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Abstract 
  
H.264/AVC is newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture 
Experts Group. The main goals of the H.264/AVC standardization effort have been enhanced compression 
performance and provision of a network-friendly video representation addressing conversational (video telephony) 
and non conversational (storage, broadcast, or streaming) applications. H.264/AVC has achieved a significant 
improvement in rate-distortion efficiency relative to existing standards. For huge systems like video processing, FPGA 
prototyping plays an important role before taping out. In this paper, a verification system for H.264/AVC encoders 
with FPGA prototyping is proposed and implemented. 
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1. Introduction 
 

1 DCTs are important to numerous applications in 
science and engineering, from lossy compression of 
audio (e.g. MP3) and images (e.g. JPEG) (where small 
high-frequency components can be discarded), to 
spectral methods for the numerical solution of partial 
differential equations. The use of cosine rather than 
sine functions is critical for compression, since it turns 
out (as described below) that fewer cosine functions 
are needed to approximate a typical signal, whereas for 
differential equations the cosines express a particular 
choice of boundary conditions. In particular, a DCT is a 
Fourier-related transform similar to the discrete 
Fourier transform (DFT), but using only real numbers. 
DCTs are equivalent to DFTs of roughly twice the 
length, operating on real data with even symmetry 
(since the Fourier transform of a real and even function 
is real and even), where in some variants the input 
and/or output data are shifted by half a sample. There 
are eight standard DCT variants, of which four are 
common. The most common variant of discrete cosine 
transform is the type-II DCT, which is often called 
simply the DCT, its inverse, the type-III DCT, is 
correspondingly often called simply the inverse DCT or 
the IDCT. Two related transforms are the discrete sine 
transform (DST), which is equivalent to a DFT of real 
and odd functions, and the modified discrete cosine 
transform (MDCT), which is based on a DCT of 
overlapping data. 

 

2. System Description 
 

Compression is a reversible conversion (encoding) of 
data that contains fewer bits. This allows a more 
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efficient storage and transmission of the data. The 
inverse process is called decompression (decoding). 
Software and hardware that can encode and decode 
are called decoders. Both combined form a codec and 
should not be confused with the terms data container 
or compression algorithms. 
 Lossless compression allows a 100files, where a 
loss of information is a major damage. These 
compression algorithms often use statistical 
information to reduce redundancies. Huffman-Coding 
and Run Length Encoding are two popular examples 
allowing high compression ratios depending on the 
data. Using lossy compression does not allow an exact 
recovery of the original data. Nevertheless it can be 
used for data, which is not very sensitive to losses and 
which contains a lot of redundancies, such as images, 
video or sound. Lossy compression allows higher 
compression ratios than lossless compression. The 
block diagram for the H.264 encoder using only intra 
prediction is shown in Figure 1.  
 

 Our baseline architecture will only support intra 
prediction, since inter prediction is considerably more 
complex. The three main building blocks are the DCT, 
Quant, and Intra-Prediction blocks, which will each be 
discussed below. The purpose of the inverse blocks is 
to perform the same steps the decoder will perform, 
and therefore base encoding decisions on how accurate 
the decoding process will be. For the most part, the 
inverse operation is conceptually and structurally 
similar to the forward operation, so further discussion 
on the inverse will be minimal. This standard is used 
for the video compression. Videos consists of many 
frames. Selection block selects the inter frames and 
intra frames. Reference frame block selects the inter 
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frames and the present frame block selects both inter 
and intra frames. Their difference are calculated by 
using the motion estimation block and the difference is 
calculated by using necessary methods. The output is 
in the time domain and inverse DCT is used to convert 
it into frequency domain. Then it is quantized to reduce 
the size of the value. It is then arranged by using zig-
zag. Run length encoding and Huffman encoding are 
also size reduction techniques and the bit stream is 
generated. 
 

 

 
 

Fig. 1 H.264 Encoder 
 

A. Selection or Intra Prediction 

 
Intra-prediction utilizes spatial correlation in each 
frame to reduce the amount of transmission data 
necessary to represent the picture. H.264 performs 
intraprediction on two different sized blocks: 16x16 
(the entire macroblock) and 4x4. 16x16 prediction is 
generally chosen for areas of the picture that are 
smooth. 4x4 prediction, on the other hand, is useful for 
predicting more detailed sections of the frame. The 
general idea is to predict a block, whether it be a 4x4 or 
16x16 block, based on surrounding pixels using a mode 
that results in a prediction that most closely resembles 
the actual pixels in that block. There are nine 4x4 
prediction modes, and four 16x16 modes. The four 

16x16 modes are similar to modes 0, 1, 2, and a 
combination of modes 3 and 8 of the 4x4 modes. The 
intra-prediction block is a computationally intensive 
block. Making a prediction decision for a single 4x4 
block requires: making a prediction for each pixel for 
each mode, computing the cost of using each prediction 
method, which includes calculating the sum of the 
differences (or sum of the hadamard transformed 
differences) between every prediction and actual pixel 
value, and 3) choosing the smallest cost as the correct 
prediction mode for that input block. 16x16 prediction 
is similar 

B. Motion Estimation 

Motion estimation is the process of determining 
motion vectors that describe the transformation from 
one 2D image to another; usually from adjacent frames 
in a video sequence. It is an ill-posed problem as the 
motion is in three dimensions but the images are a 
projection of the 3D scene onto a 2D plane. The motion 
vectors may relate to the whole image (global motion 
estimation) or specific parts, such as rectangular 
blocks, arbitrary shaped patches or even per pixel. The 
motion vectors may be represented by a translational 
model or many other models that can approximate the 
motion of a real video camera, such as rotation and 
translation in all three dimensions and zoom. 
 The motion estimation block in a video codec 
computes the displacement between the current frame 
and a stored past frame that is used as the reference. 
Usually the immediate past frame is considered to be 
the reference. More recent video coding standards, 
such as the H.264 offer flexibility in selecting the 
references frames and their combinations can be 
chosen. We consider a pixel belonging to the current 
frame, in association with its neighbourhood as the 
candidates and then determine its best matching 
position in the references frame. The difference in 
position between the candidates and its match in the 
reference frame is defined as the displacement vector 
or more commonly, the motion vector. It is called a 
vector since it has both horizontal and vertical 
components of displacement. We shall offer a more 
formal treatment to motion estimation in the next 
sections. 

C. DCT 

 
The DCT block takes in a 4x4 prediction residual and 

reduces the amount of redundancy by applying a 

transformation. The inverse DCT block, naturally, gets 

the necessary information back. The transformation 

used is a 4x4 integer transform that has all of the 

essential properties of the complex 8x8 DCT used by 

previous standards. The matrices used for the 

transformation and inverse transformation. Since the 

inverse transform is also integer, this transformation 

has the added benefit of having no encoder/decoder 

mismatch. The final output, Y , of the DCT block, given 

input X, is Y = HXHT. 



Anu et al                                                  H.264 Video Encoding Standard 

 

3725| International Journal of Current Engineering and Technology, Vol.5, No.6 (Dec 2015) 

 

A discrete cosine transform (DCT) expresses a finite 
sequence of data points in terms of a sum of cosine 
functions oscillating at different frequencies. 

 DCTs are important to numerous applications in 
science and engineering, from lossy compression of 
audio (e.g. MP3) and images (e.g. JPEG) (where small 
high-frequency components can be discarded), to 
spectral methods for the numerical solution of partial 
differential equations. The use of cosine rather than 
sine functions is critical for compression, since it turns 
out (as described below) that fewer cosine functions 
are needed to approximate a typical signal, whereas for 
differential equations the cosines express a particular 
choice of boundary conditions. In particular, a DCT is a 
Fourier-related transform similar to the discrete 
Fourier transform (DFT), but using only real numbers. 
DCTs are equivalent to DFTs of roughly twice the 
length, operating on real data with even symmetry 
(since the Fourier transform of a real and even function 
is real and even), where in some variants the input 
and/or output data are shifted by half a sample. There 
are eight standard DCT variants, of which four are 
common. The most common variant of discrete cosine 
transform is the type-II DCT, which is often called 
simply the DCT, its inverse, the type-III DCT, is 
correspondingly often called simply the inverse DCT or 
the IDCT. Two related transforms are the discrete sine 
transform (DST), which is equivalent to a DFT of real 
and odd functions, and the modified discrete cosine 
transform (MDCT), which is based on a DCT of 
overlapping data. 

D. Quantization 

 
This block first scales each transformed coefficient by a 
predefined value. It then quantizes each value for 
transmission. There are 52 different quantization 
levels possible, specified by the quantization 
parameter (QP). An increase in QP by six doubles the 
quantization step size, which doubles the compression. 
Thus, this block directly determines the compression 
versus quality tradeoff. A magnitude of the sampled 
image is expressed as a digital value in image 
processing. The transition between continuous values 
of the image function (brightness) and its digital 
equivalent is called quantitation. The number of 
quantitation levels should be high enough for human 
perception of fine shading details in the image. The 
occurrence of false contours is the main problem in 
image which have been quantized with insufficient 
brightness levels. This effect arises when the number 
of brightness levels is lower than that which humans 
can easily distinguish. This number is dependent on 
many factors, for example, the average local brightness 
– but displays which avoids this effect will normally 
provide a range of at least 100 intensity levels. Most 
digital image processing devices use quantization into 
k equal intervals. 
 

E. Run Length encoding 

 
Run-length encoding (RLE) is a very simple form of 
data compression in which runs of data (that is, 

sequences in which the same data value occurs in 
many consecutive data elements) are stored as a single 
data value and count, rather than as the original run. 
This is most useful on data that contains many such 
runs. Consider, for example, simple graphic images 
such as icons, line drawings, and animations. It is not 
useful with files that don’t have many runs as it could 
greatly increase the file size. RLE may also be used to 
refer to an early graphics file format supported by 
CompuServe for compressing black and white images, 
but was widely supplanted by their later Graphics 
Interchange Format. RLE also refers to a little-used 
image format in Windows 3.x, with the extension rle, 
which is a Run Length Encoded Bitmap, used to 
compress the Windows 3.x startup screen. Typical 
applications of this encoding are when the source 
information comprises long substrings of the same 
character or binary digit. 

F. Huffman  Encoding 

 
A Huffman code is an optimal prefix code found using 
the algorithm developed by David A. Huffman while he 
was a Ph.D. student at MIT, and published in the 1952 
paper A Method for the Construction of Minimum- 
Redundancy Codes. The process of finding and/or 
using such a code is called Huffman coding and is a 
common technique in entropy encoding, including in 
lossless data compression. The algorithm’s output can 
be viewed as a variable-length code table for encoding 
a source symbol (such as a character in a file). 
Huffman’s algorithm derives this table based on the 
estimated probability or frequency of occurrence 
(weight) for each possible value of the source symbol. 
As in other entropy encoding methods, more common 
symbols are generally represented using fewer bits 
than less common symbols. Huffman’s method can be 
efficiently implemented, finding a code in linear time to 
the number of input weights if these weights are 
sorted. However, although optimal among methods 
encoding symbols separately, Huffman coding is not 
always optimal among all compression methods. 
 
3. Result and Discussion 
 
The design of standard H.264 Video Encoder is done 
using Verilog and implemented in a Xilinx Spartan 3E 
XC3S500E (package: fg320, speed grade: -4) FPGA 
using the Xilinx ISE 14.1i design tool The internal RTL 
schematic of the Encoder is shown in fig.1.  
 

 
 

Fig. H.264 Video Encoder Output 
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DCT is modified using Strassen Matrix. The Strassen 
matrix multiplier as compared to standard matrix 
multiplier shows much more reduction in device 
Utilization and delay. The standard H.264 Encoder and 
Modified Encoder is implemented in Spartan 3 fpga 
and the output is shown in the figure. 
 
Conclusion 
 
H.264 Video Encoding Standard is presented and 
implemented in FPGA based on utilizing Verilog. The 
design is implemented on Xilinx Spartan 3 XC3S700AN 
FPGA device. The conventional DCT is modified using 
Strassen Matrix multiplier. The aim is to present a 
comparative study of the standard H.264 Video 
Encoding Standard and Modified H.264 Video Encoding 
Standard. The Strassen matrix multiplier as compared 
to standard matrix multiplier shows much more 
reduction in device Utilization and delay. The delay of 
standard 8x8 multiplier is 32.05ns and that to Strassen 
8x8 matrix multiplier delay is only 23.602ns. The 
Strassen 8x8 matrix multiplier uses only 7044 slices 
out of 92152 slices. Strassen matrix multiplication 
provides an efficient method for reducing the delay and 
area of matrix multipliers. 
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