis’s Quality Model
for Object Oriented Design (QMOOD) Metric suite
which helps during prediction of fault-proneness of
object-oriented classes. In this paper authors have
used Mozila Rhino project and its versions as datasets
and metrics have been collected using SSML (Software
System Markup Language) Tool. Finally they have
concluded that CK and MOOD metrics contain almost
similar components and in these cases product
statistical models are much effective in the detection of
error-prone classes. They have also commented that
the class components in MOOD metrics suite are not to
good class fault-prone predictors. The authors have
applied Multivariate binary logistic regression models
across six Rhino Versions which indicates that these
models may be useful in assessing the quality in object
oriented classes shaped using highly iterative software
development processes.
 Jureczko M. et al.. have presented an analysis
regarding defect prediction using clustering technique
on software projects. They have used a data repository
with 92 versions of 38 proprietary, academic and open
source projects. In this paper Hierarchical and K-means
clustering as well as Kohonen’s neural network has
used to find the groups of similar projects. Two defect
prediction models were created for each of the
identified groups. In this study Ckjm Tool has been
used for the retrieval of all metrics which will be used
for defect prediction model. JUnit and FitnNess have
been used as test Tools. The authors have identified
two clusters and compared with results obtained by
other researchers. Finally clustering is suggested and
applied.
 Karabulut E. M. et al. have shown the effect of
feature selection method (in which irrelevant features
from the original dataset is removed). The authors
have used 15 datasets from University of California
Irvine’s. Data Mining Repository to compare three

classification algorithms with respect to their effect
from six feature selection filters. The authors have
done their experimental work using WEKA data mining
tool. Authors have investigated the impact of feature
selection on aforementioned classifiers and observed
that MLP is most effective classifier. It is also
discovered for classifier that the Gain Ratio, for MLP
the Chi-square and for J48 the Information Gain is the
most effective feature selection algorithm.
 Alenezi M. has empirically investigated the
relationship between metrics of open source defective
software systems and their fault proneness. For this, he
has applied Feature Selection technique on all the
twenty metrics of datasets and selected nine metrics
out of twenty for his model which is based on Random
Forest classifier and he has computed AUC as well as F-
Measure value on eight datasets (Camel 1.6, Ant 1.7,
Xerces 1.4.4 , jEdit 4.3, POI, Lucene and Synapse) and
suggested that by focusing on a small and precise set of
internal attributes (metrics) the quality of the model
can be improved as well as quality assurance team can
also save time and resources while getting high
accuracy fault proneness predictions.

Table 1: Data Description

S No. Dataset Name Instances *Instances
after

Normalization
1 Camel1.6 965 884
2 Tomcat 6.0 858 796
3 Ant 1.7 745 724
4 jEdit4.3 492 476
5 Ivy 2.0 352 345
6 arc 234 215
7 e-learning 64 57
8 berek 43 43
9 forrest 0.8 32 31

10 zuzel 29 29
11 Intercafe 27 27
12 Nieruchomosci 27 26

*These values have been obtained after Normalization. The duplicate

entries have been deleted except one entry

3. Methodology

In this paper fault proneness have been calculated in
terms of AUC (Area under Receiver operating
characteristics Curve) values, by delineating the
confusion matrix for each of the techniques involved
separately. All the defect datasets must be having
relation with their different metrics set and bug values
corresponding to each and every instances of the
dataset/datasets. If any instance is lacking the value of
some metrics then in that case all such metrics values
will be considered as zero.

3.1 Data Description

12 open source object-oriented defect projects and
each of which are of Marian Jureczko datasets.
(Camel1.6, Tomcat 6.0, Ant 1.7, jEdit4.3, Ivy 2.0, arc, e-

Dharmendra Lal Gupta et al AUC based Software Defect Prediction for Object-Oriented Systems

1730| International Journal of Current Engineering and Technology, Vol.6, No.5 (Oct 2016)

learning, berek, forrest 0.8, zuzel, Intercafe and
Nieruchomosci) have been taken under study which
are the latest release of their retrospective versions
and are collected from Promise Software Engineering
Repository, which is available at [8] and shown in
Table 1. Normalized (Duplicity remove) instance
values of the retrospective datasets are also shown in
this table.

3.2 Metrics Description

Dependent and Independent Variables

Here Bug is dependent variable which shows that
whether there is any bug in a class of the each data set
or not. The independent variables are WMC DIT NOC
CBO RFC LCOM, CA CE, LOC, LCOM3, NPM DAM MOA
MFA CAM IC CBM AMC MAX_CC and AVG-CC.

3.3 Feature Selection

First of all we have removed the duplicate entries from
each of the datasets mentioned in Table 1 and then
combine all the normalized datasets and named it as
Combined Dataset. Then feature selection process has
been applied on the Combined Data set which is having
3597 instances. In this process correlation attribute
evaluation is applied which is based on Pearson
correlation method. Ranker attribute selection is
selected in WEKAtool. Form this selection most
prominent and deserving 14 metrics have been found,
which are WMC, CBO, RFC, LCOM, CA, CE, MFA, LCOM3,
LOC, DAM, MOA, CAM, MAX_CC and AVG_CC. BUG-
Count value is dependent value, which is actually
dependent on above mentioned 14 metrics. The most
prominent metrics or features selection is shown in
Figure 1.

Figure 1: Feature selection

3.4 Classifier Selection

In this section all 14 different classifiers Naïve Bayes,
Logistic Regression, LivSVM (Support Vector Machine),
Multi-Layer Perceptron, SGD (Stochastic Gradient

Descent), SMO (Sequential Minimal Optimization),
Voted Perceptron, Attribute Selected Classifier,
Classification Via Regression, Logit Boost, Tree
Decision Stamp, Random forest, Random Tree and REP
(Reduce Error Pruning) Tree are applied on validated
combined dataset with 14 most prominent metrics at
10-cross validation. It is found that Logistic Regression
is providing best result and it is now kept as the most
prominent classifier.

3.5 AUC Measurement

ROC (Receiver operating Characteristics) curve is
commonly used to measure the performance of
classifier techniques in case of imbalanced classes.
Generally AUC (Area under receiver operating
characteristics) is used for single numeric
measurement to predict the potential of a classifier.
Commonly a higher AUC is better. It also indicates that
the used classifier within whole possible range of
decision threshold has a higher sensitivity or true
positive rate. It is found that higher the AUC value, the
better is the performance.

4. Experimental Work

Proposed model with fourteen most prominent metrics
WMC, CBO, RFC, LCOM, CA, CE, MFA, LCOM3, LOC,
DAM, MOA, CAM, MAX_CC and AVG_CC with Logistic
Regression Classifier is applied and it is trained on all
the validated datasets and tested also on alone. Cross
project training-testing process is applied. All the
computed results are mentioned in Table No. 2.

Experiment No. 1

Training is applied on Camel 1.6 with 884 instances
and cross testing is applied on all the datasets. It is
found that the proposed model is providing minimum
AUC value i.e. 0.469 on dataset jEdit 4.3 whereas
Intercafe dataset is providing maximum AUC value i.e.
0.837.The Average AUC value provided by the model
on dataset Camel 1.6 is 0.672.

Experiment No. 2

Model is trained on dataset Tomcat 6.0 (796) and
tested on all the datasets. It is seen that Dataset
Nieruchomosci is providing 0.375 AUC value which is
minimum, whereas berek dataset is providing
maximum AUC value i.e.0.887. The average value is
0.704.

Experiment No. 3

Training is applied on Ant 1.7 with 724 instances and
cross testing is applied on all the datasets. It is found
that the proposed model is providing minimum AUC
value i.e. 0.594 on dataset Camel 1.6 whereas berek
dataset is providing maximum AUC value i.e. 0.958.The
Average AUC value provided by the model on dataset
Ant 1.7 is 0.798.

Dharmendra Lal Gupta et al AUC based Software Defect Prediction for Object-Oriented Systems

1731| International Journal of Current Engineering and Technology, Vol.6, No.5 (Oct 2016)

Table 2: AUC measured on Training and Testing datasets using Logistic Regression Classifier

Training and Testing Both on Normalized Datasets

S
N

o
. Trained on

Datasets with
AUC

Tested on Datasets with AUC

D
a

ta
se

ts

In
st

a
n

ce
s

A
U

C

C
a

m
e

l1
.6

T
o

m
ca

t
6

.0

A
n

t
1

.7

jE
d

it
 4

.3

iv
y

 2
.0

A
rc

e
-l

e
a

rn
in

g

b
e

re
k

F
o

rr
e

st
 0

.8

zu
e

l

In
te

rc
a

fe

N
ie

ru
ch

o
m

o
sc

i

C
o

m
b

in
e

d

D
a

ta
se

t

M
in

M
a

x

A
v

e
ra

g
e

 884 796 724 476 345 215 57 43 31 29 27 26 3597

1

C
a

m
e

l1
.6

8
8

4

0
.7

1
9

0
.7

2

0
.7

5

0
.6

7

0
.4

7

0
.6

7

0
.6

0
.8

0
.7

2

0
.4

8

0
.6

4

0
.8

4

0
.7

1

0
.6

5

0
.4

7

0
.8

4

0
.7

2

T
o

m
ca

t
6

.0

7
9

6

0
.8

3
3

0
.5

8

0
.8

3

0
.7

8

0
.8

2

0
.8

2

0
.6

3

0
.7

8

0
.8

9

0
.4

8

0
.8

3

0
.6

3

0
.3

8

0
.7

0
.3

8

0
.8

9

0
.7

3

A
n

t
1

.7

7
2

4

0
.8

3
4

0
.5

9

0
.8

1

0
.8

3

0
.8

2

0
.8

1

0
.6

8

0
.9

2

0
.9

6

0
.7

1

0
.8

8

0
.8

0
.8

5

0
.7

1

0
.5

9

0
.9

6

0
.8

4

jE
d

it
 4

.3

4
7

6

0
.8

5
9

0
.5

0
.5

1

0
.6

4

0
.8

6

0
.5

9

0
.5

5

0
.7

4

0
.3

1

0
.4

7

0
.2

7

0
.5

5

0
.4

3

0
.5

6

0
.2

7

0
.8

6

0
.5

5

iv
y

 2
.0

3
4

5

0
.8

4
4

0
.5

9

0
.8

3

0
.7

9

0
.8

0
.8

4

0
.6

8

0
.8

1

0
.8

9

0
.6

7

0
.8

2

0
.7

6

0
.4

0
.7

1

0
.4

0
.8

9

0
.7

6 A
rc

2
1

5

0
.8

2
5

0
.5

4

0
.7

7

0
.5

6

0
.1

6

0
.4

1

0
.8

3

0
.7

5

0
.2

4

0
.9

0
.2

0
.4

2

0
.3

2

0
.5

1

0
.1

6

0
.9

0
.5

7

e
-l

e
a

rn
in

g

5
7

1

0
.5

1

0
.4

6

0
.5

8

0
.5

1

0
.5

7

0
.4

9

1

0
.5

7

0
.3

3

0
.4

6

0
.4

1

0
.7

5

0
.5

3

0
.3

3

1

0
.6

8

b
e

re
k

4
3

1

0
.5

1

0
.6

5

0
.6

5

0
.5

1

0
.6

6

0
.6

2

0
.4

9

1

0
.4

8

0
.7

5

0
.6

5

0
.9

0
.6

0
.4

8

1

0
.7

9

F
o

rr
e

st
 0

.8

3
1

1

0
.5

2

0
.5

9

0
.6

4

0
.7

2

0
.6

0
.7

4

0
.8

5

0
.6

5

1

0
.7

6

0
.7

1

0
.3

1

0
.6

2

0
.3

1

1

0
.7

10

zu
e

l

2
9

0
.9

9
8

0
.5

3

0
.6

9

0
.7

0
.7

2

0
.7

0
.5

1

0
.8

0
.8

4

0
.4

5

1

0
.6

9

0
.6

9

0
.6

2

0
.4

5

1

0
.7

11

In
te

rc
a

fe

2
7

1

0
.5

6

0
.5

3

0
.6

5

0
.7

4

0
.7

1

0
.6

7

0
.6

5

0
.7

2

0
.9

0
.4

1

0
.8

0
.6

2

0
.4

1

0
.7

12

N
ie

ru
ch

o
m

o
sc

i

2
6

1

0
.6

3

0
.7

3

0
.6

3

0
.6

8

0
.6

8

0
.4

4

0
.3

1

0
.9

2

0
.2

8

0
.8

4

0
.3

6

1

0
.6

1

0
.2

8

1

0
.6

13

C
o

m
b

in
e

d
 D

a
ta

se
t

3
5

9
7

0
.7

2
3

0
.6

1

0
.8

2

0
.8

1

0
.8

2

0
.8

3

0
.7

0
.8

9

0
.9

5

0
.7

4

0
.8

7

0
.7

7

0
.5

0
.7

2

0
.5

0
.9

5

0
.8

 Average=0.661

Dharmendra Lal Gupta et al AUC based Software Defect Prediction for Object-Oriented Systems

1732| International Journal of Current Engineering and Technology, Vol.6, No.5 (Oct 2016)

Table 2: Comparative results of AUC between Proposed Model and MA Model

S. No Datasets Instances

AUC at 10-cross validation

Proposed
Model

MA Model(maximum value) Average

NB B NET J48 RF
AUC of

MA Model

1 Camel1.6 884 0.719 0.632 0.584 0.579 0.656 0.61275

2 Tomcat 6.0 796 0.833 0.781 0.761 0.722 0.803 0.76675

3 Ant 1.7 724 0.834 0.784 0.79 0.748 0.814 0.784

4 jEdit 4.3 476 0.859 0.747 0.491 0.398 0.572 0.552

5 ivy 2.0 345 0.844 0.761 0.78 0.634 0.76 0.73375

6 Arc 215 0.825 0.704 0.604 0.465 0.681 0.6135

7 e-learning 57 1 0.458 0.221 0.338 0.596 0.40325

8 berek 43 1 0.944 0.921 0.862 0.934 0.91525

9 Forrest 0.8 31 1 0.448 0.221 0.338 0.596 0.40075

10 zuel 29 0.998 0.856 0.873 0.781 0.877 0.84675

11 Intercafe 27 1 0.549 0.75 0.598 0.826 0.68075

12 Nieruchomosci 26 1 0.763 0.472 0.506 0.706 0.61175

Average AUC 0.909333 0.6601

Experiment No. 4

In cross project training-testing process based on
dataset jEdit 4.3 it is found that zuzel is showing result
0.267 AUC value whereas 0.859 AUC is found on
dataset jEdit 4.3. The average AUC value at this dataset
is 0.535.

Experiment No. 5

Model is trained on dataset ivy 2.0 (345) and tested on
all the datasets. It is seen that Dataset Nieruchomosci is
providing minimum AUC value i.e. 0.400 whereas
berek dataset is providing maximum AUC value
i.e.0.887.The average AUC value is 0.737.

Experiment No. 6

Training is applied on Arc with 215 instances and cross
testing is applied on all the datasets. It is found that the
proposed model is providing minimum AUC value i.e.
0.159 on dataset jEdit 4.3 whereas Forrest0.8 dataset is
providing maximum AUC value i.e. 0.897.The Average
AUC value provided by the model on dataset Arc is
0.508.

Experiment No. 7

Model is trained on dataset e-learning (57) and tested
on all the datasets. It is seen that Dataset Forrest 0.8 is
providing minimum AUC value i.e. 0.328 whereas e-
learning itself is providing maximum AUC value i.e.
1.0.The average AUC value is 0.552.

Experiment No. 8

In cross project training-testing process based on
dataset berek it is found that Forrest 0.8 is showing
result 0.483 AUC value whereas 1.0 AUC is found on
dataset berek itself. The average AUC value at this
dataset is 0.653.

Experiment No. 9

Model is trained on dataset Forrest 0.8 (31) and tested
on all the datasets. It is seen that Dataset
Nieruchomosci is providing minimum AUC value i.e.
0.313 whereas Forrest 0.8 itself is providing maximum
AUC value i.e. 1.0.The average AUC value is 0.671.

Experiment No. 10

Training is applied on zuzel with 29 instances and
cross testing is applied on all the datasets. It is found
that the proposed model is providing minimum AUC
value i.e. 0.448 on dataset Forrest 0.8 whereas zuzel
itself is providing the maximum AUC value
i.e.0.998.The Average AUC value provided by the model
on dataset zuzel is 0.687.

Experiment No. 11

In cross project training-testing process based on
dataset Intercafe it is found that zuzel is showing result
0.401 AUC value whereas 1.0 AUC is found on itself.
The average AUC value at this dataset is 0.687.

Experiment No. 12

Model is trained on dataset Nieruchomosci (26) and
tested on all the datasets. It is seen that dataset Forrest
0.8 is providing minimum AUC value i.e. 0.276 whereas
Nieruchomosci itself is providing maximum AUC value
i.e. 1.0.The average AUC value is 0.623.

Experiment No. 13

Finally training is applied on Combined dataset with
3597 instances and cross testing is applied on all the
datasets. It is found that the proposed model is
providing minimum AUC value i.e. 0.5 on dataset
Nieruchomosci whereas berek dataset is providing

Dharmendra Lal Gupta et al AUC based Software Defect Prediction for Object-Oriented Systems

1733| International Journal of Current Engineering and Technology, Vol.6, No.5 (Oct 2016)

maximum AUC value i.e. 0.951.The Average AUC value
provided by the model on dataset Combined is 00.771.

Experiment No. 14

Comparative Study of Proposed Model with Mamdouh
Alenzi Model

It is observed from Table 3 that for all the datasets our
proposed model is providing better result in terms of
AUC than the model provided by Mamdouh Alenzi.
Therefore from mentioned comparative analysis it is
seen that the proposed model is providing on average
AUC value i.e. 0.909 whereas Mamdouh Alenzi model is
providing an average AUC which is 0.660.

Summary and Conclusions

From the experiments computed in previous section it
is seen that some datasets are providing the similar
AUC value (prediction result) and some are prompting
the different result, while cross training-testing
process is applied on all the datasets. Finally we got
that our proposed model is providing an average AUC
value i.e. 0.661.

Future Work

The results gathered from the experiments conducted
in the paper is based on open source datasets. This
study may be replicated on different data sets which
may be some real one to generalize our findings.

References

Alenzi M. I (2014), Fault-Proneness of Open Source Systems:

An Empirical Analysis, in International Conference
(ACIT2014), University of Nizwa, Oman.

Amasaki S., Takagi Y., Mizuno O. and Kikuno T. (2003), A
Baysian Belief Network for Asssessing the Likelihood of
Fault content, Proceeding of the 14th IEEE International
Symposium on software Reliability Engineering
(ISSRE’03).

Catal C. (June 1994), Software fault prediction: A literature
reviews and current trends, Proceeding of Expert Systems
with Applications 38 (4626-4636) of Elsevier, 2011.

Chidamber S.R., and Kemerer C. F., A Metrics Suite for Object
Oriented Design, IEEE Transactions on Software
Engineering, Vol. 20, No.6.

Churcher N.I., and Shepperd M.J. (March 1995), Comments on
– A Metrics Suite for Object Oriented Design, IEEE
Transactions of Software Engineering, Vol. 21, No 3.

Gondra I. (2008), Applying Machine Learning to Software
Fault-Proneness Prediction, The Journal of Systems and
Software, Elsevier, Vol. 81, pp. 186-195.

Henderson-Sellers, B. (1996), Object-Oriented Metrics
measures of Complexity, Prentice Hall.

https://code.google.com/p/promisedata/w/list.
https://code.google.com/p/promisedata/wiki/MarianJurecz

ko.
Jureczko M. and Madeyski L. (2010), Towards identifying

software project clusters with regard to defect prediction,
Proceedings of the 6th International Conference on
Predictive Models in Software Engineering (Promise-10)
held at Timisoara, Romania, published in ACM, New York,
USA. http:// doi.acm.org/ 10.1145/1868328. 1868342.

Karabulut E. M., Ozel S.A. and Ibrikci T. (2012), A
Comparative study on the effect of feature selection on
classification accuracy, Procedia Technology, Elsevier, Vol.
1, pp. 323-327

Martin R. (1994), O O Design Quality Metrics-An Analysis of
Dependencies, Proceeding of Workshop Pragmatic and
Theoretical Directions in Object-Oriented Software
Metrics, OOPSLA’94.

Newman D. J. , Hettich S., Blake C. L. and Merz C. J. (1998),
UCI Repository of machine learning databases, University
California Irvine, Department of Information and
Computer Science

Olague H.M.,Etzkorn L.H., Gholston S. and Quattlebaum S.
(June 2007), Empirical Validation of Three software
Metrics Suites to Predict Fault-Proneness of Object-
Oriented Classes Developed Using Highly Iterative or Agile
Software Development Processes, IEEE Transaction on
Software Engineering, Vol. 33, No. 6.

Singh Y., Kaur A. and Malhotra R. (2009), Software Fault
Proneness Prediction Using Support Vector Machine,
Proceedings of the World Congress on Engineering, Vol. 1.

Witten I. H. and Frank E. (October 1999), Data Mining:
Practical Machine Learning Tools and Techniques with
Java Implementations, Morgan Kaufmann,.
http://www.cs.waikato.ac.nz/ml/weka/.

Xing F., Guo P. and Lyu M. R. (2005), A Novel Method for
Early Software Quality Prediction Based on support Vector
Machine, Proceeding of the 16th IEEE International
Symposium o software Reliability Engineering (ISSRE’05).

https://code.google.com/p/promisedata/w/list
https://code.google.com/p/promisedata/wiki/MarianJureczko
https://code.google.com/p/promisedata/wiki/MarianJureczko
http://www.cs.waikato.ac.nz/ml/weka/

