
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2015 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

2128| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

FPGA Implementation of FIR Filter Design with Optimization of Adder
Tree & Constant Multiplication

I.Arivazhagan†, G.Annalakshmi†* and R.Kuppuraj†

†Department of ECE, Alpha College of Engineering & Technology, Pondicherry, India

Accepted 20 June 2015, Available online 27 June 2015, Vol.5, No.3 (June 2015)

Abstract

Finite Impulse Response filter is mostly used in the digital signaling processing (DSP) applications. In FIR most
important parameters are complexity, cost, and power consumption. While the research focus of resolve the thus
parameter to be reduced. To use the Multiple Constant Multiplication (MCM) for optimize the adder tree in the filter.
In this paper we have identified the resource minimization problem in the scheduling of adder-tree operations in
MCM blocks by using Mixed Integer Programming (MIP).Result shows that up to 11.09% reduction of area and 7.66%
reduction of power can be achieved on the top of already optimized adder/subtractor network of the MCM block.

Keywords: MIP, MCM, CSD, adder tree, digital signal processing, FIR etc

1. Introduction

1 Digital filters are increasingly found in all areas of
digital signal processing (DSP). For practical systems, it
is often important that the digital filters should have
low implementation cost and low power consumption,
while operating at high data rates. To achieve this goal,
the filter coefficients are often constrained to be
integers, with single extra (possibly floating point)
multiplier on the filter output. The filter requires an
integer multiplier for each coefficient. These integer
multipliers can be efficiently implemented using a
combination of additions, subtractions and power of
two shifts, collectively referred to as primitive
operators. Various implementation strategies exist.
The first is a binary implementation, in which each
multiplier is expressed as a simple sum of power-of-
two terms. The resulting design problem thus becomes
that of choosing a set of filter coefficients and a
corresponding implementation which offers an
effective compromise between implementation
complexity and performance. There are two main
strategies, the first strategy is to first design an
appropriate integer coefficient filter, and then to find
an efficient implementation. The integer coefficient
filter can be designed either by rounding the
coefficients from an effective floating point design, or
by employing an optimization technique such as linear
programming. The optimal SPT representation is easily
found using the canonic signed digit (CSD) algorithm.
The optimal graph design is a more difficult problem,
although various heuristic methods exist, which give a

*Corresponding author: G.Annalakshmi

close to optimal implementation. The problem with
this approach is that it achieves compromise which
tends to favor higher performance and higher
complexity solutions. The reason for this is due to the
choice of filter being made without reference to its
complexity.

An alternative method is to use a complexity
constrained approach, where a specific
implementation is selected with an appropriate
complexity constraint. The space of possible
parameters is then searched in order to find a filter
with optimum performance given the constraints.
Although this approach has been found to work well
with an SPT implementation, it is not well suited for
use with directed graphs, due to the epistatic nature of
the problem. A small change in the graph will typically
lead to a large change in filter characteristics. This
makes it very difficult to find an optimal solution.
Multiplication with a constant fixed-point number is a
basic operation in many digital signal processing
applications. A multiplication can be implemented
using a network of binary shifts and adders (or
subtractors). For bit-parallel arithmetic the shifts
(multiplication by a power of two) can be hardwired
and therefore do not require any gates. The hardware
cost can thus be approximated with the required
number of adders and subtractors. For two’s
complement numbers, the hardware cost of a
subtraction is approximately equal to that of an adder.
 For convenience both adders and subtractors will
therefore be referred to as adders. Since a fixed-point
number can be converted to an integer number by
multiplication by 2N for some N, only integer numbers.

I.Arivazhagan et al FPGA Implementation of FIR Filter Design with Optimization of Adder Tree & Constant Multiplication

2129| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

By using carry-save adders the need for carry
propagation in the adder is avoided and the latency of
one addition is equal to the gate delay of a full adder.
The carry-save adder has three inputs and two outputs,
where the two outputs together form the result.

Fig.1 a) Carry-propagation adder symbol and
structure. b) Carry-save adder symbol and structure

A variable can be multiplied by a given set of fixed-

point constants using a multiplier block that consists
exclusively of additions, subtractions, and shifts. The
generation of a multiplier block from the set of
constants is known as the multiple constant
multiplication (MCM) problems. Finding the optimal
solution, i.e., the one with the fewest number of
additions and subtractions is known to be NP-
complete. We propose a new heuristic algorithm for
the MCM problem, which finds solutions that require
up to 20% less additions and subtractions than the
solutions found by the best previously known
algorithm. At the same time, our algorithm is not
limited by the constant bitwidths, in contrast to the
closest competing algorithm. We present our algorithm
using a unifying formal framework for the best, graph-
based MCM algorithms and provide a detailed runtime
analysis and experimental evaluation. We show that
our algorithm can handle problem sizes as large as 100
32-bit constants in a time acceptable for most
applications.

2. Existing System

2.1Digital serial filter

A limiting factor in many modern DSP systems is the
power consumption. This is due to two different
problems. First, when the systems becomes larger and
whole systems are integrated on a single chip, i.e.,
System-on-Chip (SoC), and the clock frequency is
increased, the total power dissipation is approaching
the limit when an expensive cooling system is required
to avoid overheated chips. Second, the portable
equipment such as cellular phones and portable
computers are becoming increasingly popular. These
products use batteries as their power supply. A
decrease in power consumption increases the
portability since smaller batteries can be used with

longer life-time between recharges. Hence, design for
low power consumption is important. In this thesis, we
will assume working with a hard real-time system, i.e.,
all operations should be performed within the sample
period. Hence, throughput or the sample rate is not a
cost function it is a requirement. The major cost
function becomes low power consumption. In older
CMOS processes the area was a limiting factor due to
high manufacturing costs. In modern deep submicron
CMOS processes the area is no longer a problem.
However, the close relationship between area and
switching capacitance makes it still interesting to
reduce chip area in order to reduce the power
consumption. The design time is also a key factor for
low price products. Hence, an efficient design process
aiming at first time right silicon is of a great interest for
minimizing total costs.

Due to the intensive use of FIR filters in video and
communication systems, high performance in speed,
area and power consumption is demanded. Basically,
digital filters are used to modify the characteristic of
signals in time and frequency domain and have been
recognized as primary digital signal processing. In DSP,
the design methods were mainly focused in multiplier-
based architectures to implement the multiply-and-
Accumulate (MAC) blocks that constitute the central
piece in FIR filters and several functions. The FIR
digital filter is presented as

 [] ∑ [] []
 (1)

Where y[n] is the FIR filter output, x[n − k] is input data
and c[k] represents the filter coefficients Equation
shows that multiplier-based filter implementations
may become highly expensive in terms of area and
speed. This issue has been partially solved with the
new generation of low-cost FPGAs that have embedded
DSP blocks. The advantages of the FPGA approach to
digital filter implementation include higher sampling
rates than are available from traditional DSP chips,
lower costs than an ASIC for moderate volume
applications, and more flexibility than the alternate
approaches.

In literature, several multiplier less schemes had
been proposed. These methods can be classified in two
categories according to how they manipulate the filter
coefficients for the multiply operation. The first type of
multiplier-less technique is the conversion-based
approach, in which the coefficients are transformed to
other numeric representations whose hardware
implementation or manipulation is more efficient than
the traditional binary representation. Example of such
techniques are the Canonic Sign Digit (CSD) method, in
which coefficients are represented by a combination of
powers of two in such a way that multiplication can be
simply implemented with adder/subtractors and
shifters, and the Dempster-Mcleod method, which
similarly involves the representation of filter
coefficients with powers of two but in this case
arranging partial results in cascade to introduce
further savings in the usage of adders.

I.Arivazhagan et al FPGA Implementation of FIR Filter Design with Optimization of Adder Tree & Constant Multiplication

2130| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

The second type of multiplier-less method involves use
of memories (RAMs,ROMs) or Look-Up Tables (LUTs)
to store pre-computed values of coefficient operations.
These memory-based methods involve Constant
Coefficient Multiplier method and the very-well known
Distributed Arithmetic method as examples.
Distributed Arithmetic (DA) algorithm appeared as a
very efficient solution especially suited for LUT-based
FPGA architectures. Croisier et al had proposed the
multiplier less architecture of DA algorithm and it is
based on an efficient partition of the function in partial
terms using 2’s complement binary representation of
data. The partial terms can be pre-computed and
stored in LUTs. Yoo et al. observed that the
requirement of memory/LUT capacity increases
exponentially with the order of the filter, given that DA
implementations need 2K – words, K being the number
of taps of the filter.

The work in this paper presents the design and
implementation of serial and parallel distributed
algorithm for FIR filter target as Spartan 3E FPGA. The
results of the implementation experiment are analyzed
in terms of parameters such as area and speed. The
brief description of the distributed algorithm is
presented. The implementation of the proposed
technique for FIR filters is discussed. The Section 4
presents the implementation results. The last section
concludes the work and presents the future work.

2.2 Gate- level optimization

Reducing power consumption is both an imperative
and a daunting challenge for today’s ASIC and IC
designers. Silicon technology advances have made it
possible to pack hundreds of thousands of transistors
on a single chip. In addition, performance goals require
high clock speeds posing difficult power dissipation
and distribution problems. Further complicating the
mix is the rapidly increasing demand for power-
sensitive applications like high-performance computer
systems; portable, battery-operated computers,
medical devices and telecommunications equipment.

In response, designers are moving to incorporate
power considerations into all phases of their design
flow. In methodologies that dictate the use of logic
synthesis tools on some portion of the design, such
tools must also consider power consumption when
performing design trade-offs. Until recently,
commercial synthesis tools have mainly focused on
timing and area optimization. Power reduction of a
circuit, however, can come at the expense of these
design goals, hence must operate within these design
constraints and perform tradeoffs between them.

2.2.1 Power cost function

Power compiler optimizes a design according to a set
of constraints that are defined by the user and the
technology library. These constraints are used to
determine the cost of a given design which guides the
optimization algorithms. The cost measures the extent

to which a constraint has been met. If a constraint has
been satisfied, the corresponding cost will be zero. The
application of optimization algorithms is divided into
two phases. The two phases are distinguished by the
cost functions being optimized. The first phase uses an
optimization only cost function, while the second phase
adds a design rule cost. The optimization cost function
is shown below in order of importance. Some
components might not be active on a given design

1. Maximum
2. Minimum delay
3. Maximum dynamic power
4. Maximum leakage power
5. Maximum area

A prioritized cost function means that timing
constraints will not be save power, but available timing
slack can be consumed if power can be reduced. In the
design rule phase, the cost function is identical to the
optimization cost function expect that a design rule
cost is added as the important cost. Design rule
constraints reflect technology-specific restrictions that
must be met for a functional design, such as the
maximum signal transition time for nets. Cost function
components are evaluated independently in order of
importance. A transformation is accepted if it
decreases the cost of one component without
increasing more important costs. Optimization stops
when all costs are zero, or no further improvement can
be made to the cost function. Cell internal power
updates occur not only when a cell is added , deleted,
or sized but also when input transition times or the
output load of a cell changes. The latter situations can
be easily detected such that internal power updated
only occur on cells that have changed their transitions
times or capacitance.

Fig. 2 Incremental internal power updates

For switching power, activities of only the new or
changed nets are recomputed by the probabilistic
simulation engine when the connectivity or local
functionality of a design changes. The switching
activities of the unchanged nets serve as start points
for propagation. This method is referred to as local
propagation and is very fast since the BDD needed to
calculate the switching activity is small.

Fig.3 Local propagation

I.Arivazhagan et al FPGA Implementation of FIR Filter Design with Optimization of Adder Tree & Constant Multiplication

2131| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

Since the BDDs are not built with respect to the
primary inputs, some accuracy is lost due to less spatial
correlation information. However, absolute accuracy
loss is acceptable as long as the relative accuracy of the
switching activities between nets is maintained.

3. Proposed System

3.1 Adder Tree Scheduling

3.1.1 Greedy Adder-Tree Scheduling

The common practice of handling the summation of CS
terms of each coefficient is to use the tree-height
minimization algorithm to produce a height optimum

adder-tree. The Tree-height minimization algorithm
iteratively collapses the pair {Ti,Tj} with smallest
delays using an ADD/SUB to form a new term with
delay max(Di, Dj) + 1, until a single term is reduced to.
Fig. 4 gives an example of the schedule for an adder-
tree on the left with minimum delay. Note that either a
positive or negative sign is associated with each input
term (see Fig. 4(a)), which denotes whether the
corresponding term should be added to or subtracted
from the summation. These signs also determine
whether an addition operation or a subtraction
operation should be used when the algorithm collapses
a pair of terms in the adder-tree based on the following
rules.

(1) If two input edges are of the same sign, an ADD will
be used; otherwise, it will be a SUB.

Fig.4 Composition of the MCM block (a) MCM and common sub expressions. (b) Term network and adder-trees

for each coefficient

Fig. 5 (a) An example adder-tree with delays and signs on each input term, (b) An internal schedule with
minimum delay

(2) The sign of the output edge is always the same as
that of the left input edge (i.e., the minuend edge in the
subtraction case). Using these two rules, it is possible
that the final term producing the summation result
may carry a negative sign, such that a negation is
needed after the adder-tree to correct the value. For an
FIR filter [1], results from multiple adder-trees are
accumulated by a structural adder-register line. So the
negation can be eliminated by replacing the structural
adder with a subtractor (see coefficient Ci in Fig. 4 for
an example).

3.1.2 Cost Model

In order to quantify and minimize the hardware cost of
the adder-tree, we model the cost of ADD/SUB
operations in this section based on the ripple carry
implementation, which is most area efficient and will
be picked up by the hardware compiler whenever the
timing allows. Without loss of generality, for a single
ADD/SUB operation, the pair of its input operands may
be of different bit-widths, and one of them is to be left
shifted by certain bit positions. We enumerate all the

I.Arivazhagan et al FPGA Implementation of FIR Filter Design with Optimization of Adder Tree & Constant Multiplication

2132| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

scenarios of shift-add/sub operations in Fig. 5. The cost
calculation is done separately in three bit-segments.
Starting from the least significant bit (LSB), the 1st
segment covers the bit positions up to but not
including the first bit of the shifted operand; the 3rd
segment covers the bits corresponding to the sign
Cases or SUB. Extension bits of the sign extended
operand; the 2nd segment takes the rest of the bit
positions.

Two cases of ADD operation are shown in Fig. 6 (a)
and (b). In both cases, the 2nd and 3rd segments are
implemented by one Full Adder (FA) per bit, while the
1st segment cost nothing than wiring. Four cases of
SUB operation are shown in Fig. 6(c)-(f). In the first
two cases where the shift is with the minuend, the 1st
segment is implemented by FAs with invertors on the
minuend bits, except for a single special case at the LSB
using direct wire connection1 to save a pair of FA and
invertors.

 The 1 st segments for the last two cases are wires.
The 2nd segment for all cases is implemented in pairs
of FAs and invertors. For the 3rd segment, when the
sign extension bits are from the subtrahend, inverters
are not needed since these bits simply take the value of
the inverted sign of the subtrahend. This cost model is
verified experimentally from synthesis results of
Synopsis Design Compiler for ASICs, and is applicable
to cases where either or both of input operands are
unsigned signals.

3.1.4 Logic Depth Relaxation

The clock performance of the entire FIR filter is
decided by the largest of the delays of all coefficients.
Assuming the delay of an ADD/SUB operator to be 1
unit, the delay of the constant multiplication by a
coefficient can be simply measured by the number of
ADD/SUB steps on a maximal path in the part of the
network corresponding to the coefficient.

Fig. 6 Cost of ADD/SUB operation under various input

scenarios. Notations: FA—Full Adder, above line—
invertor (INV). (a)(b) Cases for ADD. (c)(d)(e)(f)

We generally use logic depth to describe the required
ADD/SUB steps. For a coefficient whose logic depth is
less than the filter's logic depth, incrementing
(relaxing) its logic depth may reduce the resource
consumption. Given an algorithm which computes the
adder-tree of the minimum resource on a given depth L
for a coefficient, if L is less than the filter's logic depth,
one can always try increasing L by 1 and rescheduling
onto a L + 1 depth adder-tree for possible reduction of
resource without degrading the filter's clock
performance.

3.2 MCM

Critical path and shortest path solving contribute to
most of the computation time in retiming.

Definition 1 (the path solver problem)

Let, S= {s0,s1,s3,….,sk} where is the maximum number of
feasible solutions available for retiming of a considered
filter DFG. During retiming of digital filters in high level
synthesis, the shortest path between the nodes must be
computed for (K+1) times where is the number of
feasible solutions available for the DFG which is
nothing but unique entries in path delay matrix.
Similarly, the critical path must be computed for (K+1)
. General purpose processors (GPPs) where retiming
algorithm is implemented are fully programmable but
are less efficient in terms of power and performance.
Hence, the problem is to improve the performance and
power of retiming using FPGA based path solvers.
Further, along with retiming, high level transformation
technique called automatic pipeline is applied to
improve the filter speed.

Definition 2 (multiple constant multiplication in digital
filters)

For the considered filter coefficient constant in the
retimed filters, find the set of multiplier less operations
(O1,O2,O3,…On) with minimum number of addition,
subtraction, and shift operations using multiple
constant multiplier architecture to optimize the filter
architecture further.

Definition 3 (optimization and automation of filter HDL)

An environment needs to be developed to obtain HDLs
of retimed filters in which user can choose different
data path element architectures depending on the
specifications. This reduces time to market and helps
to evaluate a lot of hardware implementation trade-
offs. Filter equivalence checking after applying high
level transformation needs to be done which needs to
be developed as a part of the optimization
environment.

I.Arivazhagan et al FPGA Implementation of FIR Filter Design with Optimization of Adder Tree & Constant Multiplication

2133| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

Fig.7 Example for addressing MCM problem in digital

filters

(a)

(b)

(c)

Fig.8 General structure of MCM block for (a) FIR filter,
(b) transposed direct form-I IIR filter, and (c)

transposed direct form-II IIR filter.

3.2.1 Principle of Shortest Path and MCM Algorithm

Several FPGA synthesis algorithms have been proposed
specifically for sequential circuits. However, in this
paper, authors suggest a method for efficient retiming
process using FPGA based path solvers. This can be
applied to any retiming techniques available in
literature. Shortest path is solved in filter DFG using
Floyd-Warshall algorithm. The Floyd-Warshall
algorithm uses an approach of dynamic programming
to solve the shortest-paths problem on a DFG. The
Floyd-Warshall Algorithm can solve the shortest path
problem in O(n3) time where is the number of nodes in
the DFG. Let denote the weight of the shortest path
from i and j to such that all intermediate vertices are
contained in the set {1,2,…,} . That is, the path is
decomposed into i →K → j. Let the vertices in the graph
be numbered from1, 2,…, n . Consider the subset {1,
2,,…, K}of these n vertices. Find the shortest path from
vertex to vertex that uses vertices in the set
{1,2,…,K}only. Then, there are two situations possible

k is an intermediate vertex on the shortest path

i. k is not an intermediate vertex on the shortest
path

If the vertex is not an intermediate vertex on P, then

 () () () ()

 () (2)

In either case, the sub paths contain nodes from
{1,2,…,(K-1)}. Therefore,

 () () () (3)

When K=0, then

 () { } (4)

And if k0 then

 () { () ()} (5)

Let D be the incidence matrix with the graph edge
weight information W initially. D is then updated with
the calculated shortest paths;

(1) n=≠of rows in W, D0=w

(2) for (k=1 to n)

(3) for (i=1 to n)

(4) for(j=1 to n)

(5) () { () ()

 ()}

(6) end for

(7) end for

(8) end for

(9) return Dn

Algorithm 1

The final D matrix will store all the shortest paths. This
algorithm is extended for retiming of digital filters. The
multiple constant multiplication (MCM) problem is
addressed in the literature using either graph based
methods or using common sub expression elimination
method. In common sub expression elimination
algorithm, all possible sub expressions are extracted
for a variable. But this is possible only if it is defined as
minimum signed digit and as canonical signed digit.
Then the sub expression is found such that it can be
shared by multiple constant multiplication values. In
this paper, the above two concepts are extended for
automatic pipelining and retiming of digital filters in
high level synthesis. In all the digital filters, the filter
coefficients are known beforehand. Hence, full
flexibility of the multiplier is not necessary and we can

I.Arivazhagan et al FPGA Implementation of FIR Filter Design with Optimization of Adder Tree & Constant Multiplication

2134| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

make use of MCM designs. This method is more
efficient when compared to shift and add
multiplications as intermediate results can be shared
which reduces the area of multiplier less
implementation of digital filters. The sharing of
intermediate result will provide potential area saving
with increased filter order.

Consider the filter coefficient set which is to be used
for the filter design given by T={c1,c2,c3,…cn} , we need
to find the smallest set S given by {a1,a2,a3,….,s1,s2,s3,…,}
Where a (adders/Subtractors) & s (shifts)<S such that
the set is made of adder/subtracters, shifters, and
operations. Here, shift operations also can be shared
across multiple points so that the output set is
optimum. Here algorithm is used to generate
corresponding DFG for the multiplier block
implementing the parallel multiplications C1
*X,C2.*X,……,Cn .The only operations used in the
generated DAG and input design matrices are
additions, subtractions, shifts, and negations. In this
paper, performance of MCM based filter designs is
further improved by combining this approach with
retiming. The multiplier less filter circuit is further
retimed to reduce the overall clock period which
increases the clock frequency.

Consider l1and l2 as two integers which specifies left
shifts and specifies right shift and r ≥ 0 let be the sign
bit which can be {0,1}.An A operation is an operation
with two integer inputs u and v and one fundamental
output which is defined as

 () |() () ()|

 () | (6)

Where «is a left binary shift, » is a right binary shift,
and P = {l1,l2,r,s} is the parameter set or the A
configuration of Ap.To preserve all significant bits of
the output,2r must divide2l2u+(-1)s2l

2v.The left shifts
are limited to the bit width of the target. All A
operations are used to build A-graph, for a given set of
target filter set of target filter coefficients C, We can
find set S such that multiplier less digital filter is
designed.

3.3 Mixed integer programming

A mixed-integer programming (MIP) results when
some of the variables in your in your model are real-
valued (can take on fractional values) and some of the
variables are integer-valued. The model is therefore
mixed. When the objective function and constraints are
all linear in form, then it is a mixed-integer linear
program (MILP). In common parlance, MIP is often
taken to mean MILP, though mixed-integer nonlinear
program (MINLP) also occur, and are much harder to
solve. MILP techniques are effective not only for mixed
problems, but also for pure-integer problems, pure-
binary problems, or in fact any combination of real-,
integer-, and binary-valued variables.

Fig.9 Mixed integer programming

Mixed-integer programs often arise in the context of
what would otherwise seem to be a linear program.
However, as we saw in the previous chapter, it simply
doesn’t work to treat the integer variable as real, solve
the LP, then round the integer variable to the nearest
integer value.The problems most commonly solved by
the Gurobi Parallel Mixed Integer Programming solver
are of the form

Objective: minimize c x

Constraints: A x = b (linear constraints)
 l ≤ x ≤ u (bound constraints)
 some or all xj must take integer values
(integrality constraints)

 The integrality constraints allow MIP models to
capture the discrete nature of some decisions. For
example, a variable whose values are restricted to 0 or
1, called a binary variable, can be used to decide
whether or not some action is taken, such as building a
warehouse or purchasing a new machine.

The GurobiMIP [1] solver can also solve models
with a quadratic objective and/or quadratic
constraints:

Objective: minimize x Q x + q x

Constraints: A x = b (linear constraints)
 l ≤ x ≤ u (bound constraints)
 x Q x + q x ≤ b (quadratic constraints)
 some or all x must take
integer values (integrality constraints)

MIP models with a quadratic objective but without
quadratic constraints are called Mixed Integer
Quadratic Programming (MIQP) problems. MIP models
with quadratic constraints are called Mixed Integer
Quadratically Constrained Programming (MIQCP)
problems. Models without any quadratic features are
often referred to as Mixed Integer Linear Programming
(MILP) problems. What follows is a description of the
algorithm used by Gurobi to solve MILP models. The
extension to MIQP and MIQCP is mostly
straightforward, but we won’t describe them here.

3.3.1 Branch-and-Bound

Mixed Integer Linear Programming problems are
generally solved using a linear programming based

I.Arivazhagan et al FPGA Implementation of FIR Filter Design with Optimization of Adder Tree & Constant Multiplication

2135| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

branch and bound algorithm. Basic LP based branch
and bound can be described as follows. We begin with
the original MIP. Not knowing how to solve this
problem directly, we remove all of the integrality
restrictions. The resulting LP is called the linear
programming relaxation of the original MIP. We can
then solve this LP. If the result happens to satisfy all of
the integrality restrictions, even though these were not
explicitly imposed, then we have been quite lucky. This
solution is an optimal solution of the original MIP, and
we can stop. If not, as is usually the case, then the
normal procedure is to pick some variable that is
restricted to be integer, but whose value in the LP
relaxation is fractional. For the sake of argument,
suppose that this variable is x and its value in the LP
relaxation is 5.7. We can then exclude this value by, in
turn, imposing the restrictions x ≤ 5.0 and x ≥ 6.0.

If the original MIP is denoted P0, then we might
denote these two new MIPs by P1, where x ≤ 5.0 is
imposed, and P2, where x ≥ 6.0 is imposed. The variable
x is then called a branching variable, and we are said to
have branched on x, producing the two sub-MIPs P1
and P2. It should be clear that if we can compute
optimal solutions for each of P1 and P2, then we can
take the better of these two solutions and it will be
optimal to the original problem, P0. In this way we have
replaced P by two simpler (or at least more-restricted)
MIPs. We now apply the same idea to these two MIPs,
solving the corresponding LP relaxations and, if
necessary, selecting branching variables. In so doing
we generate what is called a search tree. The MIPs
generated by the search procedure are called the nodes
of the tree, with P0 designated as the root node. The
leaves of the tree are all the nodes from which we have
not yet branched. In general, if we reach a point at
which we can solve or otherwise dispose of all leaf
nodes, then we will have solved the original MIP.

3.3.1.1 Fathomed and Incumbent Nodes

To complete our description of (LP based) branch and
bound we need to describe the additional logic that is
applied in processing the nodes of the search tree. Let
us assume that our goal is to minimize the objective,
and suppose that we have just solved the LP relaxation
of some node in the search tree.

Fig.10 Each node in branch and bound is a new MIP

If it happens that all of the integrality restrictions in the
original MIP are satisfied in the solution at this node,

then we know we have found a feasible solution to the
original MIP. There are two important steps that we
then take. First, we designate this node as fathomed. It
is not necessary to branch on this node; It is a
permanent leaf of the search tree. Second, we analyze
the information provided by the feasible solution we
have just found, as follows. Let us denote the best
integer solution found at any point in the search as the
incumbent. At the start of the search, we have no
incumbent. If the integer feasible solution that we have
just found has a better objective function value than
the current incumbent (or if we have no incumbent),
then we record this solution as the new incumbent,
along with its objective function value. Otherwise, no
incumbent update is necessary and we simply proceed
with the search.

There are two other possibilities that can lead to a
node being fathomed. First, it can happen that the
branch that led to the current node added a restriction
that made the LP relaxation infeasible. Obviously if this
node contains no feasible solution to the LP relaxation,
then it contains no integer feasible solution. The
second possibility is that an optimal relaxation solution
is found, but its objective value is bigger than that of
the current incumbent. Clearly this node cannot yield a
better integral solution and again can be fathomed.

3.3.1.2 Best Bound and Gap

There are two additional important values we need to
introduce to complete our description of branch and
bound. First observe that, once we have an incumbent,
the objective value for this incumbent, assuming the
original MIP is a minimization problem, is a valid upper
bound on the optimal solution of the given MIP. That is,
we know that we will never have to accept an integer
solution of value higher than this value. Somewhat less
obvious is that, at any time during the branch and
bound search we also have a valid lower bound,
sometimes call the best bound. This bound is obtained
by taking the minimum of the optimal objective values
of all of the current leaf nodes. Finally, the difference
between the current upper and lower bounds is known
as the gap. When the gap is zero we have demonstrated
optimality.

4. Experimental Result

Fig.11 Schematic View of FIR Filter

I.Arivazhagan et al FPGA Implementation of FIR Filter Design with Optimization of Adder Tree & Constant Multiplication

2136| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

Fig.12 Power Report

Fig.13 Full RTL Schematic

FIR filter layout is designed in the xilinix software. It
describes the input (8-bit), clock, reset and output (16-
bit). We have designed this filter to get 16-bit output
from 8-bit input. Additionally clock is used to
synchronize the signal. The reset pin is used to reset
the FIR filter. We have used this technique in four types
of filters (LPF, HPF, BPF, and BSF). The inputs are got
from the NCO. The layout is created by using the code
and link from the ModelSim software.

The power report describes about the temperature
and the power consumption of each sections like clock,
signal, logic function, input output ports and the
important section of power leakage. Thus, the
parameters are reduced as much as compared to the
existing system.The RTL schematic view represents
and describes about layout of the chip, arrangement
and connections between the gates. It is used to study
about the structure of the filter in the integrated chip.

Fig.14 Frequency Response for LPF

Table.1. Comparison of Existing and Proposed system

System

F
il

te
r

O
rd

er
 Cell Area (sq. um)

Power Consumption
(mW)

C
o

n
v.

M
IP

Im
p

ro
.%

C
o

n
v.

M
IP

Im
p

ro
.%

.

Existing 64 57026 52925 7.19 1.064 1.013 4.80

Proposed
64 57026 51701 9.337 1.064 0.9912 6.842

64 57026 50701 11.091 1.064 0.9234 7.665

Fig.15 Frequency Response for HPF

Fig.16 Frequency Response for BPF

Fig.17 Frequency Response for BSF

The frequency response diagram implies the frequency
characteristics of filters like low pass filter, high pass

I.Arivazhagan et al FPGA Implementation of FIR Filter Design with Optimization of Adder Tree & Constant Multiplication

2137| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

filter, band pass filter and band stop filter from the
ModelSim software.

4.5 Comparison

The below tabulations imply the cell area and the
power consumption for the existing and the proposed
system. The cell area column has three parts. They are
conventional type to cover maximum area, MIP to
reduce the usage of the area as much as possible by
using respective algorithm to use and Improvement
column defines, how much the area is reduced. And the

power consumption is as same as the cell area of the
gate.

Conclusion

We have identified the resource minimization problem
in the scheduling of adder-tree operations for the MCM
block of transposed direct-form FIR filter, and
presented an MIP-based algorithm for exact bit-level
resource optimization. Result shows that up to 11.09%
reduction of area and 7.66% reduction of power can be
achieved on top of already optimized ADD/SUB
networks of MCM blocks. Further exploration of
efficient heuristic algorithms for resource
minimization of adder-trees of FIR filters could be done
in the future.

References

Yu Pan and Pramod Kumar Meher (February 2014), Bit-Level
Optimization of Adder-Trees for Multiple Constant
Multiplications for Efficient FIR Filter Implementation
Senior Member, IEEE circuits and systems—i: regular
papers, vol. 61, no. 2

D.R.Bulland D. H. Horrocks (Jun. 1991), Primitive operator

digital filter, IEE Proceedings-G,vol. 138, no. 3, pp. 401-412

A.G.Dempsterand M. D. Macleod (1995), Use of minimum-

adder multiplier blocks in FIR digital filters, IEEE Trans.

Circuits Syst. II, Analod Digit. Signal Process., vol. 42, no. 9,

pp. 569-577.

S. D. S. M. Mehendale and G. Venkatesh (1995), Synthesis of

multiplier-less FIR filters with minimum number of

additions, in Proc. IEEE ICCAD.

I.C. Parkand H. J. Kang (2001), Digital filter synthesis based

on minimal signed digit representation, in Proc. Design

Autom. Conf. (DAC).

Y. Voronenko and M. Puschel (2007), Multiplierless multiple

constant multiplication, ACM Trans. Algorithms,vol. 3,no. 2.

P. K. Meher and Y. Pan (Oct. 2011), MCM-based

implementation of block fir filters for high-speed and low-

power applications, in Proc. VLSI and System-on-Chip

(VLSI-SoC), 2011 IEEE/IFIP 19th Int. Conf., pp. 118-121.

L. Aksoy, C. Lazzari, E. Costa, P. Flores, and J. Monteiro (Mar.

2013), Design of digit-serial FIR filters: Algorithms,

architectures, and a CAD tool, IEEE Trans. Very Large Scale

Integration (VLSI) Syst., vol. 21, no. 3, pp. 498-511.

M. B. Gately, M. B. Yeary, and C. Y. Tang (May 2012), Multiple

real-constant multiplication with improved cost model and

greedy and optimal searches, in Proc. IEEE ISCAS, pp. 588-

591.

M. Kumm, P. Zipf, M. Faust, and C.-H. Chang (May 2012),

Pipelined adder graph optimization for high speed multiple

constant multiplication, in Proc. IEEEISCAS, pp. 49-52.

R. Hartley and A. Casavant (Nov. 1989), Tree-height

minimization in pipelined architectures, in Proc. IEEE

ICCAD.

R. Mahesh and A. Vinod (2008), A new common

subexpression elimination algorithm for realizing low-

complexity higher order digital filters, IEEE Trans.

Computer-Aided Des. Integr. Circuits Syst., vol. 27, no. 2,

pp. 217-229.

