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Abstract 
  
Finite Impulse Response filter is mostly used in the digital signaling processing (DSP) applications. In FIR most 
important parameters are complexity, cost, and power consumption. While the research focus of resolve the thus 
parameter to be reduced. To use the Multiple Constant Multiplication (MCM) for optimize the adder tree in the filter. 
In this paper we have identified the resource minimization problem in the scheduling of adder-tree operations in 
MCM blocks by using Mixed Integer Programming (MIP).Result shows that up to 11.09% reduction of area and 7.66% 
reduction of power can be achieved on the top of already optimized adder/subtractor network of the MCM block. 
 
Keywords: MIP, MCM, CSD, adder tree, digital signal processing, FIR etc  
 
 
1. Introduction 
 

1 Digital filters are increasingly found in all areas of 
digital signal processing (DSP). For practical systems, it 
is often important that the digital filters should have 
low implementation cost and low power consumption, 
while operating at high data rates. To achieve this goal, 
the filter coefficients are often constrained to be 
integers, with single extra (possibly floating point) 
multiplier on the filter output. The filter requires an 
integer multiplier for each coefficient.  These integer 
multipliers can be efficiently implemented using a 
combination of additions, subtractions and power of 
two shifts, collectively referred to as primitive 
operators. Various implementation strategies exist. 
The first is a binary implementation, in which each 
multiplier is expressed as a simple sum of power-of-
two terms. The resulting design problem thus becomes 
that of choosing a set of filter coefficients and a 
corresponding implementation which offers an 
effective compromise between implementation 
complexity and performance. There are two main 
strategies, the first strategy is to first design an 
appropriate integer coefficient filter, and then to find 
an efficient implementation. The integer coefficient 
filter can be designed either by rounding the 
coefficients from an effective floating point design, or 
by employing an optimization technique such as linear 
programming. The optimal SPT representation is easily 
found using the canonic signed digit (CSD) algorithm. 
The optimal graph design is a more difficult problem, 
although various heuristic methods exist, which give a 
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close to optimal implementation. The problem with 
this approach is that it achieves compromise which 
tends to favor higher performance and higher 
complexity solutions. The reason for this is due to the 
choice of filter being made without reference to its 
complexity.  

An alternative method is to use a complexity 
constrained approach, where a specific 
implementation is selected with an appropriate 
complexity constraint. The space of possible 
parameters is then searched in order to find a filter 
with optimum performance given the constraints. 
Although this approach has been found to work well 
with an SPT implementation, it is not well suited for 
use with directed graphs, due to the epistatic nature of 
the problem. A small change in the graph will typically 
lead to a large change in filter characteristics. This 
makes it very difficult to find an optimal solution. 
Multiplication with a constant fixed-point number is a 
basic operation in many digital signal processing 
applications. A multiplication can be implemented 
using a network of binary shifts and adders (or 
subtractors). For bit-parallel arithmetic the shifts 
(multiplication by a power of two) can be hardwired 
and therefore do not require any gates. The hardware 
cost can thus be approximated with the required 
number of adders and subtractors. For two’s 
complement numbers, the hardware cost of a 
subtraction is approximately equal to that of an adder. 
 For convenience both adders and subtractors will 
therefore be referred to as adders. Since a fixed-point 
number can be converted to an integer number by 
multiplication by 2N for some N, only integer numbers. 
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By using carry-save adders the need for carry 
propagation in the adder is avoided and the latency of 
one addition is equal to the gate delay of a full adder. 
The carry-save adder has three inputs and two outputs, 
where the two outputs together form the result. 
 

 
 

Fig.1 a) Carry-propagation adder symbol and 
structure. b) Carry-save adder symbol and structure 

 
A variable can be multiplied by a given set of fixed-

point constants using a multiplier block that consists 
exclusively of additions, subtractions, and shifts. The 
generation of a multiplier block from the set of 
constants is known as the multiple constant 
multiplication (MCM) problems. Finding the optimal 
solution, i.e., the one with the fewest number of 
additions and subtractions is known to be NP-
complete. We propose a new heuristic algorithm for 
the MCM problem, which finds solutions that require 
up to 20% less additions and subtractions than the 
solutions found by the best previously known 
algorithm. At the same time, our algorithm is not 
limited by the constant bitwidths, in contrast to the 
closest competing algorithm. We present our algorithm 
using a unifying formal framework for the best, graph-
based MCM algorithms and provide a detailed runtime 
analysis and experimental evaluation. We show that 
our algorithm can handle problem sizes as large as 100 
32-bit constants in a time acceptable for most 
applications. 

 

2. Existing System 

 
2.1Digital serial filter 
 
A limiting factor in many modern DSP systems is the 
power consumption. This is due to two different 
problems. First, when the systems becomes larger and 
whole systems are integrated on a single chip, i.e., 
System-on-Chip (SoC), and the clock frequency is 
increased, the total power dissipation is approaching 
the limit when an  expensive cooling system is required 
to avoid overheated chips. Second, the portable 
equipment such as cellular phones and portable 
computers are becoming increasingly popular. These 
products use batteries as their power supply. A 
decrease in power consumption increases the 
portability since smaller batteries can be used with 

longer life-time between recharges. Hence, design for 
low power consumption is important. In this thesis, we 
will assume working with a hard real-time system, i.e., 
all operations should be performed within the sample 
period. Hence, throughput or the sample rate is not a 
cost function it is a requirement. The major cost 
function becomes low power consumption. In older 
CMOS processes the area was a limiting factor due to 
high manufacturing costs. In modern deep submicron 
CMOS processes the area is no longer a problem. 
However, the close relationship between area and 
switching capacitance makes it still interesting to 
reduce chip area in order to reduce the power 
consumption. The design time is also a key factor for 
low price products. Hence, an efficient design process 
aiming at first time right silicon is of a great interest for 
minimizing total costs. 

Due to the intensive use of FIR filters in video and 
communication systems, high performance in speed, 
area and power consumption is demanded. Basically, 
digital filters are used to modify the characteristic of 
signals in time and frequency domain and have been 
recognized as primary digital signal processing. In DSP, 
the design methods were mainly focused in multiplier-
based architectures to implement the multiply-and- 
Accumulate (MAC) blocks that constitute the central 
piece in FIR filters and several functions. The FIR 
digital filter is presented as 

 

 [ ]  ∑  [ ] [   ]   
                                                      (1) 

 

Where y[n] is the FIR filter output, x[n − k] is input data 
and c[k] represents the filter coefficients Equation 
shows that multiplier-based filter implementations 
may become highly expensive in terms of area and 
speed. This issue has been partially solved with the 
new generation of low-cost FPGAs that have embedded 
DSP blocks. The advantages of the FPGA approach to 
digital filter implementation include higher sampling 
rates than are available from traditional DSP chips, 
lower costs than an ASIC for moderate volume 
applications, and more flexibility than the alternate 
approaches. 

In literature, several multiplier less schemes had 
been proposed. These methods can be classified in two 
categories according to how they manipulate the filter 
coefficients for the multiply operation. The first type of 
multiplier-less technique is the conversion-based 
approach, in which the coefficients are transformed to 
other numeric representations whose hardware 
implementation or manipulation is more efficient than 
the traditional binary representation. Example of such 
techniques are the Canonic Sign Digit (CSD) method, in 
which coefficients are represented by a combination of 
powers of two in such a way that multiplication can be 
simply implemented with adder/subtractors and 
shifters, and the Dempster-Mcleod method, which 
similarly involves the representation of filter 
coefficients with powers of two but in this case 
arranging partial results in cascade to introduce 
further savings in the usage of adders. 



I.Arivazhagan et al                                                  FPGA Implementation of FIR Filter Design with Optimization of Adder Tree & Constant Multiplication 

 

2130| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015) 

 

The second type of multiplier-less method involves use 
of memories (RAMs,ROMs) or Look-Up Tables (LUTs) 
to store pre-computed values of coefficient operations. 
These memory-based methods involve Constant 
Coefficient Multiplier method and the very-well known 
Distributed Arithmetic method as examples. 
Distributed Arithmetic (DA) algorithm appeared as a 
very efficient solution especially suited for LUT-based 
FPGA architectures. Croisier et al had proposed the 
multiplier less architecture of DA algorithm and it is 
based on an efficient partition of the function in partial 
terms using 2’s complement binary representation of 
data. The partial terms can be pre-computed and 
stored in LUTs. Yoo et al. observed that the 
requirement of memory/LUT capacity increases 
exponentially with the order of the filter, given that DA 
implementations need 2K – words, K being the number 
of taps of the filter. 

The work in this paper presents the design and 
implementation of serial and parallel distributed 
algorithm for FIR filter target as Spartan 3E FPGA. The 
results of the implementation experiment are analyzed 
in terms of parameters such as area and speed. The 
brief description of the distributed algorithm is 
presented. The implementation of the proposed 
technique for FIR filters is discussed. The Section 4 
presents the implementation results. The last section 
concludes the work and presents the future work. 
 
2.2 Gate- level optimization  
 
Reducing power consumption is both an imperative 
and a daunting challenge for today’s ASIC and IC 
designers. Silicon technology advances have made it 
possible to pack hundreds of thousands of transistors 
on a single chip. In addition, performance goals require 
high clock speeds posing difficult power dissipation 
and distribution problems.  Further complicating the 
mix is the rapidly increasing demand for power-
sensitive applications like high-performance computer 
systems; portable, battery-operated computers, 
medical devices and telecommunications equipment.  

In response, designers are moving to incorporate 
power considerations into all phases of their design 
flow. In methodologies that dictate the use of logic 
synthesis tools on some portion of the design, such 
tools must also consider power consumption when 
performing design trade-offs. Until recently, 
commercial synthesis tools have mainly focused on 
timing and area optimization. Power reduction of a 
circuit, however, can come at the expense of these 
design goals, hence must operate within these design 
constraints and perform tradeoffs between them. 
 

2.2.1 Power cost function 
 

Power compiler optimizes a design according to a set 
of constraints that are defined by the user and the 
technology library. These constraints are used to 
determine the cost of a given design which guides the 
optimization algorithms. The cost measures the extent 

to which a constraint has been met. If a constraint has 
been satisfied, the corresponding cost will be zero. The 
application of optimization algorithms is divided into 
two phases. The two phases are distinguished by the 
cost functions being optimized. The first phase uses an 
optimization only cost function, while the second phase 
adds a design rule cost. The optimization cost function 
is shown below in order of importance. Some 
components might not be active on a given design 
 
1. Maximum  
2. Minimum delay 
3. Maximum dynamic power 
4. Maximum leakage power 
5. Maximum area 

 
A prioritized cost function means that timing 
constraints will not be save power, but available timing 
slack can be consumed if power can be reduced. In the 
design rule phase, the cost function is identical to the 
optimization cost function expect that a design rule 
cost is added as the important cost. Design rule 
constraints reflect technology-specific restrictions that 
must be met for a functional design, such as the 
maximum signal transition time for nets. Cost function 
components are evaluated independently in order of 
importance. A transformation is accepted if it 
decreases the cost of one component without 
increasing more important costs. Optimization stops 
when all costs are zero, or no further improvement can 
be made to the cost function. Cell internal power 
updates occur not only when a cell is added , deleted, 
or sized but also when input transition times or the 
output load of a cell changes. The latter situations can 
be easily detected such that internal power updated 
only occur on cells that have changed their transitions 
times or capacitance. 

 
 

Fig. 2 Incremental internal power updates 
 

For switching power, activities of only the new or 
changed nets are recomputed by the probabilistic 
simulation engine when the connectivity or local 
functionality of a design changes. The switching 
activities of the unchanged nets serve as start points 
for propagation. This method is referred to as local 
propagation and is very fast since the BDD needed to 
calculate the switching activity is small.  

 
 

Fig.3 Local propagation 
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Since the BDDs are not built with respect to the 
primary inputs, some accuracy is lost due to less spatial 
correlation information. However, absolute accuracy 
loss is acceptable as long as the relative accuracy of the 
switching activities between nets is maintained. 
 

3. Proposed System 

 

3.1 Adder Tree Scheduling 

 

3.1.1 Greedy Adder-Tree Scheduling 

 

The common practice of handling the summation of CS 
terms of each coefficient is to use the tree-height 
minimization algorithm to produce a height optimum 

adder-tree. The Tree-height minimization algorithm 
iteratively collapses the pair {Ti,Tj} with smallest 
delays using an ADD/SUB to form a new term with 
delay max(Di, Dj) + 1, until a single term is reduced to. 
Fig. 4 gives an example of the schedule for an adder-
tree on the left with minimum delay. Note that either a 
positive or negative sign is associated with each input 
term (see Fig. 4(a)), which denotes whether the 
corresponding term should be added to or subtracted 
from the summation. These signs also determine 
whether an addition operation or a subtraction 
operation should be used when the algorithm collapses 
a pair of terms in the adder-tree based on the following 
rules. 
 

(1) If two input edges are of the same sign, an ADD will 
be used; otherwise, it will be a SUB.

 

 
Fig.4 Composition of the MCM block (a) MCM and common sub expressions. (b) Term network and adder-trees 

for each coefficient 

 

 

Fig. 5 (a) An example adder-tree with delays and signs on each input term, (b) An internal schedule with 
minimum delay 

 

(2) The sign of the output edge is always the same as 
that of the left input edge (i.e., the minuend edge in the 
subtraction case). Using these two rules, it is possible 
that the final term producing the summation result 
may carry a negative sign, such that a negation is 
needed after the adder-tree to correct the value. For an 
FIR filter [1], results from multiple adder-trees are 
accumulated by a structural adder-register line. So the 
negation can be eliminated by replacing the structural 
adder with a subtractor (see coefficient Ci in Fig. 4 for 
an example). 

3.1.2 Cost Model 
 

In order to quantify and minimize the hardware cost of 
the adder-tree, we model the cost of ADD/SUB 
operations in this section based on the ripple carry 
implementation, which is most area efficient and will 
be picked up by the hardware compiler whenever the 
timing allows. Without loss of generality, for a single 
ADD/SUB operation, the pair of its input operands may 
be of different bit-widths, and one of them is to be left 
shifted by certain bit positions. We enumerate all the 
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scenarios of shift-add/sub operations in Fig. 5. The cost 
calculation is done separately in three bit-segments. 
Starting from the least significant bit (LSB), the 1st 
segment covers the bit positions up to but not 
including the first bit of the shifted operand; the 3rd 
segment covers the bits corresponding to the sign 
Cases or SUB. Extension bits of the sign extended 
operand; the 2nd segment takes the rest of the bit 
positions. 

Two cases of ADD operation are shown in Fig. 6 (a) 
and (b). In both cases, the 2nd and 3rd segments are 
implemented by one Full Adder (FA) per bit, while the 
1st segment cost nothing than wiring. Four cases of 
SUB operation are shown in Fig. 6(c)-(f). In the first 
two cases where the shift is with the minuend, the 1st 
segment is implemented by FAs with invertors on the 
minuend bits, except for a single special case at the LSB 
using direct wire connection1 to save a pair of FA and 
invertors. 

 The 1 st segments for the last two cases are wires. 
The 2nd segment for all cases is implemented in pairs 
of FAs and invertors. For the 3rd segment, when the 
sign extension bits are from the subtrahend, inverters 
are not needed since these bits simply take the value of 
the inverted sign of the subtrahend. This cost model is 
verified experimentally from synthesis results of 
Synopsis Design Compiler for ASICs, and is applicable 
to cases where either or both of input operands are 
unsigned signals. 

 

3.1.4 Logic Depth Relaxation 

 

The clock performance of the entire FIR filter is 
decided by the largest of the delays of all coefficients. 
Assuming the delay of an ADD/SUB operator to be 1 
unit, the delay of the constant multiplication by a 
coefficient can be simply measured by the number of 
ADD/SUB steps on a maximal path in the part of the 
network corresponding to the coefficient. 

 

 
Fig. 6 Cost of ADD/SUB operation under various input 

scenarios. Notations: FA—Full Adder, above line—
invertor (INV). (a)(b) Cases for ADD. (c)(d)(e)(f) 

We generally use logic depth to describe the required 
ADD/SUB steps. For a coefficient whose logic depth is 
less than the filter's logic depth, incrementing 
(relaxing) its logic depth may reduce the resource 
consumption. Given an algorithm which computes the 
adder-tree of the minimum resource on a given depth L 
for a coefficient, if L is less than the filter's logic depth, 
one can always try increasing L by 1 and rescheduling 
onto a L + 1 depth adder-tree for possible reduction of 
resource without degrading the filter's clock 
performance. 

 

3.2 MCM  

 

Critical path and shortest path solving contribute to 
most of the computation time in retiming. 

 

Definition 1 (the path solver problem) 

 

Let, S= {s0,s1,s3,….,sk} where is the maximum number of 
feasible solutions available for retiming of a considered 
filter DFG. During retiming of digital filters in high level 
synthesis, the shortest path between the nodes must be 
computed for (K+1) times where is the number of 
feasible solutions available for the DFG which is 
nothing but unique entries in path delay matrix. 
Similarly, the critical path must be computed for (K+1) 
. General purpose processors (GPPs) where retiming 
algorithm is implemented are fully programmable but 
are less efficient in terms of power and performance. 
Hence, the problem is to improve the performance and 
power of retiming using FPGA based path solvers. 
Further, along with retiming, high level transformation 
technique called automatic pipeline is applied to 
improve the filter speed. 

 

Definition 2 (multiple constant multiplication in digital 
filters) 

 

For the considered filter coefficient constant in the 
retimed filters, find the set of multiplier less operations 
(O1,O2,O3,…On) with minimum number of addition, 
subtraction, and shift operations using multiple 
constant multiplier architecture to optimize the filter 
architecture further. 

 

Definition 3 (optimization and automation of filter HDL) 

 

An environment needs to be developed to obtain HDLs 
of retimed filters in which user can choose different 
data path element architectures depending on the 
specifications. This reduces time to market and helps 
to evaluate a lot of hardware implementation trade-
offs. Filter equivalence checking after applying high 
level transformation needs to be done which needs to 
be developed as a part of the optimization 
environment. 
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Fig.7 Example for addressing MCM problem in digital 

filters 

 

 
(a) 

 
(b) 

 
(c) 

Fig.8 General structure of MCM block for (a) FIR filter, 
(b) transposed direct form-I IIR filter, and (c) 

transposed direct form-II IIR filter. 

 

3.2.1 Principle of Shortest Path and MCM Algorithm  

 

Several FPGA synthesis algorithms have been proposed 
specifically for sequential circuits. However, in this 
paper, authors suggest a method for efficient retiming 
process using FPGA based path solvers. This can be 
applied to any retiming techniques available in 
literature. Shortest path is solved in filter DFG using 
Floyd-Warshall algorithm. The Floyd-Warshall 
algorithm uses an approach of dynamic programming 
to solve the shortest-paths problem on a DFG. The 
Floyd-Warshall Algorithm can solve the shortest path 
problem in O(n3) time where is the number of nodes in 
the DFG. Let denote the weight of the shortest path 
from i and j to such that all intermediate vertices are 
contained in the set {1,2,…,} . That is, the path is 
decomposed into i →K → j. Let the vertices in the graph 
be numbered from1, 2,…, n . Consider the subset {1, 
2,,…, K}of these n  vertices. Find the shortest path from 
vertex to vertex that uses vertices in the set 
{1,2,…,K}only. Then, there are two situations possible 

k is  an intermediate vertex on the shortest path 

i. k is not an intermediate vertex on the shortest 
path 

If the vertex is not an intermediate vertex on P, then 

 

   ( )     (   )         ( )     (   )  

   (   )                           (2) 

 

In either case, the sub paths contain nodes from 
{1,2,…,(K-1)}. Therefore, 

 

   ( )     (   )     (   )                                     (3) 

 

When K=0, then 

 

   ( )  {   }                                                                         (4) 

 

And if k0 then 

 

   ( )     {   (   )     (   )}                           (5) 

 

Let D be the incidence matrix with the graph edge 
weight information W initially. D is then updated with 
the calculated shortest paths;  

(1) n=≠of rows in W, D0=w 

(2) for (k=1 to n) 

(3)    for (i=1 to n) 

(4)     for(j=1 to n) 

(5)        ( )     {   (   )    (   )  

   (   )}                    

(6)     end for 

(7)    end for 

(8) end for 

(9) return Dn  

 

Algorithm 1 

 

The final D matrix will store all the shortest paths. This 
algorithm is extended for retiming of digital filters. The 
multiple constant multiplication (MCM) problem is 
addressed in the literature using either graph based 
methods or using common sub expression elimination 
method. In common sub expression elimination 
algorithm, all possible sub expressions are extracted 
for a variable. But this is possible only if it is defined as 
minimum signed digit and as canonical signed digit. 
Then the sub expression is found such that it can be 
shared by multiple constant multiplication values. In 
this paper, the above two concepts are extended for 
automatic pipelining and retiming of digital filters in 
high level synthesis. In all the digital filters, the filter 
coefficients are known beforehand. Hence, full 
flexibility of the multiplier is not necessary and we can 
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make use of MCM designs. This method is more 
efficient when compared to shift and add 
multiplications as intermediate results can be shared 
which reduces the area of multiplier less 
implementation of digital filters. The sharing of 
intermediate result will provide potential area saving 
with increased filter order. 

Consider the filter coefficient set which is to be used 
for the filter design given by T={c1,c2,c3,…cn} , we need 
to find the smallest set S given by {a1,a2,a3,….,s1,s2,s3,…,} 
Where a (adders/Subtractors) & s (shifts)<S  such that 
the set is made of adder/subtracters, shifters, and 
operations. Here, shift operations also can be shared 
across multiple points so that the output set is 
optimum. Here algorithm is used to generate 
corresponding DFG for the multiplier block 
implementing the parallel multiplications C1 
*X,C2.*X,……,Cn .The only operations used in the 
generated DAG and input design matrices are 
additions, subtractions, shifts, and negations. In this 
paper, performance of MCM based filter designs is 
further improved by combining this approach with 
retiming. The multiplier less filter circuit is further 
retimed to reduce the overall clock period which 
increases the clock frequency. 

Consider l1and l2 as two integers which specifies left 
shifts and specifies right shift and r ≥ 0 let be the sign 
bit which can be {0,1}.An A operation is an operation 
with two integer inputs u and v and one fundamental 
output which is defined as 

 

  (   )  |(    )  ( ) (    )| 

        (  )     |               (6) 

 

Where «is a left binary shift, » is a right binary shift, 
and P = {l1,l2,r,s} is the parameter set or the A 
configuration of Ap.To preserve all significant bits of 
the output,2r  must divide2l2u+(-1)s2l

2v.The left shifts 
are limited to the bit width of the target. All A 
operations are used to build A-graph, for a given set of 
target filter set of target filter coefficients C, We can 
find set S such that multiplier less digital filter is 
designed. 
 

3.3 Mixed integer programming 
 

A mixed-integer programming (MIP) results when 
some of the variables in your in your model are real-
valued (can take on fractional values) and some of the 
variables are integer-valued. The model is therefore 
mixed. When the objective function and constraints are 
all linear in form, then it is a mixed-integer linear 
program (MILP). In common parlance, MIP is often 
taken to mean MILP, though mixed-integer nonlinear 
program (MINLP) also occur, and are much harder to 
solve. MILP techniques are effective not only for mixed 
problems, but also for pure-integer problems, pure-
binary problems, or in fact any combination of real-, 
integer-, and binary-valued variables. 

 
 

Fig.9 Mixed integer programming 

 

Mixed-integer programs often arise in the context of 
what would otherwise seem to be a linear program. 
However, as we saw in the previous chapter, it simply 
doesn’t work to treat the integer variable as real, solve 
the LP, then round the integer variable to the nearest 
integer value.The problems most commonly solved by 
the Gurobi Parallel Mixed Integer Programming solver 
are of the form 

Objective: minimize c x 

Constraints: A x = b (linear constraints)     
    l ≤ x ≤ u (bound constraints)    
     some or all xj must take integer values 
(integrality constraints) 

 The integrality constraints allow MIP models to 
capture the discrete nature of some decisions. For 
example, a variable whose values are restricted to 0 or 
1, called a binary variable, can be used to decide 
whether or not some action is taken, such as building a 
warehouse or purchasing a new machine. 

The GurobiMIP [1] solver can also solve models 
with a quadratic objective and/or quadratic 
constraints: 

Objective: minimize x Q x + q x 

Constraints: A x = b (linear constraints)     
    l ≤ x ≤ u (bound constraints)    
     x Q x + q x ≤ b (quadratic constraints)
        some or all x must take 
integer values (integrality constraints) 

MIP models with a quadratic objective but without 
quadratic constraints are called Mixed Integer 
Quadratic Programming (MIQP) problems. MIP models 
with quadratic constraints are called Mixed Integer 
Quadratically Constrained Programming (MIQCP) 
problems. Models without any quadratic features are 
often referred to as Mixed Integer Linear Programming 
(MILP) problems. What follows is a description of the 
algorithm used by Gurobi to solve MILP models. The 
extension to MIQP and MIQCP is mostly 
straightforward, but we won’t describe them here. 

 

3.3.1 Branch-and-Bound 

 

Mixed Integer Linear Programming problems are 
generally solved using a linear programming based 



I.Arivazhagan et al                                                  FPGA Implementation of FIR Filter Design with Optimization of Adder Tree & Constant Multiplication 

 

2135| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015) 

 

branch and bound algorithm. Basic LP based branch 
and bound can be described as follows. We begin with 
the original MIP. Not knowing how to solve this 
problem directly, we remove all of the integrality 
restrictions. The resulting LP is called the linear 
programming relaxation of the original MIP. We can 
then solve this LP. If the result happens to satisfy all of 
the integrality restrictions, even though these were not 
explicitly imposed, then we have been quite lucky. This 
solution is an optimal solution of the original MIP, and 
we can stop. If not, as is usually the case, then the 
normal procedure is to pick some variable that is 
restricted to be integer, but whose value in the LP 
relaxation is fractional. For the sake of argument, 
suppose that this variable is x and its value in the LP 
relaxation is 5.7. We can then exclude this value by, in 
turn, imposing the restrictions x ≤ 5.0 and x ≥ 6.0. 

If the original MIP is denoted P0, then we might 
denote these two new MIPs by P1, where x ≤ 5.0 is 
imposed, and P2, where x ≥ 6.0 is imposed. The variable 
x is then called a branching variable, and we are said to 
have branched on x, producing the two sub-MIPs P1 
and P2. It should be clear that if we can compute 
optimal solutions for each of P1 and P2, then we can 
take the better of these two solutions and it will be 
optimal to the original problem, P0. In this way we have 
replaced P by two simpler (or at least more-restricted) 
MIPs. We now apply the same idea to these two MIPs, 
solving the corresponding LP relaxations and, if 
necessary, selecting branching variables. In so doing 
we generate what is called a search tree. The MIPs 
generated by the search procedure are called the nodes 
of the tree, with P0 designated as the root node. The 
leaves of the tree are all the nodes from which we have 
not yet branched. In general, if we reach a point at 
which we can solve or otherwise dispose of all leaf 
nodes, then we will have solved the original MIP. 

 

3.3.1.1 Fathomed and Incumbent Nodes 

 

To complete our description of (LP based) branch and 
bound we need to describe the additional logic that is 
applied in processing the nodes of the search tree. Let 
us assume that our goal is to minimize the objective, 
and suppose that we have just solved the LP relaxation 
of some node in the search tree. 

 

 
 

Fig.10 Each node in branch and bound is a new MIP 

 

If it happens that all of the integrality restrictions in the 
original MIP are satisfied in the solution at this node, 

then we know we have found a feasible solution to the 
original MIP. There are two important steps that we 
then take. First, we designate this node as fathomed. It 
is not necessary to branch on this node; It is a 
permanent leaf of the search tree. Second, we analyze 
the information provided by the feasible solution we 
have just found, as follows. Let us denote the best 
integer solution found at any point in the search as the 
incumbent. At the start of the search, we have no 
incumbent. If the integer feasible solution that we have 
just found has a better objective function value than 
the current incumbent (or if we have no incumbent), 
then we record this solution as the new incumbent, 
along with its objective function value. Otherwise, no 
incumbent update is necessary and we simply proceed 
with the search. 

There are two other possibilities that can lead to a 
node being fathomed. First, it can happen that the 
branch that led to the current node added a restriction 
that made the LP relaxation infeasible. Obviously if this 
node contains no feasible solution to the LP relaxation, 
then it contains no integer feasible solution. The 
second possibility is that an optimal relaxation solution 
is found, but its objective value is bigger than that of 
the current incumbent. Clearly this node cannot yield a 
better integral solution and again can be fathomed.  

 

3.3.1.2 Best Bound and Gap 

 

There are two additional important values we need to 
introduce to complete our description of branch and 
bound. First observe that, once we have an incumbent, 
the objective value for this incumbent, assuming the 
original MIP is a minimization problem, is a valid upper 
bound on the optimal solution of the given MIP. That is, 
we know that we will never have to accept an integer 
solution of value higher than this value. Somewhat less 
obvious is that, at any time during the branch and 
bound search we also have a valid lower bound, 
sometimes call the best bound. This bound is obtained 
by taking the minimum of the optimal objective values 
of all of the current leaf nodes. Finally, the difference 
between the current upper and lower bounds is known 
as the gap. When the gap is zero we have demonstrated 
optimality. 
 

4. Experimental Result 
 

 
 

Fig.11 Schematic View of FIR Filter 
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Fig.12 Power Report 

 

 
 

Fig.13 Full RTL Schematic 

FIR filter layout is designed in the xilinix software. It 
describes the input (8-bit), clock, reset and output (16-
bit). We have designed this filter to get 16-bit output 
from 8-bit input. Additionally clock is used to 
synchronize the signal. The reset pin is used to reset 
the FIR filter. We have used this technique in four types 
of filters (LPF, HPF, BPF, and BSF). The inputs are got 
from the NCO. The layout is created by using the code 
and link from the ModelSim software. 

The power report describes about the temperature 
and the power consumption of each sections like clock, 
signal, logic function, input output ports and the 
important section of power leakage. Thus, the 
parameters are reduced as much as compared to the 
existing system.The RTL schematic view represents 
and describes about layout of the chip, arrangement 
and connections between the gates. It is used to study 
about the structure of the filter in the integrated chip. 

 

 
Fig.14 Frequency Response for LPF 

Table.1. Comparison of Existing and Proposed system 

 

System 
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M
IP
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.%
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Existing 64 57026 52925 7.19 1.064 1.013 4.80 

Proposed 
64 57026 51701 9.337 1.064 0.9912 6.842 

64 57026 50701 11.091 1.064 0.9234 7.665 

 

  
Fig.15 Frequency Response for HPF 

 

 
Fig.16 Frequency Response for BPF 

 

 
Fig.17 Frequency Response for BSF 

 
The frequency response diagram implies the frequency 
characteristics of filters like low pass filter, high pass 



I.Arivazhagan et al                                                  FPGA Implementation of FIR Filter Design with Optimization of Adder Tree & Constant Multiplication 

 

2137| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015) 

 

filter, band pass filter and band stop filter from the 
ModelSim software. 

 

4.5 Comparison 

  

The below tabulations imply the cell area and the 
power consumption for the existing and the proposed 
system. The cell area column has three parts. They are 
conventional type to cover maximum area, MIP to 
reduce the usage of the area as much as possible by 
using respective algorithm to use and Improvement 
column defines, how much the area is reduced. And the  

power consumption is as same as the cell area of the 
gate.    

 

Conclusion 

 

We have identified the resource minimization problem 
in the scheduling of adder-tree operations for the MCM 
block of transposed direct-form FIR filter, and 
presented an MIP-based algorithm for exact bit-level 
resource optimization. Result shows that up to 11.09% 
reduction of area and 7.66% reduction of power can be 
achieved on top of already optimized ADD/SUB 
networks of MCM blocks. Further exploration of 
efficient heuristic algorithms for resource 
minimization of adder-trees of FIR filters could be done 
in the future. 
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