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Abstract 
 
This paper addresses the application of Lagrangian Mechanics for the determination of time required for reentry of 
the low orbiting satellites into the earth’s atmosphere. The Lagrangian approach takes gravitational force, drag force 
and kinetic energy into account for reentry of low orbiting satellite. Lagrangian mechanics investigates the effect of 
atmospheric drag on the motion of satellites in low Earth orbits. Investigation of reentry enables to determine the 
intervals when the satellite is to be fired back to its original orbit.  The Cartesian coordinate system and polar 
coordinate system is used as reference frame for writing equations of motion then it is transformed to general 
coordinate system for application of Lagrangian equation of motion. The similar principle can be applied for the 
determination of reentry of space junk and low orbiting satellites and the prior risk on earth because of reentry of the 
same can be examined and controlled. It is important to determine the reentry rate of satellite so that it functions its 
desired application efficiently when it is orbiting at the predefined orbit at the time of its launch. 
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1. Introduction 
 
1.1 Reentry of Satellite 
 

1 Many satellites do not remain in their orbits life long, 
but gradually come closer to Earth. This is because 
Earth’s atmosphere does not end eventually, but 
becomes progressively thinner at higher altitudes. In 
fact, there is still some atmosphere several hundred 
kilometers from Earth’s surface, where some satellites 
orbit Earth. Because the atmosphere is very thin at 
those high altitudes, satellites can take a long time to 
come down. 
 Satellites orbiting around the Earth orbit at 
hundreds of kilometers in altitude; it may take years or 
tens of years to return to Earth. Satellites at higher 
altitude are of less concern with respect to reentry 
hazards because they can stay in orbit for hundreds to 
even thousands of years. 
 Satellite loses its altitude when it enters denser 
regions of the atmosphere. Friction and compression 
generates a great amount of heat. This is because of the 
high velocity of orbiting satellites. The tremendous 
amount of heat generated is sufficient to melt or 
vaporize the entire satellite or portions of the satellite. 
The similar phenomenon is noticed during a meteor 
shower, where streaks of light (meteors or shooting 
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stars) are generated by meteoroids they burn up in the 
atmosphere. 
 Although most of satellites burn up completely 
during atmospheric reentry, some satellite components 
can and do survive the reentry heating. Component 
survival on an unprotected satellite can occur if the 
component’s melting temperature is sufficiently high 
and its shape is such that it loses heat fast enough to 
keep the temperature below the melting point of the 
structure. During reentry, the object starts decelerating 
and the loads on the structure can exceed up to 15g’s. 
These loads combine with the high temperature hence 
the structure breaks apart. When the satellite 
components speed decrease, the rate of heating of 
structure reduces, therefore temperature decreases, 
and the objects starts to cool. Till then the objects have 
fallen to denser regions of the atmosphere and fall 
virtually straight down from the sky. They impact of 
space derbies to the ground is at relatively low speed, 
but it is hazardous to property and people. 
 It is difficult to locate where debris from a 
reentering satellite will hit on Earth because drag force 
on the object is proportional to density of the 
atmosphere and it varies in large magnitudes at high 
altitudes. In general, the estimated time that reentry 
will begin is within 5-8 percent of the actual time. 
Unfortunately, reentering objects travel with such a 
high speed that error in the time results to hundreds of 
miles on the ground. 
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If a satellite or rocket body with propulsive capability, 
it can use its rocket motor to target the reentry into a 
desired area, such as the ocean. Objects in orbit are 
exposed to atmospheric drag, just as aircraft and 
automobiles are near the ground. In space the 
atmospheric drag is much less than that experienced 
closer to the ground but as satellite is continuously 
subjected to atmospheric drag even a small amount of 
drag can result in a satellite’s reentry into the denser 
atmosphere. 
 Satellites orbiting at low altitudes could be removed 
from its orbit by atmospheric drag within a period of 
few months depending on the object and its altitude. 
Objects at higher altitudes may remain in orbit for 
hundreds or thousands of years. Some satellites and 
launch hardware have propulsive capability that can be 
used to deorbit these objects more quickly. 
 On reentering of satellite to atmosphere a large 
debris object will be subjected to extreme heating and 
loads caused because of the interaction of the high 
speed object with the atmosphere .At some locations 
on satellite, the temperature loads on the object 
reaches a critical point, aerodynamic loads reaches its 
maximum value resulting object to break. Breakup 
could be caused by the failure of critical structural 
components because of their high temperatures that 
exceed their melting points, in a more extreme case 
explosion of fuel or pressurized gas present in the 
object’s tanks occurs. The object fragments into several 
smaller objects, and each of them continues to 
fragment or melt as long as sufficient heating and loads 
acts on them. When objects have slowed sufficiently, 
the heat rate decreases and debris falls and impact the 
ground. 
 Generally, about 10-30 percent of a satellite’s mass 
will survive reentry. The actual percentage for a 
specific object depends on the strength of materials 
used for the object’s construction and on shape, size, 
and weight of the reentering object. Consider an 
example, if the object is with empty fuel tanks made of 
stainless steel or titanium, both of which have high 
melting temperatures hence much of this material will 
survive. If much of the structure is made of aluminum 
material having low temperature of melting, a smaller 
percentage of it will survive thermal and aerodynamic 
load. 

 
2. Lagranginan Equation of motion under the 
influence of nonconservative forces 
 
Hamilton’s principle lays the foundation of Lagrangian 
mechanics which is based on the concept of 
conservative forces in which the potential energy of 
interaction can be defined uniquely. In most of the 
cases non-conservative forces, such as friction and 
aerodynamic drag cannot be exempted from the 
analysis. It is important how to incorporate the effects 
of non-conservative forces in the Lagrange equations 
that describe the dynamical system in terms of 

generalized coordinates. Non-conservative forces are 
to be considered only when model is macroscopically 
large, the complex interactions between systems using 
empirical model. Empirical models of non-conservative 
forces are very useful in reducing the complexity of 
problems in the physical world. For this reason, it is 
required to find a way to incorporate them in the 
framework of Lagrangian mechanics. It is considered at 
first that evolution of a dynamical system in the 
absence of non conservative forces. Assuming that let 
there be N degrees of freedom in this problem can 
identify an appropriate set of N generalized 
coordinate’s qj, j = 1... N that describe uniquely the 
dynamical state of the system. It is denoted by xi = 
Xi(qj, t) the transformation rules between a set of 
Cartesian coordinates xi, i = 1, ...,N and the generalized 
coordinates express the Lagrangian of the given system 
by L(qj , q˙j) in terms of the latter coordinates and their 
time derivatives. The Euler-Lagrange equation for the 
system when non-conservative forces are absent is  
simply given by equation(1).                                        

     0
i i

L d L

q dt q

  
  

  
.              (1) 

Now considering the effect on this dynamical system of 
a non-conservative interaction. 
Describes empirically by a Newtonian force with 
components Fi,i = 1, ..., N in a Cartesian coordinate 
system.  
Equations by a generalized force Qj , j = 1, ...,N as          

j

i i

L d L
Q

q dt q

  
   

  
              (2) 

Where the components of the generalized force are 
related to the Cartesian components of the non-
conservative force, the transformation between 
Cartesian and generalized coordinates is by 
equation(3).            

  
3

1

.i
j i

i j

X
Q F

q





                (3)   

 

In the following application, using the methods of 
Lagrangian mechanics to investigate the influence of 
atmospheric drag on the motion of satellites in a low an 
Earth orbit is studied. 
 
3. The Reentry of Low Earth Orbit Satellite 
 
The most of artificial satellites are placed in orbits 
which are at relatively low distances from the Earth’s 
surface. Theoretically, objects with distances smaller 
than about 1500km from the Earth’s surface are 
characterized under low Earth orbit satellites. 
 At distances as small as 100−300 km, the density in 
the Earth’s atmosphere is low as compared to that on 
the surface of Earth but it is enough to retard the 
motion of the satellites and this cause them to lose 
altitude and burn while approaching to the surface of 
Earth. The density and temperature in these layers of 
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the atmosphere known as thermosphere depend 
strongly on the solar activity and changes adversely 
with solar activity. At the height of 100 miles (or 160 

km), the density of atmosphere is in the range of  
910

 

kg
3m

 and drops to  
14 1210 10to 

kg m−3 at 300 miles 

(or 480 km) which is very less value as on Earth 
surface. Goal in this section is to write the equations of 
motion for a satellite in low earth orbit considering 
into account the atmospheric drag. Given by 
equation(4).           

1
,

2
d aF C A u u                  (4)                   

Where ρ is the density of the atmosphere, Ca is the 
coefficient of aerodynamic drag. For the satellite, which 
depends on its exact shape, A is the projected area of 
the satellite surface which is in the plane of 
perpendicular to its direction of motion, and u is its 
velocity vector. 
 The satellites velocity vector, the drag force 
experienced on it and the Earth’s gravitational 
acceleration g lie on a single plane that passes through 
the center of the Earth. This will be the plane of the 
satellite’s orbit, since there is no interaction exists in 
the system that will force it to move away from that 
plane.  Consider a set of Cartesian coordinates x1 and 
x2 on the orbital plane, with their origin at the center 
of the Earth, as well as a set of polar coordinates r and 
ϕ. The transformations between the Cartesian and 
polar coordinates are 

1

2

cos

sin

x r

x r








                                                     (4 & 5) 

And between the corresponding velocities are 
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1
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(5 & 6) 

 
Using these transformations to write the kinetic energy 
of the satellite in terms of its generalized velocities as 

   2 2 2 2 2

1 2

1 1
,

2 2
T m x x m r r                         (7) 

Where m is the mass of the satellite. The use of the 
general expression for the potential energy in the 
Earth’s gravitational field is given by equation (8).           

,
GMm

V
r

                  (8) 

Where M is the mass of the Earth, to write the 
Lagrangian of the system as shown in equation(9).    

         

   2 2 2 2 2

1 2

1 1
.

2 2

GMm
L T V m x x m r r

r
          (9) 

By applying the transformations between the Cartesian 
and generalized coordinates in order to derive the 
generalized components of aerodynamic drag forces 

starting from the Cartesian components of the 
Newtonian force 

 
1/2

2 2

,1 1 2 1

1

2
d aF C A x x x                 (10) 

 
1/2

2 2

,2 1 2 2

1

2
d aF C A x x x          (11) 

 
After a small amount of algebraic simplification, it is 
found that 

1 2
1 2r

x x
Q F F

r r

 
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 
          (12) 

       
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And 
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 
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 (14) 

       
1/2

2 2 2 21
.

2
aC A r r r      (15) 

Inserting this expression into the Lagrange equations 
of motions, it gets simplified as 

r

L d L
Q

r dt r

  
   
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               (16) 
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1
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r
       (17) 

And 

L d L
Q

dt


 
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 
1/2

2 2 2 2 21
2 .

2
amr mrr C A r r r              (19) 

Rearranging terms and dividing both sides of the above 
two equation by the mass ‘m’ of the satellite results to 
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2 2 2 2
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These above two equations are coupled second-order 
differential equations in time for the two generalized 
coordinates r and ϕ. These equations can be integrated 
easily using computer, knowing the two components of 
the position and the velocity of the satellite as initial 
conditions. 
 The satellite mostly revolves on the circular orbit, 
while slowly drifting and coming closer towards the 
Earth’s surface. Consider P is the orbital period of the 
satellite at any given altitude and by equation (22).           

r
T

r
        ,              (22) 

The characteristic timescale for reentry, the above 
assumptions imply that  >>P. In the radial equation 

of motion, i.e., equation (20), the drag force is 
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negligible compared to the gravitational force, by 
assumption. And, therefore, the radial acceleration ¨r 
term is considered to be negligible. Hence equation(20) 
becomes simply  to                             

2

3
,

GM

r
               (23) 

This is the usual expression for the angular velocity of 
a satellite in orbit. On calculating the angular 
deceleration of satellite by taking first derivative of 
angular velocity ,i.e., equation(23) we get, 
 

1/2 1/2

3 3

3

2

d d GM GM r

dt dt r r r




   
     

                       (24) 

Satellite retardation because of reentry take long time 
as this is very slow steady process. Hence it is 
convenient to assume that the angular retardation and 
radial retardation is almost negligible when compared 
to change in angular velocity and radial distance 
because of atmospheric drag.   
 

Therefore equation (20) and equation (21) reduces to 

2
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GM
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r
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                                                    (25)    
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On squaring the above equation and after 

simplification we get 

 
2

2 2 2 2 2 2 2 21
.
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m
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 
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On further simplification we get 
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 Let us assume 
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.
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Therefore equation(28) becomes 
2 2

2 2

2

(1 )r fr
r f

r





                               (30) 

From equation(22) on simplying above equation we 

get 
2 2

2 2

1

1

r f

T fr




                                               (31)  

 

The final characteristic equation for reentry rate 

calculation is  

 

2 2 2 2 2(16 )1 a

a

r m C A r
T

C A GM








                       (32) 

The above timescale characteristic equation depicts the 
reentry time calculation of the satellite orbiting around 
the Earth considering coefficient of drag (Ca), density 
at the satellite orbit (ρ), projected area of the satellite 
(A) and the radial distance between satellite orbit and 
centre of the Earth(r).The above equation enables to 
predict the time after which the satellite reenters the 
Earth’s atmosphere. 
  
Conclusions 
 
The reentry characteristic timescale equation relates 
as the distance from centre of the earth increases, 
reentry time increases. Therefore satellites at higher 
altitude are less prone to reentry phenomenon; hence 
reentry is concerned with low earth orbiting satellite.  
The determination of the rate of reentry of any space 
junk, space debris or satellite can be calculated using 
Lagrangian Mechanics. Objects orbiting at low altitudes 
may be removed from orbit by atmospheric drag 
within few weeks to months or years depending on the 
object and its altitude.  The risk of the reentry of 
satellite can be estimated and the time when the 
satellites with inbuilt propellant or small engine are to 
be backing fired into their original orbit can be 
calculated. 
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