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Abstract 
  
Digital image processing is a challenging domain of programming. There is always some noise present in all digital 
images. When we have to remove zero-mean white and homogeneous Gaussian additive noise from a given image, we 
address it as Image denoising problem. This is an important pre-processing task, for which spatial domain and 
transform domain image filters have achieved great success. However we cannot fine tune the denoising strength 
using spatial domain filters, but it can be efficiently done using shrinkage operators (in transform domain).  In this 
work, we are proposing a novel approach for controlling the denoising strength using Spatially Adaptive Iterative 
Filtering (SAIF). The highlight of this technique is that we can automatically optimize the type of iteration and the 
iteration number w.r.t estimated risk using the plug-in risk estimator, after the adaptive iteration of filtering local 
image content with given base filter. Improved performance than often employed SURE estimator is the attracting 
characteristic of plug in estimator. Finally it is extended with guided filtering for quality improvement. Experimental 
results prove that SAIF with guided filtering improves denoising performance undoubtedly. 
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1. Introduction 
 

1 In our day to day lives, digital images play an 
exceptionally significant part being commonly used in 
handwriting recognition systems, validation of 
signatures, intelligent monitoring of traffic, satellite 
television and also in astronomy and geographical 
systems for the collection of geological data . Various 
noises and artifacts are introduced by the acquisition 
techniques and systems of digital imaging. Thus 
denoising plays a very vital role in the processing of 
images, its analysis and its various applications. By 
denoising, a lot of details of the image can be reserved 
and the random noise present is removed to a great 
extent. The presence of noise reduces the image's 
quality and also the visibility and perceptibility of 
images with lower contrast. Therefore by the process 
of denoising the images are enhanced and details 
hidden are recovered. In digital images, the noise found 
is additive in nature with power that is uniform in the 
entire bandwidth and has the normal (or Gaussian) 
distribution. This noise is known as Additive White 
Gaussian Noise (AWGN). The suppression of AWGN is a 
difficult process as it alters or manipulates all pixels of 
the image. In the process of removing noise a trade of 
has to be made between the suppression of noise and 
retaining the discontinuities in the image. A denoising 
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technique thus has to be spatially adaptive by 
removing noise as well as not excessively smoothing 
important details of the image. Based on the noise 
model, a lot of different techniques are used. Sparsity, 
multi-resolution and edge detection are a few 
properties due to which the wavelets naturally cause 
spatially adaptive noise filtering. 
 Before further processing of images like 
segmentation, texture analysis etc, we always go for a 
preprocessing task called Image Denoising. This is due 
to the various noises that may arise in different inside 
and outside conditions which cannot be avoided. These 
noises must be removed at any cost since it causes 
degradation in visual quality of images. Here lies the 
importance of denoising algorithms. Ideally denoised 
images are noise free images. Since denoising depends 
on the images and noise model, we can say that it is 
problem specific technique. When the noise level of an 
image is too high, the denoising still remains as an 
open challenge. Hence to improve denoising 
performances researchers keep on consideration with 
it. 
 

 Normally, denoising algorithms are separated into 
two main classifications. They are named as Transform 
Domain Methods and Spatial Domain Methods. 
Transform domain methods are based on the 
assumption that the clean image can be well 
represented as a combination of few transform basis 
vectors. So the signal-to-noise-ratio (SNR) can be 
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estimated and used to appropriately shrink the 
equivalent transform coefficients. Specifically speaking, 
if a basis element is detected as fitting to the true 
signal, its coefficient should be mostly preserved. 
Similarly, if an element is detected as a noise 
component, its coefficient should be shrunk more, or 
removed. By performing this, noise can be effectively 
crushed while most structures and finer details of the 
latent image are well-preserved. 
 Spatial domain methods focus on a different noise 
suppression approach. Here there is direct 
manipulation of pixels in an image. In many cases 
spatial domain methods yield undesirable results for 
the reason that, usually it enhances the whole image in 
a uniform routine.  It’s not possible to effectively and 
selectively enhance the edges and other essential 
information. In this method, each pixel value is 
estimated as a weighted average of other pixels, where 
higher weights are assigned to “similar” pixels. Pixel 
similarities can be considered in several ways. For the 
bilateral filter, similarity is determined by both 
geometric and photometric distances between pixels. 
Takeda et al. suggested a locally adaptive regression 
kernel (LARK) denoising method, robustly calculating 
the pixel similarity based on geodesic distance. 
Another effective method called non-local means 
(NLM) covers the bilateral filter by replacing point-
wise photometric distance with patch distances, which 
is more robust to noise. 

 As images contain some tuning parameters that 
affect the performance, determining denoising strength 
is practically problematic. A larger smoothing 
parameter results in over smoothed output which 
erase certain information. A fewer smoothing makes 
slight denoising which cause suppression of noise. So 
iterative filtering is an alternative approach for 
boosting the spatial domain filters. By means of this 
iterative approach, by applying the same filter several 
times we can make a well estimated output which is 
considered as bad with that filter. For this we should 
find out the best iteration number and the best 
iteration method using the SAIF strategy. Then we 
apply the guided image filter to the SAIF output. 
 

2. Related Works 
 

We know that spatial domain filters deals with direct 
manipulation of pixel values while, transform domain 
filters deal with frequency content of an image. In the 
class of spatial domain and transform domain filters 
there exists a number of algorithms. Linear and Non-
Linear filters are the two further classifications of 
spatial domain filters. Similarly the two key 
classifications of transform domain filters are Adaptive 
and Non-Adaptive transforms. 
 Various algorithms in this transform domain 
methods differs in either the transform selection or the 
shrinkage strategy. First we can have a look on 
transform selection. Transform domain method have 
the capability to represent both low frequency 
components and the high frequency transients.  

Transforms such as wavelet, DCT etc are often 
employed and are easy to compute or analyze. 
However, they may not be effective in representing 
natural image content with sparse coefficient 
distributions. This would certainly increase the 
requirement on the shrinkage performance. Principle 
component analysis (PCA) is another transform which 
is generally used. This is a kind of Non-Adaptive 
Transform. PCA is more adaptive to local image 
content when compared with adaptive transforms. 
This can lead to a more sparse coefficient distribution. 
Though, such decompositions can be fairly sensitive to 
noise. K-SVD and K-LLD are other techniques which is 
more robust to noise. This is because they use over-
complete dictionaries generated from training. But 
they are computationally expensive. 
 The shrinkage strategy is another important factor 
that needs to be completely considered. The best 
strategy that gets close to the optimal performance 
with respect to mean-squared-error (MSE) is the 
Wiener criterion. This determines the shrinking 
strength according to estimated SNR in each basis 
element. 
 A traditional way to remove noise from image data 
is to employ spatial filters.  In Spatial Domain 
techniques, the relative positions and the values of a 
local neighborhood of pixels are significant. Spatial 
domain consists of different methods such as Bilateral 
filtering, NLM, LARK etc. 
 Bilateral filter (BLT), smoothen the images by 
means of a nonlinear combination of adjacent image 
values. The method combines pixel values based on 
both their geometric closeness and their photometric 
similarity. This kernel can be expressed in a separable 
fashion as follows: 
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in which hx and hy are smoothing (control) parameters. 
 
The NLM  is another  popular data-dependent filter 
which closely look like the bilateral filter except that 
the photometric similarity is captured in a patch-wise 
manner: 
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where yi and yj are patches centered at yi and yj, 
respectively. 
 

More recently, the LARK (also called Steering Kernel) 
was introduced which exploits the geodesic distance 
based on estimated gradients: 
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(3) 

 
in which Cij is a local covariance matrix of the pixel 
gradients computed from the given data. The gradient 
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is computed from the noisy measurements yj in a patch 
around xi. Important advantage of LARK is the 
robustness to noise and perturbations of the data. 
 In the proposed method a SAIF approach is used, 
which is able to control the denoising strength. This is 
achieved by choosing the best iteration method and 
iteration number with respect to the calculated MSE 
using plug-in risk estimator. Then it iteratively filters 
using a given filter up to the iteration number and 
using the least risk iteration number selected. In order 
to make the output more vibrant we then applies the 
guided image filtering to the SAIF output. 
 

3. Methodology 
 
The image denoising strategy which is used here is can 
boost its performance by utilizing its spatially adapted 
transform and by employing an optimized iteration 
method. We will now discuss how we use iteration 
method and spatially adaptive transform for denoising. 
We do this by considering each patch. We don't do this 
globally.  
 

 
 

Fig.1 Block diagram of proposed method 
 
For each patch, we apply our iterative filtering. We do 
this because we can calculate the signal to noise ratio 
locally patch wise. Depending on the iteration number, 
we get different qualities after the denoising is done. 
When our SAIF system gets the input noise images, it 
goes to two units before applying any modified filter on 
it. One of them is to calculate the optimal number of 
iterations. We preserve the same image and apply 
patch filtering after deciding the optimal number of 
iterations. We do all this by splitting the given noisy 
image into overlapping patches. We pass the image 
through a standard kernel baseline and use it to get the 
local filter. This is used in deciding the optimal 
iteration estimate. Iteration number is selected and 
filter patch are generated after this. There is one more 
final step called aggregation. This is done because the 
patches are overlapped. Fig.1 depicts the block 
diagram of the proposed approach. 
 
3.1 Optimal iteration Estimation 
 
This step is carried out to find the iteration number 
and to decide which iteration method is used. A 
method based on local signal to noise ratio is used to 
find the optimal number, called plug-in risk estimator.  

Given a patch ‘y’ and its filter matrix ‘W’. For each 

iteration method, the optimal stopping time k̂  can be 

expressed as 
 

k
k

MSEk minargˆ 
                                                                   

(4) 

Using the common technique SURE, an unbiased 
estimate of MSE can be computed. In this article an 
alternative method is proposed called plug-in risk 
estimator, which is biased and works based on an 
estimate of the local SNR. Practically, by using the base 
filter with some arbitrary parameter settings, eigen 
values and eigenvectors of the filter are estimated from 

a pre-filtered patch z~ . We have, 
 

  TVSVzW ~                                       (5)                                        

 

Also, TVSVW  with  k
n

kk diagS  ...1 where k 

is any non-negative real number. When implementing 
this, the filter can be applied with modified eigen 
values for any k > 0. This meaningfully improves the 
denoising performance as compared to when k is 
restricted to only positive integers. A real-valued k 
automatically and smoothly adjusts the local 
bandwidth of the filter. 
 
The plug-in risk estimator and SURE estimator are 
explained below. 
 
A. Plug-in risk estimator 
 
Risk estimators for diffusion and boosting are 

computed based on the pre-filtered patch z~ . The signal 
coefficients can be estimated as 
 

zVb T ~~
                                                   (6) 

 
The risk estimator should have some prior knowledge 

of the local SNR of the image. kMSE in each patch can 

be estimated using the signal coefficients. 
 
Diffusion Plug-in Risk Estimator: 
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Boosting Plug-in Risk Estimator: 
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Algorithm: 
 

Input: Noisy Patch: y, Pre-filtered Patch: z~ ,Patch filter: 
W 

Output: Denoised Patch: ẑ  

1. Eigen-decomposition of the filter   TVSVzW ~ ; 

2. zvb T ~~
  - Compute the signal coefficients; 

3. df
kinPlug  , bs

kinPlug  - Compute the estimated 

risks; 
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4. If min{ min} df
kinPlug }{ bs

kinPlug   

5. df
k

k
inPlugk  minargˆ -Diffusion optimal iteration 

number; 

6. yVVSz Tk̂ˆ  - Diffusion patch denoising; 

7. else 

8.
bs

k
k

inPlugk  minargˆ - Boosting optimal 

iteration number; 

9.   yVSIIVz Tk





 

1ˆ
ˆ  -Boosting patch denoising; 

10. end 
 

In each patch, minimum values of df
kinPlug   and 

bs
kinPlug   as a function of k are computed and 

compared, and the iteration type with the least risk is 

chosen. Since the optimal iteration number k̂ can be 

any real positive value, in the implementation of the 

diffusion filter, kW
ˆ

 is replaced by yVVS Tk̂  in which 

 k
n

kk diagS  ...1  

 
B. SURE estimator 
 
The SURE estimator or MSE is defined for an estimate 
of the latent signal z, F(y) as: 
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If      is replaced by yW k
. It will act as a linear 

filtering framework. With this linear approximation we 

have:    kWtrydivF  . The SURE estimator for the 

diffusion process can be expressed as: 
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After the eigen-decomposition of the filter, following 
equations are derived. 
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3.2 Aggregation 
 
Since the patches are overlapped, for each pixel, there 
obtains multiple estimates.  Therefore the final 
estimate of each pixel is obtained by aggregating all of 
these available estimates. Variance-based aggregation 
and Exponentially weighted aggregation are the two 
methods often employed for this aggregation tasks. 
 
3.3 Guided Filtering 
 
As a result of denoising, there are chances for blur near 
the edges of the denoised image. By considering the 
content of guidance image, we are computing the filter 

output in guided filtering. Thus, the edges of filter 
output are preserved and the output is not subjected to 
any gradient distortion. 
 

4. Experimental Results 
 

In this section various results of proposed method are 
analyzed. Firstly, a 256x256parrot image is given as 
input and its results with Non Local Means as given 
kernel is analyzed. 
 

 
             (a)                                 (b)                              (c) 

   
               (d)                                (e)                             (f) 
 

Fig.2 (a)Input Image (b)Noisy image (c)Pre Filtered 
image (d)SAIF output with Plug-in Estimator (e)SAIF 
output with SURE Estimator (f)Guided Filter Output 

 
Here we have added zero mean white noise with 
variance 25 to the input parrot image (Fig.(a)) to 
obtain a noisy image with PSNR of 20.15db (Fig.(b)). 
With the given kernel (NLM as mentioned earlier) pre-
filtering was done and we have got an output with 
PSNR of 27.67db (Fig.(c)). As we see pre-filtered 
output still have some noisy components with it. We 
performed our iterative SAIF method (Plug-in) for 
improved performance and this results in an output 
image with PSNR 28.87 db (Fig.(d)). For comparison 
purpose SURE output is as shown in Fig.(e). Plug-in 
thus shows an improved denoised result. The quality of 
our denoised result is again improved by following a 
guided filtering (shown in Fig.(f)).The quality was 
measured as 3.9275 for plug-in output image and is 
4.6893 for guided filtered output. 
 

Table 1 PSNR values for parrot image 
 

σ PreFiltering SURE Plug-in 
25 27.67 28.64 28.87 
15 30.21 31.21 31.33 

 

Table 2 PSNR values for House image 
 

σ PreFiltering SURE Plug-in 
25 28.24 30.76 30.81 
15 32.66 33.77 33.85 
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Now we can analyze the performance of two different 

images (ie. parrot and house) fortwo different 

variances with given kernel NLM(Table 1and Table 2). 

At a glance, we can say that the PSNR value of the plug-

in method is higher than pre-filtered and SURE 

outputs. As the variance is reduced, the PSNR value of 

each stages of pre-filtering, SURE and Plug-in increases. 

But still plug-in gives the better denoised result. 

 
Table 3 PSNR value with LARK kernel 

 
 

σ(25) 
Image PreFiltered SURE Plug-in 

Parrot 27.60 28.15 28.26 

House 29.88 31.34 31.26 

 
Above Table 3shows the performance of two different 

images (ie. parrot and house)with variance 25 for 

LARK kernel. The plug-in estimator shows consistent 

improvement over both the standard estimate using 

the kernel, and the optimally iterated kernel from 

SURE for `parrot' image. But for rich textured `house' 

image, SURE method outperforms the plug-in 

estimator. 

 
Guided filtered images along with SAIF output for given 
LARK kernel (with Plug-in estimator) is shown below. 
 

                     
(a)                                            (b) 

                      

                  
             (c)                                            (d) 

                   
                              (e)                                       (f) 

 
Fig.3(a). SAIF output of parrot image (b). Guided 

output of Parrot image (c). SAIF output of Cameraman 
image (d). Guided output of Cameraman image (e). 
SAIF outputs of House image (f) Guided outputs of 

House image 
 

The problem we observed in the plug-in estimator was 

that it shows less quality in the output images. Thus to 

solve this problem a guided filter was introduced to the 

system. The table below shows the quality analysis of 

various images for different kernels (BLT,NLM,LARK). 

Table 4 Image quality analysis 
 

Image Kernel SURE Plug-in Guided 
 
Parrot 

BLT 7.8234 6.4244 7.8873 
NLM 3.67 3.9275 4.6893 
LARK 3.5056 4.6636 5.3894 

 
House 

BLT 7.8123 8.3782 11.9847 
NLM 5.8465 8.5659 11.3408 
LARK 6.0674 6.1328 9.5143 

 
Cameraman 

BLT 7.1790 7.2707 8.1842 
NLM 5.1161 7.6213 9.5990 
LARK 4.3975 4.9872 7.6788 

 
From above table, it is clear that by employing guided 
filtering the quality of denoised image have improved, 
as we expected. For every kernel, ie. BLT,NLM and 
LARK, a significant improvement in the quality have 

happened. 
 
Conclusion 
 
Denoising is considered as one of the fundamental 
challenges in the field of image processing. For 
engineers and scientists, it has been a permanent 
research topic. Here an improved denoising by data-
dependent kernels is presented. SAIF strategy and 
guided image filtering performed this task. Patch wise 
iterative filtering is carried out here. Diffusion and 
Boosting are the two complementary iteration 
techniques that are used here. We select the best 
iteration method and iteration number according to 
the MSE value (risk value). The plug-in risk estimator 
used estimated local SNR as empirical prior knowledge 
of latent signal. Plug-in estimator outperforms the 
already existing SURE method in most of the cases. 
Better estimate of local SNR is the added feature of this 
method. To make the output more robust guided image 
filtering is employed. The performance of the output is 
determined based on Quality parameter of the image. It 
is a good and promising method. This can be effectively 
applied in the field of image processing since a 
promising improved result is guaranteed. 
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