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Abstract 
  
All real structures, when subjected to loads or displacements, behave dynamically. One of the most important 
problems accounted in structural engineering is the vibration analysis of beams subjected to static loads. The 
boundary element formulation for the free vibration analysis of beam structures characterized behavior utilizes in 
this work to find the natural frequencies and the influence function of the concrete bridge with slant-legged rigid 
frame which modeled using three types of beam ( T-section, I-section , and box-section) for simply supported end 
conditions using boundary element method. The results obtained by boundary element method are compared by 
Exact solution and Finite element method for the simply supported beam and the results have that the converging 
with another techniques.   
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Introduction 
 

1 The beam structure as (Slant legged bridge) is one of 
the most widely used highway bridges. This type 
eliminates the need for concrete piers and position the 
supports away from lower roadway. The response of a 
bridge under a moving (force) vehicle is a complex 
phenomenon because of the interaction between 
bridge and the vehicle. Bridge structures that have long 
service years or long spans are frequently subjected to 
heavier loadings than their design loads are greatly 
affected by heavy traffic – induced vibrations. 
 Tong Lo Wang and Dongzhou Huang investigated 
the dynamic response of a slant legged rigid frame 
bridge to one or two tracks (side by side)passing over 
the rough bridge deck. The bridge was modeled as a 
space bar system. In the free vibration study, each of 
the longitudinal girders were divided into fifty two 
elements and each of the leg into five elements. Since, 
the Mechanical behavior of slant legged rigid frame 
bridge is same as arch bridge, the first mode shape is 
anti-symmetrical mode. The second and fourth modes 
are vertical bending, lateral bending and torsional 
vibration modes. The third and fifth modes are 
symmetric vertical bending modes. 
 Maisel et al. conducted studies on concrete box-
girders to examine amongst others torsional 
behaviour. Single cell rectangular box-girders with 
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different geometrical proportions and loaded with an 
eccentric point-load at mid span were examined. The 
maximum longitudinal stress at the bottom line was 
increased through warping and distortion of the girder. 
To calculate the Eigen frequencies of a beam, its 
differential equation is expressed by finite difference 
formulations and the eigenvalues are computed. 
Petersen gives examples for the use of this method for 
Eigen frequency calculations of beams with constant 
cross section. Those calculations are rather simple, but 
accurate even with regard to elastic supports and only 
few points for the numerical calculation. A collection of 
examples for the expression of the differential 
equations of beams with variable cross-sections and 
varying boundary conditions is found. The Årsta Bridge 
is comparable with the continuous beam in this paper 
or, if only one span is considered, with a simple beam 
and the necessary boundary conditions. 
 Huang studied impact loading and dynamic 
behavior of half-through arch bridges and proposed a 
method for estimating the dynamic response of this 
type of arch bridge. In his study, both bridge and 
vehicle were modeled three-dimensionally. 
Lacarbonara and Colone studied the dynamic 
responses of arch bridges from high speed trains using 
the Ritz energy method. Most previous investigations 
of the dynamic analysis of deck-arch bridges may be 
deficient in some or all of the following aspects: (1) the 
stiffness effect of the deck stringers, floor beams, and 
spandrel columns was neglected; (2) the deck surface 
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was assumed as smooth; (3) the vehicles were 
modeled as constant moving forces without 
considering their mass and spring effect. The dynamic 
behavior of deck-arch bridges from moving vehicles 
remains largely uncertain. 
       The organization of this paper is presents a brief 

presentation of the governing equations and boundary 

conditions for the vibration analysis of beam structure 

by boundary element formulation. This formulation 

includes the boundary integral representation of the 

displacement and its normal derivative accompanied 

by all possible boundary conditions, and then this 

study investigates the dynamic behavior of concrete T-

beam, I-beam, and box-beam bridge sections model of 

an actual sections design implemented within the 

context of the finite element method and BEM results 

extracted from applying the influence function by using 

the fundamental solution show a general trend for 

closer values to the exact solution than those 

calculated by FE modeling. Also the research results 

shown that analysis of T-frame bridges may be 

conveniently performed using the model. 

 
Description of the bridge sections  

    
The structure considered in this case study is a  T-

beam , I-beam, and box-beam concrete bridge with 

slant-legged rigid frame. The simply supported 

span has a length of 48 m for both sections, the bridge 

section widths is shown in figure (2) which shows a 

cross-sections view of the frame. 

The concrete properties used in the analysis are: 

 
Density of Concrete=2380kg/m3, Poisson's Ratio=0.2, 

Modulus of Elasticity of Concrete=22.39×103 Mpa 

(Based on the ACI formula Ec=4730*(fc)1/2 for normal –

weight concrete). 
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Fig.2: Cross sections area for the study (a) Tee section, (b) I –section Unsymmetrical, and (c) Box-section 
 

Mathematical model 
 
The concrete T-beam, I-beam, and box-beam Bridge 
sections behavior in static and dynamic (free vibration) 
analysis is governed by the following boundary 
element equations, which applies to beams. But first 
we want to provide the necessary background material 
for readers who are not familiar with beam analysis. 
The deflection w(x) of a beam with a constant stiffness 
El satisfies the differential equation 
 

E I w IV(x) = p 
 

To this operator belong two integral identities 
 

p:    ̂ w      [0, l] X C2[0, l], 
 

      ̂,w)=∫     ̂   

 
         ̂    ̂ ́  

 -∫
 ̂  

   

 

 
dx=0      (1)                                                          

and 
 

p:  ̂, w   C4[0,l], 

q: B( ̂, w) = ∫   
 

 
 ̂   w dx + [ ̂w — ̂ ́-  ̂ ́+ ̂

́
 - 

 ̂    
  

-∫  ̂
 

 
                                                                          (2)   

                                                                                                                                      
We say go(y, x) or g1 (y, x), respectively, is a solution of 
the differential equations 
 
E I g0

 iV {y,x)=(  (y-x) EI  
  (y,x) =   (y - x)  

 
if the shear force or the bending moment, respectively, 
 

Q = -EI
  

    go (y,x), M=-El
  

     (y,x) 

 

suffers at the source point i a jump discontinuity of 
magnitude 1. 
 

       {Q(x +  ,x) - Q(x -  , x)} = 1, 
      {M(  +  , x) - M(x -  ,x)} = 1 
 
If go is such a fundamental solution and x an interior 
point then the identities read 
 

G(go, w) = w(x) + [    - M0w'  
  -∫

   

  

 

 
dy                      (3)                                                  

B(go,w) =w(x) + [Q0w- M0w' +g'0M - g0Q  
  

-∫
 

 
 go EI wIv dy = 0                     (4)                                                                                                                            

In the case of the second solution    we only replace 
the free term. w(x) by w'(x). This concludes the 
introduction and we shall show in the following how 
these results are applied to solve beam problems. 
 The deflection of the beam in Figure (1) can be 
calculated by forming the 2-scalar product between the 
bending moment M0(y,x) and M(y) 
 

1X w(x)= ∫
 

 
     M0(y,x)M(y)                 (5)                                                                                                                           

                                    EI 
 
Or by forming the L2-scalar product between the 
deflection G0(y,x) that is caused by a concentrated force 
 ̂ =1 acting at x and the constant load p 
 

1X w(x) = ∫       )    )  
 

 
               (6)                                                                                                                             

 
Equation (5) is based on the principle of virtual forces: 
the external work 1 x w(x) is equal to the virtual 
internal strain energy, and Eq.(6) on Betti’s principle: 
the reciprocal external work of two equilibrium 
systems is the same . 
 

 
 

Fig.1 Deflection of beam 
 

      )   
 

   
  {

   )      )                                     

    )     )      )                         
 

 

           )       )    ) 

 
Beams then have the same length and both are they in 
equilibrium so that the reciprocal external work of 
their exterior forces must be the same: 
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    = 1 X w(x) — Qo(0,x) w(0) + Mo(0, x)w'(0) + 

Q0(l,x)w(l) -M0(l,x)w'(l) =   ∫
 

 
go(y,x)p(y)dy - 

Q(0)go(0,x) + M(0)   
́

 (0, x) + Q(l)go(l,x) - M(l)g'0(l, x) = 

W2,1 
 
On the left we find the work of the exterior forces of 
the auxiliary beam and on the right the work of the 
exterior forces of the real beam. If we put the term 1 x 
w(x) on the left side alone, 
 

1x w{x) = ∫
 

 
gopdy + work on the boundary (W2,1) 

                                    -work on the boundary (w1,2)  
 
Then we obtain an influence function for the deflection 
w(x). To calculate the rotation w'(x) we let a 
concentrated couple M = 1 act on the infinite beam the 
corresponding deflection is    (y,x) = dg0/dx and we 
repeat the formulation of Betti’s principle 
 

1 x w'(x) = ∫
 

 
 g1 pdy + work on the boundary (w 2,1) 

  -work on the boundary (w 1,2) , 
 

W(0) = ∫      
 

 
      + work on the boundary - work 

on the boundary 
  

W(1) = ∫      
 

 
 pdy +work on the boundary - work on 

the boundary, 
 

 ̀(0)= ∫       
 

 
 pdy + work on the boundary - work on 

the boundary,  

 ́(1)= ∫      
 

 
 pdy + +work on the boundary —-work 

on the boundary, 
 
To make this clear we, first, make all boundary terms 
the same positive direction and we then put all the  
 

u1 = w(0),               u2 = -w'(0),          u3 = w(l),           u4= -
 ́(l), 
 
on the left side and all the force terms 
 
f1= -Q(0),                f2 = -M( 0),    f3 = Q(l),           f4 = M(l), 

 
on the right side. The resulting four equations can then 
be written as 
 

H2 3 u3 = G23  f3 + dz                     (7)                              
                                                                                 
Hence, the stiffness matrix of a beam formulates a 
coupling condition between the end displacements and 
end actions of a beam. In conjunction with the 
influence function for the deflection 
 
w(x)= xw(l) + (1 - x)w(0) + x(l - l)w'(l) + (1/6El){[-3(1 - 
X) -    )+ 3  (1-x) M (l) +  (x)M(0) +[(l - x)3 + a(x)l -

(1-x)    Q(1) + ∫      )      )       )  
 

 
 + 

∫       )  

 
      ) - (1 - x)y3]p(y) dy,                        (8)                                                                                    

    )= x(1-x) (2-x) 
 
To determine these four unknown terms  
 

  

  
    [

   
      

  
   
    

    
   
  

    
   
    

        
   

   
 
 
    

            
 

  
   

]   

[
 
 
 
 

   )

     )́   

   )

     )́  
]
 
 
 
 

  = [

    )
    )
    )

    )

]  +  [

  
  
  
  

]                                                                        

                       (9) 
where 
 

pi=∫    )    )            
 

 
 

 
The terms pi are the negative end fixing forces. 
 

Dynamical loads cause inertial forces  u'' in a 
structure. These forces appear on the left-hand side of 
the differential equation 
 
Du+ u''=p(x,t) 
 
Now the differential equation of the vibrating beam 
 
E I wIV +  w.. =p(x) cos (wt+) , = A 
 
Become after a separation of the variables 
 
W(x,t)=w(x) cos(wt+) 
 
A differential equation for the amplitude 
 
E I wIV(x) -  2 w(x) =p(x)  
 
To this differential equation belong the identities 
 

   ̂,w)=∫     ̂   

 
    )        ̂    ̂ ́  

  - ∫
 

 
 

(EI̂  
       ̂ )     

 

The general homogeneous solution is 
 
w(x)=a1cos(x) +a2sin(x)+a3cosh(x)+a4sinh(x) 
 
where =(2/EI)1/4 

 
by an appropriate choice of the integration constants 
we can obtain four solution  i which correspond to 
unit end displacements 
 

 1(0)=1 ,  '1(0)=  1(l)=  '1(l)=0 
 
The energy producers of these functions constitute the 
elements of the stiffness matrix k. this matrix 
formulates a coupling condition between the end 
displacement ui and end actions fi of a smooth 
amplitude w  C4 [0,l] 
Ku=f+p                       (10)                                                                                                                        
 

Where kij=E( i, l)= ∫     
 

 
 i   l - 2  i  l) dx 

pi=∫    )    )               )     
 

 
wIV -  2 w 

 
By a simple rearrangement of equation (10) we can 
derive the transfer matrix and, therefore, the matrix-
displacement method is complete. 
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Table 1: Effect number of elements for beam with the parameter β, (Natural frequency wn= β √
  

   

 
 ) 

 

Mode 
No. of Elements 

(FEM , BEM) 
Exact 

Solution 
FEM 

Solution 
BEM 

Solution 

Error % 

         

     
 

         

     
 

1 

256 , 35 

3.141592 3.131481 3.141571 0.000 0.321 
2 6.283185 6.262578 6.282979 0.003 0.328 
3 9.424777 9.374246 9.404565 0.214 0.536 
4 12.56637 12.49578 12.53428 0.255 0.561 
5 15.70796 14.98759 14.99688 4.525 4.586 

 
Results and Discussion 
 
In this section, the results of simply support beam were 
presented. Table (1) presents the effect number of 
elements on the values of non-dimensional natural 
frequencies between the methods (FEM and BEM) 
comparing with Exact solution of beam Some types of 
error are increase or decrease with increasing or 
decreasing the number of elements and it is noted that, 
35elements  of BEM gave a convergence in the results 
(with Exact) and then they will be used to discretize 
the beam system. 
  

 
 

Fig.4: The Influence Function of Three Types of Beams 
 

 
 

Fig.5: The 1st & 2nd mode natural frequency of T-
beam 

The properties of a bridge, which are used for the 
calculations of beam structure analysis for three types 
of cross sections (I, T, Box section) as shown in figures.  
Fig (4) shown the influence function of beam with the 
length where the relation between them its 
proportional with increase the length of the beam lead 
to increase the influence function of beam, equation (8) 
represent the influence function as a function of load 
support and moment reactions depend on the 
condition of ends beam. 
  

 
 

Fig.6: The 1st & 2nd mode natural frequency of I-beam 
 

 
 

Fig.7: The 1st & 2nd mode natural frequency of  box-
beam 
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Fig.8: Natural frequency of 1st mode for the three 
types of sections 

 
Figs.(5-8) present effect the length on the natural 
frequency of simply supported beam structure . The 
figures are remarked as data points for easier 
comparison. As a general view, it was noted that the 
frequency is decreased with increasing the length of 
beam. For the first and second modes for same type  of 
beam and vibration mode is symmetric vertical 
bending. The T-section clearly has greater value of 
frequency from another type. 
 
Conclusions 
 
This paper mainly focused on the boundary element 
solution for natural frequency for three type of 
concrete bridge with slant-legged rigid sections. The 
following conclusions are drawn  
 
1) The dynamic behaviors of a rigid T-section, I- 

section, Box-section Bridge were investigated by 
boundary element method. Based on the 
comparison study on exact results, one may obtain 
more accurate designs using the boundary element 
solutions. 

2) The cross section area of the beam structure has 
important role in design and dynamic behavior.  

3) The T-section beam structure given the large value 
of the natural frequency. 

 
 
 
 
 
 
 
 
 
 
 
 

4) The fundamental natural frequency of T & I-beam 
could be numerically specified and it was almost 
identical to the theoretical solution of a simply 
supported beam 

5) The Boundary Element Method appears good 
agreement when comparison with Exact and Finite 
Element Method. 
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