
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2015INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

3723| International Journal of Current Engineering and Technology, Vol.5, No.6 (Dec 2015)

H.264 Video Encoding Standard

Anu Rachel Roy†* and Rincy Merin Varkey†

†Department of Electronics & Communication Engg,, St. Joseph’s College of Engineering & Technology, Palai, Kerala, India

Accepted 28 Nov 2015, Available online 08 Dec 2015, Vol.5, No.6 (Dec 2015)

Abstract

H.264/AVC is newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture
Experts Group. The main goals of the H.264/AVC standardization effort have been enhanced compression
performance and provision of a network-friendly video representation addressing conversational (video telephony)
and non conversational (storage, broadcast, or streaming) applications. H.264/AVC has achieved a significant
improvement in rate-distortion efficiency relative to existing standards. For huge systems like video processing, FPGA
prototyping plays an important role before taping out. In this paper, a verification system for H.264/AVC encoders
with FPGA prototyping is proposed and implemented.

Keywords: H.264, Motion Estimation, Run Length Encoding, DCT.

1. Introduction

1 DCTs are important to numerous applications in
science and engineering, from lossy compression of
audio (e.g. MP3) and images (e.g. JPEG) (where small
high-frequency components can be discarded), to
spectral methods for the numerical solution of partial
differential equations. The use of cosine rather than
sine functions is critical for compression, since it turns
out (as described below) that fewer cosine functions
are needed to approximate a typical signal, whereas for
differential equations the cosines express a particular
choice of boundary conditions. In particular, a DCT is a
Fourier-related transform similar to the discrete
Fourier transform (DFT), but using only real numbers.
DCTs are equivalent to DFTs of roughly twice the
length, operating on real data with even symmetry
(since the Fourier transform of a real and even function
is real and even), where in some variants the input
and/or output data are shifted by half a sample. There
are eight standard DCT variants, of which four are
common. The most common variant of discrete cosine
transform is the type-II DCT, which is often called
simply the DCT, its inverse, the type-III DCT, is
correspondingly often called simply the inverse DCT or
the IDCT. Two related transforms are the discrete sine
transform (DST), which is equivalent to a DFT of real
and odd functions, and the modified discrete cosine
transform (MDCT), which is based on a DCT of
overlapping data.

2. System Description

Compression is a reversible conversion (encoding) of
data that contains fewer bits. This allows a more

*Corresponding author: Anu Rachel Roy

efficient storage and transmission of the data. The
inverse process is called decompression (decoding).
Software and hardware that can encode and decode
are called decoders. Both combined form a codec and
should not be confused with the terms data container
or compression algorithms.
 Lossless compression allows a 100files, where a
loss of information is a major damage. These
compression algorithms often use statistical
information to reduce redundancies. Huffman-Coding
and Run Length Encoding are two popular examples
allowing high compression ratios depending on the
data. Using lossy compression does not allow an exact
recovery of the original data. Nevertheless it can be
used for data, which is not very sensitive to losses and
which contains a lot of redundancies, such as images,
video or sound. Lossy compression allows higher
compression ratios than lossless compression. The
block diagram for the H.264 encoder using only intra
prediction is shown in Figure 1.

 Our baseline architecture will only support intra
prediction, since inter prediction is considerably more
complex. The three main building blocks are the DCT,
Quant, and Intra-Prediction blocks, which will each be
discussed below. The purpose of the inverse blocks is
to perform the same steps the decoder will perform,
and therefore base encoding decisions on how accurate
the decoding process will be. For the most part, the
inverse operation is conceptually and structurally
similar to the forward operation, so further discussion
on the inverse will be minimal. This standard is used
for the video compression. Videos consists of many
frames. Selection block selects the inter frames and
intra frames. Reference frame block selects the inter

Anu et al H.264 Video Encoding Standard

3724| International Journal of Current Engineering and Technology, Vol.5, No.6 (Dec 2015)

frames and the present frame block selects both inter
and intra frames. Their difference are calculated by
using the motion estimation block and the difference is
calculated by using necessary methods. The output is
in the time domain and inverse DCT is used to convert
it into frequency domain. Then it is quantized to reduce
the size of the value. It is then arranged by using zig-
zag. Run length encoding and Huffman encoding are
also size reduction techniques and the bit stream is
generated.

Fig. 1 H.264 Encoder

A. Selection or Intra Prediction

Intra-prediction utilizes spatial correlation in each
frame to reduce the amount of transmission data
necessary to represent the picture. H.264 performs
intraprediction on two different sized blocks: 16x16
(the entire macroblock) and 4x4. 16x16 prediction is
generally chosen for areas of the picture that are
smooth. 4x4 prediction, on the other hand, is useful for
predicting more detailed sections of the frame. The
general idea is to predict a block, whether it be a 4x4 or
16x16 block, based on surrounding pixels using a mode
that results in a prediction that most closely resembles
the actual pixels in that block. There are nine 4x4
prediction modes, and four 16x16 modes. The four

16x16 modes are similar to modes 0, 1, 2, and a
combination of modes 3 and 8 of the 4x4 modes. The
intra-prediction block is a computationally intensive
block. Making a prediction decision for a single 4x4
block requires: making a prediction for each pixel for
each mode, computing the cost of using each prediction
method, which includes calculating the sum of the
differences (or sum of the hadamard transformed
differences) between every prediction and actual pixel
value, and 3) choosing the smallest cost as the correct
prediction mode for that input block. 16x16 prediction
is similar

B. Motion Estimation

Motion estimation is the process of determining
motion vectors that describe the transformation from
one 2D image to another; usually from adjacent frames
in a video sequence. It is an ill-posed problem as the
motion is in three dimensions but the images are a
projection of the 3D scene onto a 2D plane. The motion
vectors may relate to the whole image (global motion
estimation) or specific parts, such as rectangular
blocks, arbitrary shaped patches or even per pixel. The
motion vectors may be represented by a translational
model or many other models that can approximate the
motion of a real video camera, such as rotation and
translation in all three dimensions and zoom.
 The motion estimation block in a video codec
computes the displacement between the current frame
and a stored past frame that is used as the reference.
Usually the immediate past frame is considered to be
the reference. More recent video coding standards,
such as the H.264 offer flexibility in selecting the
references frames and their combinations can be
chosen. We consider a pixel belonging to the current
frame, in association with its neighbourhood as the
candidates and then determine its best matching
position in the references frame. The difference in
position between the candidates and its match in the
reference frame is defined as the displacement vector
or more commonly, the motion vector. It is called a
vector since it has both horizontal and vertical
components of displacement. We shall offer a more
formal treatment to motion estimation in the next
sections.

C. DCT

The DCT block takes in a 4x4 prediction residual and

reduces the amount of redundancy by applying a

transformation. The inverse DCT block, naturally, gets

the necessary information back. The transformation

used is a 4x4 integer transform that has all of the

essential properties of the complex 8x8 DCT used by

previous standards. The matrices used for the

transformation and inverse transformation. Since the

inverse transform is also integer, this transformation

has the added benefit of having no encoder/decoder

mismatch. The final output, Y , of the DCT block, given

input X, is Y = HXHT.

Anu et al H.264 Video Encoding Standard

3725| International Journal of Current Engineering and Technology, Vol.5, No.6 (Dec 2015)

A discrete cosine transform (DCT) expresses a finite
sequence of data points in terms of a sum of cosine
functions oscillating at different frequencies.

 DCTs are important to numerous applications in
science and engineering, from lossy compression of
audio (e.g. MP3) and images (e.g. JPEG) (where small
high-frequency components can be discarded), to
spectral methods for the numerical solution of partial
differential equations. The use of cosine rather than
sine functions is critical for compression, since it turns
out (as described below) that fewer cosine functions
are needed to approximate a typical signal, whereas for
differential equations the cosines express a particular
choice of boundary conditions. In particular, a DCT is a
Fourier-related transform similar to the discrete
Fourier transform (DFT), but using only real numbers.
DCTs are equivalent to DFTs of roughly twice the
length, operating on real data with even symmetry
(since the Fourier transform of a real and even function
is real and even), where in some variants the input
and/or output data are shifted by half a sample. There
are eight standard DCT variants, of which four are
common. The most common variant of discrete cosine
transform is the type-II DCT, which is often called
simply the DCT, its inverse, the type-III DCT, is
correspondingly often called simply the inverse DCT or
the IDCT. Two related transforms are the discrete sine
transform (DST), which is equivalent to a DFT of real
and odd functions, and the modified discrete cosine
transform (MDCT), which is based on a DCT of
overlapping data.

D. Quantization

This block first scales each transformed coefficient by a
predefined value. It then quantizes each value for
transmission. There are 52 different quantization
levels possible, specified by the quantization
parameter (QP). An increase in QP by six doubles the
quantization step size, which doubles the compression.
Thus, this block directly determines the compression
versus quality tradeoff. A magnitude of the sampled
image is expressed as a digital value in image
processing. The transition between continuous values
of the image function (brightness) and its digital
equivalent is called quantitation. The number of
quantitation levels should be high enough for human
perception of fine shading details in the image. The
occurrence of false contours is the main problem in
image which have been quantized with insufficient
brightness levels. This effect arises when the number
of brightness levels is lower than that which humans
can easily distinguish. This number is dependent on
many factors, for example, the average local brightness
– but displays which avoids this effect will normally
provide a range of at least 100 intensity levels. Most
digital image processing devices use quantization into
k equal intervals.

E. Run Length encoding

Run-length encoding (RLE) is a very simple form of
data compression in which runs of data (that is,

sequences in which the same data value occurs in
many consecutive data elements) are stored as a single
data value and count, rather than as the original run.
This is most useful on data that contains many such
runs. Consider, for example, simple graphic images
such as icons, line drawings, and animations. It is not
useful with files that don’t have many runs as it could
greatly increase the file size. RLE may also be used to
refer to an early graphics file format supported by
CompuServe for compressing black and white images,
but was widely supplanted by their later Graphics
Interchange Format. RLE also refers to a little-used
image format in Windows 3.x, with the extension rle,
which is a Run Length Encoded Bitmap, used to
compress the Windows 3.x startup screen. Typical
applications of this encoding are when the source
information comprises long substrings of the same
character or binary digit.

F. Huffman Encoding

A Huffman code is an optimal prefix code found using
the algorithm developed by David A. Huffman while he
was a Ph.D. student at MIT, and published in the 1952
paper A Method for the Construction of Minimum-
Redundancy Codes. The process of finding and/or
using such a code is called Huffman coding and is a
common technique in entropy encoding, including in
lossless data compression. The algorithm’s output can
be viewed as a variable-length code table for encoding
a source symbol (such as a character in a file).
Huffman’s algorithm derives this table based on the
estimated probability or frequency of occurrence
(weight) for each possible value of the source symbol.
As in other entropy encoding methods, more common
symbols are generally represented using fewer bits
than less common symbols. Huffman’s method can be
efficiently implemented, finding a code in linear time to
the number of input weights if these weights are
sorted. However, although optimal among methods
encoding symbols separately, Huffman coding is not
always optimal among all compression methods.

3. Result and Discussion

The design of standard H.264 Video Encoder is done
using Verilog and implemented in a Xilinx Spartan 3E
XC3S500E (package: fg320, speed grade: -4) FPGA
using the Xilinx ISE 14.1i design tool The internal RTL
schematic of the Encoder is shown in fig.1.

Fig. H.264 Video Encoder Output

Anu et al H.264 Video Encoding Standard

3726| International Journal of Current Engineering and Technology, Vol.5, No.6 (Dec 2015)

DCT is modified using Strassen Matrix. The Strassen
matrix multiplier as compared to standard matrix
multiplier shows much more reduction in device
Utilization and delay. The standard H.264 Encoder and
Modified Encoder is implemented in Spartan 3 fpga
and the output is shown in the figure.

Conclusion

H.264 Video Encoding Standard is presented and
implemented in FPGA based on utilizing Verilog. The
design is implemented on Xilinx Spartan 3 XC3S700AN
FPGA device. The conventional DCT is modified using
Strassen Matrix multiplier. The aim is to present a
comparative study of the standard H.264 Video
Encoding Standard and Modified H.264 Video Encoding
Standard. The Strassen matrix multiplier as compared
to standard matrix multiplier shows much more
reduction in device Utilization and delay. The delay of
standard 8x8 multiplier is 32.05ns and that to Strassen
8x8 matrix multiplier delay is only 23.602ns. The
Strassen 8x8 matrix multiplier uses only 7044 slices
out of 92152 slices. Strassen matrix multiplication
provides an efficient method for reducing the delay and
area of matrix multipliers.

References

Thomas Wiegand, Gary J. Sullivan, Overview of the

H.264/AVC Video Coding Standard, IEEE transactions on
circuits and systems for video technology.

S. Aslan, E. Oruklu and J. Saniie, Realization of Area Efficient
QR Factorization using Unified Division, Square Root and
Inverse Square Root Hardware, in IEEE
Electro/Information Technolog

D. Jeffrey and W. Zhou, Fraction-free matrix factors: new

forms for LU and QR factors, Frontiers of Computer Science

in China, Springer-Verlag Gm

J. A. Apolinario Jr, QRD-RLS Adaptive Filtering. New Jersey:

Prentice H

B. Kakaradov, Ultra-fast Matrix Multiplication: An Empirical

Analysis of Highly Optimized Vector Algorithm,Stanford

Undergraduate Research Journa

S. Choi, V.K.K. Prasanna and J. Jang, Area and time efficient

implementations of matrix multiplication on FPGAs, in

IEEE International

William H. Press, Saul A. Teukolsky, William T. Vetterling, and

Brian P. Flannery, Numerical Recipes 3rd Edition: The Art

of Scientific Computing, rd ed. New York City: Cambridge

University Press

D. Takahashi, T. Boku, M. Sato and Y. Ohtaki, Parallel

implementation of Strassens matrix multiplication

algorithm for heterogeneous clusters,in parallel and

Distributed Processing Symposium

S. Robinson, Toward an Optimal lgorithm for Matrix

Multiplication, SIAM News

A. Gerstlauer, R. Domer, D.D. Gajski and S. Dongwan, An
Interactive Design Environment for C-Based High-Level
Synthesis of RTL Processors, IEEE Transactions on Very
Large Scale Integration (VLSI) Syste

A. Morawiec and P. Coussy, High-Level Synthesis: from
Algorithm to Digital Circuits. Berlin: Springer Science +
Business Media.

