
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2015INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

2086| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

Comparative Analysis of Formal Specification Languages Z, VDM and B

Tulika Pandey† and Saurabh Srivastava‡*

†Department of Computer Science and Information Technology, SHIATAS, Allahabad, Uttar Pradesh, India
‡Department of Computer Science Engineering, SHIATS Allahabad, Uttar Pradesh, India

Accepted 20 June 2015, Available online 25 June 2015, Vol.5, No.3 (June 2015)

Abstract

This paper focuses on comparison on formal specification languages and chooses the appropriate one for a particular
problem. Formal specification is a better way to identifying specification errors and describing specification in
unambiguous ways. Formal specification is a specification written in a formal language where a formal language is
either based on rigorous mathematical model or simply on standardized programming or specification language.
Formal specification language expressed the specification in a language whose vocabulary syntax and semantic are
properly defined. Formal specification language provides mathematical representation of the system. In this paper I
will introduce three formal specification languages such as Z, VDM, and B and perform comparison among to them.

Keywords: Formal Methods, Formal Specification, Formal Specification Languages, Schema.

1. Introduction

1 This paper reports experience gained in use of formal
specification languages in formal methods for complex
and critical system development or decision making
system. Formal methods are the mathematical
approach supported by tools and techniques for
verifying the essential properties of desired software
system or hardware system. Formal methods are
useful for checking the quality parameters such as
correctness, completeness, and consistency and
verification of the system requirements. Formal
method is the integration of formal specification,
formal proof and model checking. Formal specification
is the first step in the formal development, it follow a
series of steps involving verification and refinements
of software system which leads to an eventual
implementation. The primary role of the formal
specification is to provide a precise and unambiguous
description of the system for sub sequence steps. There
are many formal specification languages are available
but question is how they are different from one to
another, this is a primary objective of this paper. In this
paper I will compare three formal specification
languages such as Z, VDM and B.

2. Formal Methods

Formal methods are the mathematical approaches
supported by tools and techniques for verifying the
essential properties of desired software system.
Formal methods are useful for checking the quality

*Corresponding author: Saurabh Srivastava

parameters such as correctness, consistency,
verification of the system requirements and provide
code verification. Formal methods are associated with
three techniques such as formal specification, formal
verification, and refinements

Formal Specification
 +

Formal Methods = Formal verification
+

 Refinements

Formal specification is a specification written in formal
languages where a formal language is either based on
rigorous mathematical models or simply on a
standardized programming languages or specification
languages. In this I will introduce three specification
languages such as Z, VDM, and B and provide
comparison among them according to different points
of view. Formal verification is a process to prove or
disprove the correctness of a system with respect to
the formal specification or property. Refinement is a
integral part of developing, checking, and verifying the
specification.

3. Formal Specification Languages

The primary idea behind a formal method is that there
are benefits in writing a precise specification of a
system, and formal methods use a formal or
mathematical syntax. This syntax is usually textual but
can be graphical. A precise specification of a system can
be used in a number of ways. First, it can be used as the
process by which a proper understanding of the system

Tulika Pandey and Saurabh Srivastava Comparative Analysis of Formal Specification Language Z, Band VDM

2087| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

can be articulated, thereby revealing errors or aspects
of incompleteness. The specification can also be
analyzed or it can be verified correct against properties
of interest. For this purpose, a variety of different
formal specification languages exist, with their proper
tool support. A formal specification language is a
specification language in computer science used during
systems analysis, requirements analysis and system
design to describe a system at much higher level than a
programming, which is used to produce the executable
code for a system. Specification languages are not
directly executable. They are meant to describe the
what, not the how. Indeed it is considered as an error if
requirements are cluttered with unnecessary
implementation details. Formal specification language
provides mathematical representation of the system.
Formal specification language expressed the
specification in a language whose vocabulary syntax
and semantic are properly defined. In this I will
introduce three specification languages such as Z, VDM
and B provide comparison among them according to
various points of views whose description are present
with the comparison results.

3.1 Formal Specification Language Z

Z is a constructive model-based specification language
which was first suggested by Abrial and later
developed at the University of Oxford and accepted as
BSI standard in 1981. Z notation is based on the set
theory and first order predicate logic. Z is popular
especially in developing critical systems where the
reduction of errors and quality of software is extremely
important. It has undergone international
standardization under ISO/IEC JTC1/SC22. Z provides
a construct, called a schema, to describe a
specification‘s state and operations. A specification in Z
is presented as collection of schemas which can be
combined and used in other schemas. Schema is a
diagrammatic notation for displaying the predicates
that are used in defining operations and invariants. The
main building blocks of Z notation are basic type
definition, axiomatic definition and schema definition.
A basic types definition introduces one or more types
which are used to declare different variables used in Z
specification. An axiomatic definition is being used to
describe one or more global variables and it optionally
specifies a constraint on their values. In order to model
an operation of any system, schema is being in the Z-
Notation. A Z schema consists of a declaration and an
operational list of predicates.

3.1.1 Terminology Used In Z Notation

Data Invariant: A data invariant is a condition that is
true throughout the execution of the system.

State: In Z specification, the state is represented by the
system‘s stored data.

Operation: Operation is an action that takes place
within a system and read or writes data.
Conditions: Three types of conditions are associated
with operation:

Invariant: An invariant define what is guaranteed not
to change.

Precondition: A precondition defines the
circumstances in which a particular operation is valid.

Postcondition: A Postcondition of an operation defines
what is guaranteed to be true upon completion of an
operation. This is defined by its effect on data.

3.1.2 Tool Support for Specification Language Z

Various tools for formatting, type checking and aiding
proofs in Z are available. CADiZ is a UNIX based suite of
tools for checking and typesetting Z specification. Z
type checker (ZTC) and fuzz tool also support Z
notation and type checking of Z specification. There is
another tool named Z/EVES is also able to read entire
files of specifications that have been previously
prepared using LATEX markup. RoZ (Rosette)
automatically generates the Z schemas corresponding
to a UML class diagram.

3.2 Formal Specification Language B

B was developed by Jean-Raymond Abrial, also took
part in the creation during the 1980s. B notation is
closely related to Z and Vienna Development Method
(VDM). B method has a strong decomposition
mechanism. The primary aim of decomposition in B is
to obtain a decomposition of proof. Formal verification
of proof obligations ensures that a specification is
consistent throughout its refinements. Like Z, B
method is also based on first order predicate logic and
set theory. The basic building block of B language is
Abstract Machine. Gurevich initially introduce abstract
state machine. An Abstract state machine specification
is a program executed on an abstract machine. The
program comes in the form of rules. Rules are nested
if-then-else clause with set of function updates in their
body. Based on those rules, an abstract machine
performs state transitions with algebras as states.
Firing a set of rules in one step performs a state
transition. An abstract machine is a component that
defines different clause such as SETS, CONSTANTS,
PROPERTIES, VARIABLES, INVARIANT,
INITIALIZATION and OPERATIONS but the order is not
fixed. Microsoft research provides an executable
version of Abstract state machine, which execute
abstract state machine under .NET platform, i.e. AsmL.

3.2.1 Terminology Used In B Notation

Sets: The SETS Clause represents the list of deferred
sets used in the machine.

Tulika Pandey and Saurabh Srivastava Comparative Analysis of Formal Specification Language Z, Band VDM

2088| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

Constants: Constants describe the type and properties
of formal scalar parameters.

Properties: Properties clause shows the type and
properties of machine constants.

Variables: Variables represent a list of abstract and
concrete variables used in machine.

Invariants: Invariants also describes the type and
properties of variables.

Initialization: Initialization clause is used to initialize
the variables.

Operations: Operation clause list and define some
specific operation.

3.2.2 Tool Support for Specification Language B

Two main commercial tools which support B language
i.e. Atelier-B and B-ToolKit are used by researchers and
developers. For methods B, there is a model checker
tool, known as ProB, developed at the University of
Southampton. The model checker ProB, includes as
animator, which is amenable to validate the simulated
behavior of specification. UML-B is a tool that
translates UML class diagram and UML state chart
diagram into B notation. But this tool work under
certain conditions. Atelier-B proposes a set of
commands allowing:

1. Syntax and Type checking of components.
2. Automatic generation of proof obligation.
3. Automatic demonstration of proof obligations.
4. Translatable language checking.
5. Translating into one of the following

programming languages(C, C++, ADA, and
HIA).

3.3 Formal Specification Language VDM

The Vienna Development Method (VDM) is a formal

specification language which is model based language.

VDM was initially developed for the formal description

of PL/I at the IBM laboratory in Vienna. The VDM

method considers the verification of step-wise

refinement in the systems development process, i.e.

data refinement and operation decomposition. VDM

specifications are based on logic assertions of abstract

states (mathematic abstraction and interface

specification). In contrast to Z, VDM uses keywords in

order to distinguish the roles of different components

while these structures are not explicit in Z. As with Z

specifications, VDM specifications are usually not

machine executable. VDM supports the specification

process by a mental execution with paper and pencil.

However, proof assistance tools and tools for executing

subsets are available.

3.4 Formal Specification Language VDM++

VDM++ is based on VDM-SL which is a formal
specification language. VDM-SL is a model-based
specification language whereas VDM++ is an object
oriented extension of VDM-SL. [8]. In VDM++ the
system is represented as a set of classes. Each class
describes the state of the system. VDM++ classes have a
powerful set of constructs such as constants, variables,
operations and functions. More over VDM++ gives an
explicit way to deal with the concurrency. To specify
the real world active objects threads are used in
VDM++. As distributed real-time systems are mostly
concurrent systems, VDM ++ provides a full support to
specify the distributed systems. The semantic and
Syntax of VDM++ is easily understandable and close to
a high-level programming language so it is very easy to
adopt VDM++. VDM++ is a object oriented approach
that provide concurrency support and synchronization.
It is used for real time system and control system.

Fig. 1 VDM++ Class Outline

3.3.1 Tool support for VDM and VDM++

The tool support for VDM is very strong. A whole set of

tools are available for VDM. The VDM tool kit provides

following features

1. Syntax checker

2. Debugger

3. Document generator

4. Code generator for C++ and java

5. Interpreter

6. VDM++ to C++ code generator

7. Type Checker

8. Integrity Examiner

9. UML Link

Class <className >

End <className>

Instance Variables

Types
Values
Functions
Operations

Thread

Syn

Traces

Tulika Pandey and Saurabh Srivastava Comparative Analysis of Formal Specification Language Z, Band VDM

2089| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

4. Comparison and Results

4.1 Comparison Based on Specification Structure

Z specification structure can be defined by using
schema. It has two parts first signature part identifiers
are define or static component and second part is
predicate part which has dynamic components. In the
signature part contain list of declares the variable and
predicate part contains list of the predicate. B
specification structure using B machine element is
shown below. VDM specification structure is not fixed.
In VDM define sets, invariants functions, support
constant values and some other. In VDM languages sets
are finite because they contain only a finite number of
elements. VDM language supports only two types of
function first order and higher order.

Table 1 Comparison Based on Specification Structure

S. No. Name of Specification
Language

Notation

1. Specification
Language Z

2. Specification
Language B

MachineName
Sets
Variables
Constants
Initialisation
Invariants
Operations

3. Specification
Language VDM

Type
Values
State
End
Function
Opeation

4.2 Comparison Based On Specification Style

Property Oriented Specification defines the behavior of

system indirectly by a set of properties in the form of

axioms that the system must satisfy. Model Oriented

Specification defines the behavioral of system directly

by constructing a model of system. Often the level of

abstraction determines whether a specification can be

called property oriented or model oriented. Process

Oriented Specification can be defined as let us consider

a concurrent network of communicating components

behavior and since most of the language describes

system in term of process- oriented. All types of

languages which belong to this category describe

system in term of process. Sequential Oriented

Specification defines input output behavior of system

in sequential manner. That is output of first stage

referred as input for next coming stage.

Table 2 Comparison Based on Specification Style

S. No
Name of Specification

Language
Specification Style

1. Specification Language Z
Sequential Oriented,

Property Oriented
and Model Oriented

2.
Specification Language

B
Model Oriented

3.
Specification Language

VDM
Process Oriented

and Model Oriented

4.3 Comparison Based on Paradigm and Formal

Table 3 Comparison Based on Paradigm and Formality

S. No
Name of Specification

Language
Formality and

Paradigm
1. Specification Language Z Formal and State
2. Specification Language B Formal and State

3.
Specification Language

VDM
Formal and State

4.4 Comparison Based on Concurrency

Concurrency is the property that allows many

computations run simultaneously and potentially

interact with each other’s. Formal Specification Z, B

and VDM do not support concurrency. In Object

Oriented VDM approach provide Concurrency support.

Table 4 Comparison Based on Concurrency

S. No.
Name of Specification

Language
Support

Concurrency
1. Specification Language Z No
2. Specification Language B No

3.
Specification Language

VDM
No,

4.
Specification Language

VDM++
Yes

4.5 Comparison Based on Object Oriented Support

Z notation has features it break large specifications

into smaller components. In object oriented approach

system is distributed into objects each of which has its

own sets of operations. In this way Z specification does

not support object oriented concept but Object-Z is

formal specification language which provide object

oriented support hence make specification easier.

Object oriented VDM support two types of module and

inheritance mechanism, which are class modules and

type modules. In class module define objects having

their internal states. Type modules are those modules

which specify objects with no states. Object oriented

VDM inheritance mechanism are incremental

inheritance and sub typing inheritance.

 Signature Part

 Predicate Part

Schema Name

Tulika Pandey and Saurabh Srivastava Comparative Analysis of Formal Specification Language Z, Band VDM

2090| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

Table 5 Comparison Based on Object Oriented Support

S. No
Name of

Specification
Languages

Description of
Object Oriented

Support

1.
Specification
Language Z

Support Object
Oriented Concept

using Object Z

2.
Specification
Language B

Not Support Using
Object Oriented

Concept

3.
Specification

Language VDM

Not supported to
Object Oriented

concept

4.
Specification

Language VDM++
It Support Object
Oriented concept

4.6 Comparison Based on Domain

This parameter states the specific domain of the
language i.e. reactive systems, safety critical systems
etc.

Table 6 Comparison Based of Domain

S.No
.

Name of Specification
Language

Domain Support

1. Specification Language Z Not Specific

2. Specification Language B
Event B use in
reactive and

distributed system

3.
Specification Language

VDM

VDM++ Real-Time
systems, Control

Systems

4.7 Comparisons Based on Timing Parameters

Timing Parameter: The timing constraints of real-time
systems should be specified in the approved manner in
order to ensure correct behaviour of real-time systems.

Discrete/ Continuous Time: Refers to whether the
language handles discrete time or continuous time.

Input Time: This parameter evaluates the language on
the basis of capability to handle input time. Real-time
systems continuously interact with their environment
and the input time is given by the environment.

Output Time: As input time is given by the
environment, output time is purely specified by the
system behaviour.

Table 7 Comparison Based on Timing Parameter

S.No
Name of

Specification
Language

Discrete/
Continuo-
us Time

Input
Time

Output
Time

1.
Specification
Language Z

Discrete Yes No

2.
Specification

Language
VDM

Discrete Yes Yes

4.8 Comparison Based on Executable

Executable specifications allow using specifications as
a prototype hence executable specifications save the
time and significantly reducing the cost.

Table 8 Comparison Based on Execution

S.No Name of Specification Language Executable

1. Specification Language Z No
2. Specification Language B Yes
3. Specification Language VDM No
4. Specification Language VDM++ Yes

4.9 Uses in Industrial Application

In many industrial projects Z, B and VDM were used. Z
used in Storm Surge Barrier Control System for
formalization of design specification and use of
Mondex Smart Card. METEOR Project has convinced
Matra Transport International using B formal
Specification. B method use for Metro Line 14 in Paris
and Roissy Charles de Gaulle airport shuttle. VDM use
in TradeOne System aim is to decrease the operating
costs in trading securities. FeliCa Networks Project also
use VDM++ which use to generate IC chip which is
embedded in cellular phone.

4.10 Comparison Results

The objective of this work is to provide comparison of
few formal specification languages that are considered
as model based. Formal specification language are
different from programming languages because the
syntax and semantics of the specification language are
more abstract the syntax and semantics of
programming languages. Formal modeling provide
constructs to write specifications of programming
system, while programming languages provide
constructs to write program. As the literature says, no
single method can be truly applicable for all type of
problems. Some specification languages such as Z, B
and VDM are used for sequential system whereas other
methods such as CSP and Petri Nets are used for
parallel systems.
 Formal specification language Z is more powerful
approach that provides a precise specification but it is
intractable. Formal specification language B is based on
Z, but they are having some extended features. The
primary aim of decomposition in B is to obtain
decomposition of proof. B method is very useful for
executable code generation that can also be used as an
abstract specification language similar to Z, it ensure
refinements steps and proofs, that the code satisfy its
specification.

Conclusion

Formal Specification Languages are languages that are
used to express the formal specification in a language
whose vocabulary; syntax and semantics are formally

Tulika Pandey and Saurabh Srivastava Comparative Analysis of Formal Specification Language Z, Band VDM

2091| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

defined. This need for a formal definition means that
the specification languages must be based on
mathematical concepts whose properties are well
understood. The branch of mathematics that is discrete
mathematics is used and the mathematical concepts
are drawn from set theory, logic and algebra.
Formal specification languages Z, B and VDM are model
based languages. These languages support some
parameters which are discussed above. On the basis of
these parameters Vienna development method (VDM)
language satisfy more parameters and it is the best
language forms other two. Languages popularity also
shows that VDM is more popular in the industry and
projects. The use of Formal specification language in
software development process do not force you to
invest a significant cost or time overhead across the
entire development, rather it is helpful for
understanding the system being developed and
preventing error from being propagated through the
early stage of lifecycle to the later one. Many software
engineering researchers proposed if we use formal
specification languages in development by using formal
methods that shows it was the best way to improve
software quality. On the basis of discussion difference
in syntax and structure, Z and VDM do not differ
radically from one another. They are similar in their
foundations and goals, and both allow the specifier to
state requirements precisely and refine these
specifications into designs correctly.
 Use of the formal specification languages reduce the
ambiguity and ensure the completeness and
correctness of the software specification. A Model
checker does not check programs, rather than it checks
the properties of a model, which are high level
descriptions of a system. In order to check whether the
modeled system complies with the user requirements,
it needs to verify and validate that particular model.
Formal modeling is a task to convert a design
document into a formal document, which is checked by
model checking tools. In formal specification
languages, tools such as, Z/EVES, Atelier B, VDM Tools,
Alloy Analyzer etc. are used for sequential systems and
PAT, CPN Tool, LOTOS tool, RSL tool, SPIN tool etc. are
used for parallel systems respectively.

References

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John

Fitzgerald (2009), Formal Methods: Practice and

Experience. ACM Computing Surveys, Page 1-36.

Dobrica & Eilia Niemela (2002), Survey on Software

Architecture Analysis Methods, IEEE Transaction of

Software, Vol. 28, No.7

Ian Somerville (2009), Introduction of Formal Specification

M. Satish Kumar and Shivani Goel (2010), Specifying Safety
and Critical Real Time in Z. In International Conference on
Computer and Communication Technology, IEEE, Pages 596-
602

Umesh Buller, Software Engineering and Formal Specification
Lecture-6, IIT Bombay

R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J.
Derrick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P.
Krause, G. Luettgen, A. J. H. Simons, S. Vilkomir, M. R.
Woodward, and H. Zedan, (20YY), Using Formal
Specification to Support Testing, ACM Journal

Hassan Gomaa (2001), Software Design Methods for
Concurrent and Real-Time Systems, Addison-Wesley

A. K. Sharma, Monika Singh (2013), Comparison of Formal
Specification Languages Based upon Various Parameters,
IOSR –JCE, Vol-11, page 37-39

H. Treharne, S. King, M. Henson, and S. Schneider (2005), In
ZB 2005: Formal Specification and Development in Z and B,
Lecture Notes in Computer Science, Springer Berlin
Heidelberg.

Ashish Kumar Dwivedi (2014), Formalization and Model
Checking of Software Architectural Style, National Institute
of Technology Rourkela, Chapter 2, Page 9-14, Chapter- 4,
page 29-38

Rabia Sammi, Iram Rubab, Muhammad Aasim Qureshi
(2010), Formal Specification Languages for Real-Time
System, IEEE, pp. 1642-1647

A. Laorakpong, and M. Saeki,(1993), Object-oriented formal
specification development using VDM, Object Technologies
for Advanced Software Lecture Notes in Computer Science,
Springer, Page No. 529-543.

Kugamoorthy Gajananam and Prof. Helmut (2013), National
Institute of Informatics Technical Report

Robert J. Allen (1997), Formal Approach to Software
Architecture

Ian J. Hayes (1985) Applying Formal Specification to
Software Development Industry, Vol SE-11, No. 2

Cooke D. and Gates, Language for Specification Software
R. Milner (1989), Communication and Concurrency, Prentice

Hall
Kevin Lano, The B Language and Method: A guide to practical

formal development, Springer-Verlag
J. R. Abrial, The specification language Z: Basic library,"

Programming Research Group, Oxford Univ., Oxford,
England, Internal Rep., 1982

Jung Soo Kim and David Garlan (2010), Analyzing
Architectural Styles, Journal of Systems and Software, 83(7),
1216-1235

Shouvik Dey and Swapan Bhattacharya (2010), Formal
Specification of Structural and Behavioural Patterns, JOT,
vol. 9, page 95-126

Robert J. Allen (1997), A Formal Approach to Software
Architecture

Jones, C.B. (1986), Systematic software development using
VDM, Institute of Advanced Computer Science Prentice- Hall
International

Thomas McGibbon, An Analysis of Two Formal Methods:
VDM and Z, ITT Industries - Systems Division

SPIVEY, J. M. (1989) The Z Notation: a reference manual’
Prentice- Hall International.

