
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2015 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

1561| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

Information system using Dart and MongoDB

Siddaharth Suman†*, Shrikar Chonkar†, Shreyas Sawant† and Shikha Moondra†

†Department of Computer Engineering, Atharva College of Engineering, Marve Rd, Malad (West), Mumbai-95, Maharashtra, India

Accepted 01 May 2015, Available online 05 May 2015, Vol.5, No.3 (June 2015)

Abstract

An information system is a set of information collection and processing components used for providing information
and knowledge. They are seen and used by everyone at everywhere for e.g. banks, restaurants, education portals,
ticket reservation centers, etc. Objectory and Mongo.dart are both helper libraries for interacting with MongoDB and
manipulating it. While Mongo.dart is helpful for establishing basic connection with the database, Objectory provides
a more structured approach towards interacting with the database and realizing them into data models. The
information system discussed in this paper is an implementation of a restaurant system built using latest tools for
developing modern web based applications. The system is reliable, robust, scalable, flexible, simple and fast.

Keywords: Dart, MongoDB, Mongo-Dart, Objectory, Angular-Dart, Web Components, Rikulo Stream

1. Introduction
1
Internet today has come very far from where it started
first. We have come to adopt it in most parts of our
lives now. Almost everything that we do today is
somehow connected or acquired from the internet.
Allowing people to accommodate these things into
their lives would not have been possible without the
evolution of the modern web.
 The modern web didn’t evolve in a day. It took
years to reach to this place. The technologies have also
developed with it over these years. What was before
just a simple collection of static web pages is now fully
automated and heavily featured virtual machine, where
we are not just able to check email, but also play
games, watch videos, listen to music and other things.
 The web is still ongoing some changes and getting
better. The evolution of Dart and MongoDB has opened
possibilities to developing web applications better and
faster than what we currently have today. Here we
have an implementation of said technologies on a
normal information system that is able to perform
much better and faster than the similar systems based
on old technologies.

2. Dart with MongoDB as a server

Taking a step ahead of JavaScript we find Dart. Dart is a
new object oriented, end to end, structured, optionally
typed language for the web. Migrating to Dart from any
other web language is easy. It doesn’t matter if you

*Corresponding author: Siddaharth Suman; Shikha Moondra is
working as Assistant Professor

come from a JavaScript background (non typed) or
from a Java background (strictly typed), it would be
easy to develop in Dart because Dart supports optional
typing, a feature which allows the developer to either
give a data type to the object he/she is creating or keep
it as ‘var’.

Migrating to Dart also has an advantage, the current
web applications are focused on the user experience
(UX) the technologies do not focus much on the
developer experience (DX). Dart on the other hand
gives a rich developer experience by being equipped
with tools required for developing any modern web
application. Normally the server and client side in a
modern web app are both developed using different
technologies. In case of Dart, the developer doesn’t
have to switch languages and can continue developing
in the same language whether to create a server or
client.

Keeping the evolution of the web applications in
mind, it is always necessary to have a back-end that is
able to withstand the growing possibilities and
capabilities in web applications. (Shrikar Chonkar et al,
2015)

Developing a server side on Dart is important for
serving data from the disk to the client when requested
and it helps in easily following the model-view-
controller (MVC) architecture. The main task on server
was to set up an http request listener and a connection
to the MongoDB host. “MongoDB is an open-source
document database that provides high performance,
high availability, and automatic scaling.”
(www.docs.mongodb.org)

While developing the server side initially, it was
discovered that the dart:io library cannot be used

Siddaharth Suman et al Information system using Dart and MongoDB

1562| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

when using the dart:html and vice-versa. This made
sense as server should only deal with doing the disk
read and write operations and the web browser part
should be kept separate.

When dealing with the server side, there were two
things that were being worked upon:

2.1 Establishing connection with MongoDB host

Establishing communication with the database
required the use of Mongo.dart, a database driver of
MongoDB written in Dart. The driver requires the URL
of the database which follows the syntax:

Fig.1 Syntax of database connection for MongoDB at
mongolab.com (www.mongolab.com)

At the start, the MongoDB host was on the local
machine and not on a remote server. After providing
the URL, the next job was to open the database. Since
opening a database here is a network operation, it will
block the main thread until it opens. So, in this way, it
is always better to open the database connection
asynchronously, which is very well implemented in
Mongo.dart with help of a concept in the Dart language
called a Future.

A Future is used to represent a potential value, or
error, that will be available at some time in the future.
Receivers of a Future can register callbacks that handle
the value or error once it is available.
(api.dartlang.org/apidocs)

Therefore, upon opening of the database, the then()
method was used on the open() function returning a
Future object. In this way, the database can open up
whenever it can and upon doing that, the program can
perform database related tasks like querying the
database and fetching required information and
modifying or processing it.

2.2 Serving requests for access to the database

As said previously, since the dart:io and dart:html
packages cannot be used in the same program, sending
result from the database is not straight forward but is
made to be structured by allowing the client to send
requests to the server and then getting the results back
as a response. In this case, the requests would come
from Objectory, it is a dart package that provides
typed, checked environment to model, save and query
data persisted on MongoDb. (github.com/
vadimtsushko/objectory)

Objectory is the dart package which allows us to read
the data from MongoDB without the overhead of

mapping the obtained json result into a proper data
model. It also removes the overhead of type checking
for various properties inside a document of a
collection.

For serving database requests, the Rikulo Stream
Server was used. Rikulo Stream is a Dart web server
supporting request routing, filtering, template
technology, file-based static resources and MVC design
pattern. (rikulo.org/projects/stream)

3. Dart with MongoDB at client side

After being able to set up the server, the next step is
obviously to set up a client. For this, the first step is to
establish a connection with the server which is serving
database requests.

Objectory provides a helper class named
ObjectoryWebsocketBrowserImpl. This class has a
parameterized constructor which takes three things,
address of the server with port as a String, a function
which registers the data models of the collections
residing inside the database and a boolean value for if
the collection should be dropped when the connection
is established with the database. The constructor
returns an Objectory object which is then used to
perform queries from the client side and gives the
result to be used on the browser.

Since the basic requirements of the project were
met, that is, establishing connection with the database
and serving requests from the client, the next step was
to implement the model-view-controller architecture
with help of AngularDart.

The usage of AngularDart included declaring a class
which extended Module class defined in AngularDart
package, binding various components used inside the
application and adding the module to the application
factory. After this, a component to be shown on the
browser is created.

For creating a component, the class should have the
@Component annotation. Then the class can define
various variables and functions which it wants to
provide to the corresponding html. The various
elements of the class are then accessed within the {{}}
double braces or ‘double moustache’ inside the html.

For making the view menu items component the

class contains a list of all the items and other necessary

variables, a function that gets result from a query

service and various other functions that handle click

actions performed on the page elements. For ordering

the items, a running list of selected items was used and

sent over to the kitchen when confirmed with the

customer.

4. AngularDart routing and other components

AngularDart makes routing for single page apps easier
than most other routing solutions. It starts with
defining a function that takes two parameters: a Router
object and RouteViewFactory object.

http://www.mongolab.com/

Siddaharth Suman et al Information system using Dart and MongoDB

1563| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

After this, the RouteViewFactory object calls the
configure() function which is supplied with a map
object consisting of a String and an ngRoute method
call which takes certain predefined parameters like
path, view, viewHtml, mount, defaultRoute, enter, etc.

In general, a route is defined like following:

{
 'view': ngRoute(
 path: '/view',
 view: 'view/menuController.html'
)

}

Fig.2 Example of a route named ‘view’ in
AngularDart

This routing function is then bound with the module

and assigned to the RouteInitializerFn parameter. The

NgRoutingPushState is also set to false since we want

to work with hash changes in the URL to route our

pages instead of working with push states.

Among other components, there is the admin

component, edit items component, add item

component, register table component and kitchen

component.

4.1 Admin component

This component was made keeping the owner of the

restaurant in mind. This component gives the owner

permission to make changes in the menu card among

other things.

This component first starts with asking the user for

their login credentials. After that, it presents the user

with a dashboard with a panel on left side. On the

panel, the user is presented with many choices like

browsing different food categories and the food items

shown on right hand side for editing or deletion.

Another option provided to the user is for

previewing the menu card. This allows the user to see

what the menu card would look like but the user can

only view the items here and not make an order. There

is also an ‘add new item’ option which presents a form

on the right side for adding the new item.

The component consists of a username and a

password variable and a login function to authenticate

the user. The component then has functions to get

query results from query service to show the preview

page. The additional features on the page are managed

by other components.

4.2 Edit items component

This component allows the user to make changes to

existing menu items or delete them. The user clicks on

the edit icon and an html modal opens up with the

details of the menu item.

The component consists of a variable that keeps

track of which menu item was selected, functions for

opening the appropriate modal and for deleting the

menu item.

4.3 Add item component

The add item component presents the user with a
simple form for adding a menu item to the menu card.
The component consists of variables for each field
inside the form. The component also consists of
functions for saving the new item to the database,
updating the admin panel according to the category in
case a new category is introduced and updating the
menu card itself.

4.4 Register table component

The register table has only a single purpose, to register
a specified table to the user. The component consists of
a variable which stores the table number, a function
which stored the table number in the user’s session
information so that it persists till the user closes
his/her browser and a function which navigates the
user back to the view items page when table has been
registered.

4.5 Kitchen component

The kitchen component is also an important part of the
restaurant system. The component displays the
information regarding the user’s table number and
their orders with associated quantity. The challenge
with this component was to retrieve the orders in real-
time without refreshing the page and neither get the
performance affected by polling the server at certain
intervals. A simple solution to this was the use of
WebSockets.

The controller has variables for the WebSocket

address, a list of lists consisting of orders by every

user, a function that accepts the orders from the server,

a function that dismisses the orders when they are

ready and a function that converts the server’s json

string messages into usable objects to be displayed on

the browser page.

5. Kitchen server and WebSockets

WebSockets is an advanced technology that makes it

possible to open an interactive communication session

between the user's browser and a server. With this API,

you can send messages to a server and receive event-

driven responses without having to poll the server for

a reply. (developer.mozilla.org/en/docs/WebSockets)

Siddaharth Suman et al Information system using Dart and MongoDB

1564| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

Fig.3 Data flow diagram of the information system

The kitchen server acts as a medium to provide orders
to the kitchen component in real-time. The first task
was to set up an HTTP server to listen on a port. The
server, whenever it encounters a request, it is checked
if it is an upgrade request since the handshake of
WebSockets is interpreted as an upgrade request by
the HTTP servers. After this, the uri path of the request
is checked to categorize the request to be for incoming
orders or from kitchen.

If the kitchen connection is not open when
receiving orders, they are saved inside a temporary list
to be flushed as soon as the kitchen connects. The
result is an efficient kitchen system which handles data
in real-time without much overhead of
implementation.

The resulting process of all of the above
implementations is shown in Fig. 3.

6. Front end

Just like every ideal web application, this application
needs to have a front end. Being a user centred
application, it is absolutely necessary that we develop a
user interface that is intuitive as well as user friendly.
Since this web application targeted handheld devices
as their major platform for the use, it was necessary for
it to be responsive.

A responsive web application is an application that
is easily adaptable to the smaller screen devices such
as smartphones. To implement the responsiveness a
famous CSS framework called ‘Bootstrap’ was used.
Hence with angularjs and bootstrap an interface was
built that allowed the user to place an order, increase
the quantities in the placed order, see what orders
he/she has placed so far and also see the total amount
he/she has to pay before confirming the order.

Future work

Considering how easy it is to set up and build a modern
web application which is practically useful in our daily
lives, it is right to say that building something with

Dart and MongoDB is easy. The future work with Dart
and MongoDB is limitless and can be used to build
practically any type of web application existing in
current technology and go even beyond that.

Conclusion

From this, it can be concluded that Dart is a powerful
language for building modern web applications. With
its properly designed architecture and familiar syntax,
it is without a doubt, prepared for what it takes to
handle and properly run a modern web application and
makes most current technologies fall short in front of
it.

With MongoDB fuelling Dart from the back-end, it
makes a complete package. MongoDB’s easy scalability
and flexibility in storing documents, makes it easier to
employ it as the right database solution for modern
web applications.

Acknowledgement

We would like to thank our project guide Professor
Shikha Moondra for helping and inspiring us
throughout this project. We are also grateful to our
head of the department, Professor Mahendra Patil for
the support. Lastly we would not be able to conduct
this research without the infrastructure and facilities
provided by Atharva College of Engineering.

References

Shrikar Chonkar, Siddaharth Suman, Shreyas Sawant and
Shikha Moondra (2015), Supercharging web applications
with Dart and MongoDB, International Journal of Current
Engineering and Technology, vol. 5, no. 1, pp. 409-412.

www.docs.mongodb.org
www.mongolab.com
api.dartlang.org/apidocs
www.github.com/vadimtsushko/objectory
www.rikulo.org/projects/stream
developer.mozilla.org/en/docs/WebSockets

