Phase Evaluation, microscopy and Band gap of Fe-doped nanocrystalline BaSnO$_3$ by Solid-Sate Sintering assisted with agate-mortar activation

Asima Adak (Maity)$^1$, Soumya Mukherjee$^*$, Mahua Ghosh Chaudhuri$^4$, Tamali Chakraborty$^4$ and Siddhartha Mukherjee$^5$

$^1$Department of Electronics & Communication Engineering, Heritage Institute of Technology, Kolkata-700107, India
$^2$Department of Metallurgical & Materials Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata-700032, India
$^4$School of Material Science and Nanotechnology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata-700032, India

Accepted 18 Dec 2015, Available online 20 Dec 2015, Vol.5, No.6 (Dec 2015)

Abstract

Iron (Fe) doped barium stannate (Ba$_{1-x}$Fe$_x$O$_3$) with x = 0.05, 0.10 and 0.15 were prepared by mechanical mixing in agate mortar followed by sintering at 1350°C for 2 hours. X-ray diffraction analysis (XRD) of the synthesized sample confirmed the major phases to be cubic perovskite structure, crystallite size by Scherrer’s formula and planes of orientation of the peaks along directions having minimum energy leading to thermodynamic stability of the phases developed. Absorption due to symmetric and asymmetric stretching of inorganic bond formation for the required M-O coordination was determined by Fourier transform infrared spectroscopy (FTIR). Band gap analyses of the sintered samples were carried out by UV-VIS using Tauc plot. Morphological studies were carried out by SEM, FESEM while EDX analysis was done to verify the presence of required elements in the matrix of the synthesized samples.

Keywords: Perovskite-Spinel, PL spectra, Dielectric, P-E loop.

1. Introduction

Barium Stannate (BaSnO$_3$) is a type of ceramic material with cubic perovskite structure which has many important applications in material science and technology due to their dielectric, electro optical and magnetic properties. It can be applied as a material for thermally stable capacitor and to fabricate ceramic boundary layer capacitor (Upadhay Shail et al., Kocemba I et al., Lu Wensheng et al.). BaSnO$_3$ material can also be used for humidity sensor (Upadhay Shail et al.), semiconductor gas sensor and photocatalytic applications (Köferstein, Roberto et al.) due to its defect and structural aspects. BaSnO$_3$ is an n-type semiconducting material with optical bandgap of 3.1eV (James KK et al.). The optical bandgap reported for thin film of La doped BaSnO$_3$ is in the visible region with value about 4.02eV when it is deposited on MgO substrate (James KK et al., Wei, Xiaoyong et al.). Doped and undoped BaSnO$_3$ has a simple cubic perovskite type structure. Difference in the ionic radii of the Sn$^{4+}$ and Fe$^{3+}$ ions produces lattice strain resulting in increase on lattice constant (James KK et al., Upadhay Shail & Om Prakash et al.). It has been reported by some researchers that this category of ceramic material exhibits strong near- infrared luminescence at room temperature (Lu Wensheng et al., Wei, Xiaoyong et al.). BaSnO$_3$ can also be put into use for photoelectrochemical applications since the band gap (3.1eV to 3.4 eV) is noted to be similar to some important materials like TiO$_2$, ZnO, SrTiO$_3$ which act as hydrogen photo catalyst (B). The material is found to be stable at temperature up to 1273K and above (Bouhemadou, A et. al., Kocemba I et. al.). In spite of having higher sintering temperature, samples of cubic Barium Stannate sintered at above 1600°C is noted to have porous morphology (Wei Xiaoyong. et al., Singh Prabhakar et al.).

Till now, very few research articles are still found to be dedicated to structural aspects, optical properties of Fe doped nanocrystalline Barium Stannate by mechanical agate-mortar activated solid-state route sintering while in contrast research articles on complex route synthesis is available. This method of approach for synthesis is relatively an easy economically effective process of synthesizing nanomaterials. The detail characterization studies are carried out by XRD for phase identification, SEM /EDX for morphology, size analysis of the particle, elemental compositional analysis and FTIR for bond formation in relation to M-O co-ordination. Band gap, optical

*Corresponding address: Soumya Mukherjee, Mobile: 919830179414, At Present: Assistant Professor, Amity School of Engineering and Technology, Amity University Kolkata Campus, Kolkata-700156, West Bengal, India
properties of Fe doped BaSnO$_3$ are also measured from UV-VIS spectra of the synthesized sample.

2. Experimental details

Fe doped BaSnO$_3$ with different percentage of Fe (BaSn$_{1-x}$Fe$_x$O$_3$ where x = 0.05, 0.10 and 0.15) were prepared by mechanical mixing in agate mortar followed by sintering method. Stoichiometric amounts of BaO, SnO$_2$ and Fe$_2$O$_3$ were mixed using agate mortar and pestle for 3 hours with initial starting material of pure BaCO$_3$, SnO$_2$ and Fe$_2$O$_3$ (Merck India, Ltd). The BaCO$_3$ was decomposed at 1250°C to obtain pure BaO. Then mixed powders were dried and sintered at 1350°C for 2 hours in tubular furnace maintaining air as atmosphere. The sintered samples were characterized by X-ray diffractometer (Rigaku, Ultima III) using Cu source having wave length $\lambda$ = 1.54Å with slow scan speed of 5s/min within the scan range of 10-80°. Crystalline size was determined using Scherrer’s relation t=0.9$\lambda$/cos$\theta$ where t is the crystallite size, $\lambda$ is the wavelength used. The sample composition was analyzed by EDX (using ultra Dry Silicon Drift Detector from Thermo Scientific) to clarify doping of Fe within barium stannate by identifying the peaks Fe, Ba, Sn and O. Morphological studies were observed by both SEM and FESEM (Hitachi, S-4800). Stretching and vibration of M-O coordinations were characterized by FTIR (FTIR Shimadza, IR-21 Prestige) from the absorption bands within scan range of 5000-400cm$^{-1}$. For FTIR analysis, sample was mixed with KBr and pellets are formed in steel die having diameter of 10mm under pressure of 6tonne/cm$^2$. For UV-VIS analysis, sample was sonicated in deionized water for about 1 hour till clear solution was observed and scanning of spectra was carried in the range of 150-750cm. Absorption spectra and band gap were evaluated using Tauc relation from spectra, using UV-VIS spectrophotometer (Perkin Elmer, Lambda 35).

3. Results and discussion

3.1. Phase determination of the powder by XRD analysis

X-ray diffraction pattern of Fe doped barium stannate sintered at 1350°C for 2 hours with different composition is shown in Fig 1 to Fig 3. It has been observed that all the peaks are assigned to a single phase cubic structure. All these directional planes along (110), (111), (200), (211), (220) and (310) are cubic perovskite of BaSnO$_3$ matched with ICDD-JCPS PDF# 150780 (Omeiri S et. al). Crystallite size of this powder sample is determined by Debye-Scherrer formula t = 0.9$\lambda$/bco$\theta$ where “t” is the crystallite size, $\lambda$ is the wavelength of the X-rays used, $\beta$ is the broadening of diffraction line measured at the half of its maximum intensity in radians and $\theta$ is the angle of diffraction (Cullity B D). The variation of crystallite size with different composition of Fe doped BaSnO$_3$ is very small (James K.K. et. al). The average crystallite size is 49.12 nm (Lu Wensheng et. al) 28 position of undoped BaSn sample is 30.68° while for doped sample it shifts negligibly to 30.61° 30.807° for 10% Fe doped, 5, and 15% doped samples. The slight shift indicates strain induced at the lattice position of B site of perovskite ABO$_3$. In the present case B site is occupied by Sn for undoped while partially by Fe at Sn site causing strain and shift of the main crystalline peak.
3.2. FTIR spectroscopy analysis

FTIR absorption spectra of the sample measured in the range between 400 cm\(^{-1}\) to 5000 cm\(^{-1}\) of Fe doped barium stannate with different composition have been shown in Fig 4 to Fig 6. It has been observed that the Sn-O stretching vibration is observed at around 453 cm\(^{-1}\) and 645 cm\(^{-1}\) (Köferstein, Roberto et al.) for all Fe doped samples. The bond is observed to be slightly decreased with increase in Fe dopant concentration. The dominant peak for all three composition at 645 cm\(^{-1}\) or 633 cm\(^{-1}\) represents (Sn\(_{6}\)) octahedral structure which has symmetrical stretching vibration (Omeiri S et al.). The presence of small peak at 849 cm\(^{-1}\) and dominant peak at 1438 cm\(^{-1}\) for all three dopant composition have shown the existence of C-O stretch vibration (Omeiri S et al.). Also these absorption band have shown the presence of characteristics band of BaCO\(_3\) (Alves, C.F. Mary et al., M.W. Charles et al.).

\[
\alpha(h\nu) = B(h\nu - E_g)^m
\]

where \(\alpha\) is the absorption coefficient, \(B\) is an energy independent constant of the absorption coefficient, \(E_g\) is the optical band gap energy, \(h\) is the Planck's constant, \(v\) is the frequency of incident photon and \(m\) is an index which depends on the nature of electronic transition responsible for the optical absorption. Values of \(m\) depends on direct and indirect transition which are respectively 1/2 and 2. Here the direct and indirect optical band gap energy measured of Fe doped barium stannate with different composition by physical routes are shown in Fig 9 to Fig 10. Some paper revealed that band gap energy are in the range of 2eV to 3.4eV (Köferstein, Roberto, Yakuphanoglub, Fahrettin., Bouhemadou, A et al.). From Fig 9 it has been shown that for 5% Fe band gap energy of direct transition are 2.698eV consistent with reported data and band gap energy of indirect transition are 2.68eV closely in match with published literature. Band gap energy increases with increasing dopant concentration.

![Fig 4: Fourier Transform Infrared spectrum of 5% Fe doped BaSnO\(_3\)](image)

Fig 4: Fourier Transform Infrared spectrum of 5% Fe doped BaSnO\(_3\)

![Fig 5: Fourier Transform Infrared spectrum of 10% Fe doped BaSnO\(_3\)](image)

Fig 5: Fourier Transform Infrared spectrum of 10% Fe doped BaSnO\(_3\)

![Fig 6: Fourier Transform Infrared spectrum of 15% Fe doped BaSnO\(_3\)](image)

Fig 6: Fourier Transform Infrared spectrum of 15% Fe doped BaSnO\(_3\)

3.3. UV/VIS spectroscopy analysis

From UV-VIS spectral studies, absorbion spectra of the sample is observed within the scan range between 200nm to 700nm for all Fe doped barium stannate samples with different concentration shown in the Figures 7 and 8. From these figures it has been shown that there are prominent absorption peak in the range between 200nm to 300nm while absorption is prominent in UV region compare to visible region (Vidya, S et al.). The samples respond heavily in the ultra violet region and the optical absorption in the wavelength region lower than 400nm is mainly exhibited due to the electron transition from top of the valence band to the bottom of the conduction band (Yasukawa, Masahiro et al., M.W. Charles et al.). Optical band gap energy or photon energy is determined by the Tauc’s equation (Köferstein, Roberto et al.). Direct band gap of material is given by Tauc relationship

\[
\alpha(h\nu) = B(h\nu - E_g)^m
\]
It may be due to possible defect levels generated within band energy structure leading to rise in activation energy required for electronic conduction jump from valence to conduction band. With rise in dopant concentration defect states get annihilated which leads to larger quantum level defects within band structure. For electronic conduction between the different generated energy level to the conduction band thus more driving potential is required in compare to simple electron-hole pair combinations. Hence, such rises in band gap energy level are observed for higher dopant concentration.

**Fig 7:** Absorption spectra of 5% Fe doped BaSnO$_3$ measured in the range from 200nm to 700nm

**Fig 8:** Absorption spectra of 10% Fe doped BaSnO$_3$ measured in the range from 200nm to 700nm

**Fig 9:** Plot of $(\alpha h\nu)^2$ and $(\alpha h\nu)^{1/2}$ of 5% Fe doped BaSnO$_3$ nanoparticles for direct and indirect transition

**Fig 10:** Plot of $(\alpha h\nu)^2$ and $(\alpha h\nu)^{1/2}$ of 10% Fe doped BaSnO$_3$ nanoparticles for direct and indirect transition

3.4. Microstructure and morphological Studies by SEM and elemental analysis by EDX

SEM and FESEM micrographs of Fe doped barium stannate BaSn$_{1-x}$Fe$_x$O$_3$ with x= 0.05, 0.10 and 0.15 are shown in Fig 11 a-c and Fig 12 a-c. Micrographs of all the samples exhibit massive agglomerations with interconnection among particles. All the samples of Fe doped BaSnO$_3$ with different composition exhibits
interconnected agglomerates with no directional growth is observed. Some interconnected pores are also noted amongst the agglomerate structure where the individual grains are having cubical to spherical morphology. The average grain size for the samples with $x=0.05$ and $x=0.1$ is less than a 1µm [Yasukawa, Masahiro et al.]. And the grain size for the samples with $x=0.15$ is almost nearly close to 1µm. So the variation of the grain size with different composition of Fe doped BaSnO$_3$ is very small. The Figure 13 shows the results of EDX spectra for elemental analysis of synthesized material. The results confirmed the presence of the elements (Ba, Sn, Fe and O) in the calculated ratio responsible for the formation of required nano-crystalline perovskite compound.

Fig 11: SEM images of BaSn$_{1-x}$Fe$_x$O$_3$ for (a) $x=0.05$ (b) $x=0.10$ (c) $x=0.15$

Fig 12: FESEM images of BaSn$_{1-x}$Fe$_x$O$_3$ for (a) $x=0.05$ (b) $x=0.10$ (c) $x=0.15$

Fig 13: EDS spectra of BaSn$_{1-x}$Fe$_x$O$_3$ exhibiting spectra of elements present within the material

Conclusions

Iron (Fe) doped barium stannate i.e BaSn$_{1-x}$Fe$_x$O$_3$ with $x=0.05$, $0.10$ and $0.15$ were prepared by mechanical mixing followed by sintering at 1350°C for 2 hours using precursor BaCO$_3$, Fe$_2$O$_3$ and SnO$_2$. It has been observed that BaSnO$_3$ has a simple cubic perovskite type of structure with crystallite size around 49.12nm. The variation of crystallite size was found to be negligible with different composition of Fe doped BaSnO$_3$. Sn-O stretching vibration, C-O stretching vibration bands are noted from the FTIR spectral analysis. Sn-O stretching vibration bond is slightly decreased when we increase dopant concentrations. For all three compositions it is observed to have same
C-O stretching vibration bond. From UV-VIS analysis, it has been indicated that samples absorbs mostly in the UV region and no absorption in the visible region. For 5% Fe dopant band gap energy of direct transition are 2.698eV and band gap energy of indirect transition are 2.68eV. Band gap energy increases with increasing % of Fe composition due to annihilation of defect states within band structure level. Morphological studies by SEM revealed nature of band gap structure formations and it is observed that grain size is less than 1µm. EDX analysis has confirmed the presence of elements responsible for the iron doped Barium Stannate.

Acknowledgements

We are greatly indebted to Department of Metallurgical & Materials Engg. JU, Kolkata, India, for giving us the opportunity to take up this interesting project work. It is our privilege to convey our heartiest thanks to Mr. Sudhir Ghosh for supporting XRD facilities, Dr. Mrs. Jhimli Sarkar for UV-VIS, Mr. Jayanta Bhattacharya for SEM-EDX and Mr. Pankaj Bhadra for FTIR analysis.

References

Wei, Xiaoyong., Feng, Yujun., Hang, Lianman., Xia, Song., Li Jin and Xi Yao, (2005), Abnormal C-V curve and dockwise hysteresis loop in ferroelectric barium stannate titanate ceramics, Material Science and Engineering B-Solid, vol.120, no.1-3, pp. 64–67.