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Abstract 

  
The present paper deals with the analysis of displacement field forms effects on natural frequencies for flexure 
problems of laminated sandwich beams. Several forms using various parameters are tested. Both analytical and finite 
elements formulations using Hamilton’s principle are carried out. Numerical results have been computed of a 
sandwich beam and compared in order to highlight the importance of inclusion of such parameters and its capacity 
for good estimation of natural frequencies of sandwich beams. 
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1. Introduction 
 

1 Sandwich structures (Berthelot, 1992), (Reddy, 1997) 
have been regarded as a convenient strategy for many 
industries as aerospace, automobile, nuclear, marine, 
biomedical and civil engineering. This is due to its high 
strength and high stiffness to weight ratio, good 
resistance to fatigue and corrosion phenomenon.  

Since these structures are made of two or more 
layered materials, their manufacturing cost is superior 
to traditional materials. Nevertheless, their advantages 
make them an efficient solution for such manufactories 
especially in the aircraft industry when the safety of 
the aircraft is an important design factor. Hence, it is 
necessary to analyze their macro-mechanical 
characteristics such as deflections, stress and strain 
distribution through the thickness, natural frequencies, 
modal deformations, and the effect of boundary 
conditions and external loads. For that, an efficient 
theory is required for accurate prediction of the 
structural characteristics of these beams.  

Several researchers (Meunier and Shenoi, 2001), 
(Boubaker, et al, 2002), (Chandra, et al, 2002), (Ghugal 
and Shimpi, 2002), (Meunier and Shenoi, 2003), 
(Rathbun, et al, 2006), (Soula, et al, 2006), (Bilasse, et 
al, 2010), (Jian, et al, 2014) have investigated in the 
study of laminated sandwich beams. One of the well 
known theories is the classical theory developed by 
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Euler-Bernoulli (Zienkiewciz and Taylor, 2000) which 
is useful only for thin beams because it has neglected 
transverse shear deformations. It is obvious that 
transverse shear deformations have to be taken into 
account in the analysis. Thus, Timoshenko 
(Timoshenko, 1922) has developed a beam theory to 
include this effect. The theory assumes a constant 
shear strain across the thickness of the beam and 
requires a shear correction factor. Following his work, 
many theories incorporating the effect of shear 
deformation have been developed (Mindlin and 
Goodman, 1950), (Cowper, 1968), (Levinson, 1981), 
(Banerjee, 2001), (Banerjee, 2004), (Nilsson E and 
Nilsson AC, 2002).Then, some authors (Bickford, 
1982), (Heyliger and Reddy, 1988), (Degiovani, et al., 
2010), (Carrera, et al., 2011), (Damanpack and Khalili, 
2012) have developed a high order beam theory. While 
these theories do not require a shear correction factor 
as Timoshenko theory, the resulting differential 
equation is sixth order whereas that for a consistent 
beam theory is of the fourth-order. Furthermore, the 
variation of boundary conditions is not studied. 
Therefore, the form of the displacement field which 
will be used must considers some parameters, to 
overcome the following drawbacks presented in 
previous works: neglecting the shear deformations, 
sixth order of differential equation which complicates 
further the analytical solutions, assuming a constant 
variation of the shear deformation across the thickness 
of the beams or using only one boundary condition. 
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The present paper proposes to analyze the effect of the 
inclusion of some parameters in the displacement field 
forms on the prediction of dynamic behavior of 
sandwich beams using various boundary conditions. 
Firstly, equations of motion are derived for each form 
of displacements field using Hamilton’s principle. Then 
analytical solutions as well as finite elements (FEM) 
solutions are established. Numerical simulations of 
laminated sandwich beam using various forms of 
displacements field and various boundary conditions 
are illustrated for the prediction of natural frequencies. 
A comparative study is also illustrated to perform the 
importance of inclusion of some parameters in the 
displacements form. 

 
2. Formulation 
 
Multilayer structures are typically used for its light-
weight, high specific stiffness and strength values in 
many engineering fields. In fact, there are attempts to 
replace components with classical materials (steel, 
concrete) by laminated materials notably sandwich 
structures. The studied sandwich panel is constituted 
by three layers: two elastic faces and a homogeneous 
honeycomb core. It is assumed to have a length L, 
width b and total thickness 2h as shown in Fig.1. 
 

 
 
Fig.1 Geometry and coordinate system of the sandwich 

beam 
 
Various forms of the displacement field, as well as, 
boundary conditions will be studied to evaluate the 
effect of the parameters included in the displacement 
forms on the dynamic behavior of the sandwich beams. 
 
2.1. Hypothesis 
 
It is assumed that the study domain is linear elastic 
with small displacements, the length of the beam is 
quite large compared to others dimensions (beams 
theory), the faces and the Honeycomb core materials 
are isotropic homogeneous. Furthermore, the 
continuity of displacements along the interfaces 
between the layers is considered. No slip or 
delamination between the layers.  
 
2.2. Displacement field form without shear and without 
warping effects (SCG) 
 
The displacement field of a sandwich beam without 
taking account the shear and warping effects can be 
expressed as follows: 

 
   

 

   

0

,
, , , ,

,

, , , ,

b

b

w x t
u x y z t u x t z

U M t x

w x y z t w x t

 
  

  
  

 
 

(1) 

Where:  0 ,u x t is the displacement due to extension 

and  ,bw x t is the displacement due to bending 

deformations measured at the mid-surface of the 
sandwich beam (Z=0).  
The corresponding relation strain-displacement for 
this form of displacement (Eq.1) is given as follows: 
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(2) 

The strain field in the case where the shear and 
warping effects are neglected can be written as follows: 
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the membrane and bending strains contribution. 
The stress-strain relationship of the kth layer is 
expressed as follows: 
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(4) 

Or in compact form: 
 

    Q    (5) 

Where: [Q] is the reduced elastic stiffness matrix which 
contains the elastic materials constants defined in the 
orthotropic axis as follows: 
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Where: 1E ; 2E ; 12 ; 21 and 12cG are the engineers 

constants in the orthotropic axis of the kth layer of the 

corresponding sandwich beam (Young modulus, 

Poisson ratio, shear modulus). 

 The variational Hamilton’s principle which is based 

on the calculation of the variation of kinetic and 

potential energies is applied to derive the equations of 

motion. Hence, this principle can be expressed as 

follows: 
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The kinetic energy is given as: 
 

 2 21

2
c

V

E u w dV   (8) 

u and w are the time derivatives of u and w;  is the 

density of the corresponding material. 
The potential energy is given as: 
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(9) 

Since 0zz xz   , the kinetic and potential energy 

variations are given as: 
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(11) 

Substituting (Eq.10) and (Eq.11) by its expressions, the 
Hamilton’s principle (Eq.7) can be rewritten as follows: 
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(12) 

Integrating the appropriate terms in (Eq.12) by parts 

and collecting the coefficients of 0u and bw , the 

equations of motion in terms of stress resultants are 
expressed as: 
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(13b) 

The laminate stiffness constants, the stress resultants 
and the mass moments of inertia are defined, 
respectively, as follows: 
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cN  is the number of layers of the sandwich beam. 

Hence, the derived equations of motion in term of 
displacements are given as follows: 
 

2 3 2 3

0 0
11 12 0 12 3 2

3 4 2 3 4

0 0
12 11 0 1 23 4 2 2 2 2

0

0

b b

b b b

u w u w
A A I I

x x t x t

u w w u w
A B I I I

x x t x t x t

    
         

 
         

        

 
 

(15) 

2.2.1. Analytical Solutions 
 
The analytical solutions of the equations of motion 
(Eq.15) are given by assuming that:  
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Where   is the natural frequency of the sandwich 

beam. Substituting (Eq.16) into (Eq.15), the following 
equations are obtained: 
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(17) 

 
Where the subscript (i) i=1,...,4 indicates the derivative 
order of the equations of motion.  

After assuming that   0

rxA x A e and   0

rxB x B e , 

the analytical solutions of the equation of motion 
system (Eq.17) can be taken as: 
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The application of various boundary conditions as 
simply-supported, clamped-free and bi-clamped to the 
sandwich beam at x=0 and x=L can be summarized for 
each type in Table 1. 
 

Table1 Boundary conditions without shear and 
without warping effects 
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The resolution of the associated equation in matrix 
form for each type of applied boundary condition 
enables to determine the natural frequencies of the 
sandwich beam using Newton-Raphson procedure. 
 
2.2.2. Finite Elements Solutions 
 
In this section, the finite element procedure for the 
adopted displacement field is developed. Both 
elements have the same number of degree-of-freedom 
(dofs) per node, each element having two nodes and 
each node having three degree of freedom. Linear 

polynomials are used for nodal variable 0u as well as 

Hermite cubic polynomials are used for the other 
variables of the elements. The displacements field 
given by (Eq.1) is rewritten in the matrix form as: 
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The strain field associated to (Eq.19) is given as 
follows: 
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Applying the variational Hamilton Principal, the 
variation of potential energy becomes: 
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Substituting the matrix  S  by its expression into 

(Eq.24) leads to: 
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The variation of kinetic energy is given as: 
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With the mass moment of inertia matrix: 
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Then the corresponding global matrices are assembled 
accounting for the connectivity using the standard 
assembling procedure and the following equation of 
motion is established:  
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2.3. Displacement field form with shear and without 
warping effects (ACSG) 
 

In this section, analytical and finite elements (FEM) 
formulations are indicated briefly. In fact, the 
development steps of (FEM) method are the same as 
presented in the previous section (2.2.2). Hence, the 
displacement field form with shear and without 
warping effects can be written as: 
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Where:  0
w x,t is the displacement due to shear 

deformations contribution. 
The corresponding strain field is expressed as follows: 

2
0 10
2 2

00
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0

b
xx

zz

xz

u w
z z

x x

w

x

  

 

 

  
    
   

  
 
  
  

 

 

(29) 

Where: 
0

3 represents the shear deformations effect. 

After the application of the Hamilton’ principle, the 

derived equation of motion in terms of 0u ; bw and 

0w are given as: 
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     
   

     
 

      
     
 

     
    

 

 
 
 
 

(30) 

Where  0 1 2, ,I I I have the same expressions as 

defined in section (2.2). The additional stress resultant 
and laminated stiffness constant due to shear 
contribution are defined as follows:  

1

1

1

i

i

zNc

xz

i z

Q dz




   and 
1

11 44

1

i

i

zNc
i

i z

G Q dz




  . 

Hence, the analytical solutions can be expressed as 
follows: 
 

  1 2

0 1 0 2
c cr x r x

c c cA x A e A e   (31a) 

  3 4 5 6

0 1 0 2 0 3 0 4
c c c cr x r x r x r x

c c c c cB x B e B e B e B e     (31b) 

Where: 

11 0

1

11

c

A I
r

A


 ;

11 0

2

11

c

A I
r

A


  ; 

 2 2 2 2

11 11 11 0 11 0 11 11 0

3 5

11 11

2 4
1

2
c c

B G B I B I B G I

r r
B G

    

   

 2 2 2 2

11 11 11 0 11 0 11 11 0

4 6

11 11

2 4
1

2
c c

B G B I B I B G I

r r
B G

    

  

The boundary conditions formulation is illustrated in 
Table2. 
 

Table2 Boundary conditions with shear and without 
warping effects 

 
Boundary 
Condition 

Associated Equation in matrix form 

 
 

Simply 
Supported 

     
     
     
      
     
     
     
    
        

3c 4c 5c 6c

3c 4c 5c 6c

1c 2c

0c1

2 2 2 2

3c 4c 5c 6c 0c2

r L r L r L r L

0c1

r L r L r L r L2 2 2 2

3c 4c 5c 6c 0c2

0c3

r L r L

1c 2c 0c4

0 0 1 1 1 1 A 0

0 0 r r r r A 0

0 0 e e e e B 0
=

0 0 r e r e r e r e B 0

1 1 0 0 0 0 B 0

r e r e 0 0 0 0 B 0


 

 
 

Clamped 
Free 

    
    
    
     
    
   
   
   
      

1c 2c

3c 4c 5c 6c

3c 4c 5c 6c

0c1

0c2

3c 4c 5c 6c 0c1

r L r L

1c 2c 0c2

r L r L r L r L2 2 2 2

3c 4c 5c 6c 0c3

r L r L r L r L2 2 2 2

3c 4c 5c 6c 0c4

1 1 0 0 0 0 A 0

0 0 1 1 1 1 A 0

0 0 r r r r B 0
=

r e r e 0 0 0 0 B 0

1 1 r e r e r e r e B 0

0 0 r e r e r e r e B 0







 
 
 
 

 

 
 

Clamped 
Clamped 

     
     
     
      
     
     
     
     
        

1c 2c

3c 4c 5c 6c

3c 4c 5c 6c

0c1

0c2

3c 4c 5c 6c 0c1

r L r L

0c2

r L r L r L r L

0c3

r L r L r L r L

3c 4c 5c 6c 0c4

1 1 0 0 0 0 A 0

0 0 1 1 1 1 A 0

0 0 r r r r B 0
=

e e 0 0 0 0 B 0

1 1 e e e e B 0

0 0 r e r e r e r e B 0

 

 

The natural frequencies associated to this form are 
determined by applying Newton-Raphson procedure. 
The derivation of the equation of motion using the 

finite elements procedure is obtained by substituting 

 Z and  iZ  by their new expressions as:  

 
1 0 0

0 1 0 1

z
Z

 
  
 

 and 
 

1 0

0 0 0

0 0 1

i

z

Z

 
 


 
  

. 

2.3. Displacement field form with shear and with 
warping effects (ACG) 
 
In this section, both shear and warping effects are 
considered. Hence, the displacements field can be 
expressed as follows: 
 

 

   
 
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  

 
 
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 

  
 
 

3
0

2

0

w x,tz

3h x

w x,t

 

 
 
 
(32) 

 
The warping effect contribution is introduced by the 

term 
 



3
0

2

w x,tz

3h x
which indicates a cubic variation of 

the displacements field through the thickness. 
The strain field is expressed as follows: 
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          

 

 
 
(33) 

The obtained equations of motion are given as: 
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(34) 

 

The additionally terms due to inclusion of warping 
effect are defined as: 
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(35c) 

The analytical solutions have, here, the following form: 

  1 2

0 1 0 2
g gr x r x

g g gA x A e A e   (36a) 

  3 4 5 6

0 1 0 2 0 3 0 4
g g g gr x r x r x r x

g g g g gB x B e B e B e B e   

 

(36b) 
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Applying the various boundary conditions, the 
obtained equations in matrices form are given as:  

 

Table3 Boundary conditions with shear and with 
warping effects 

 
Boundary 
Condition 

Associated Equation in matrix form 

Simply 
Supported 

     
     
     
       

   
 

   
 

   
 

  
       

3g 4g 5g 6g

3g 4g 5g 6g

r L2g
2g

0g1
2 2 2 2

3g 4g 5g 6g
0g2

r L r L r L r L

0g1

r L r L r L r L2 2 2 2

0g23g 4g 5g 6g

0g3

r L
0g4

1g 2g

0 0 1 1 1 1 A 0
0 0 r r r r A 0

0 0 e e e e B 0
=

B0 0 r e r e r e r e 0

B1 1 0 0 0 0 0

B 0r e r e 0 0 0 0


 

Clamped 
Free 

    
    
    
         
   
   
   
     

1g 2g

3g 4g 5g 6g

3g 4g 5g 6g

0g1

0g2

3g 4g 5g 6g
0g1

r L r L

1g 2g 0g2

r L r L r L r L2 2 2 2
0g33g 4g 5g 6g

r L r L r L r L2 2 2 2
0g4

3g 4g 5g 6g

1 1 0 0 0 0 A 0
0 0 1 1 1 1 A 0
0 0 r r r r B 0

=
r e r e 0 0 0 0 B 0

B 01 1 r e r e r e r e

B 00 0 r e r e r e r e







 
 
 
 

 

Clamped 
Clamped 

     
     
     
           
     
     
     
       

1g 2g

3g 4g 5g 6g

3g 5g 6g4c

0g1

0g2

3g 4g 5g 6g
0g1

r L r L

0g2

r L r L r L r L

0g3

r L r L r Lr L
0g4

3g 4g 5g 6g

1 1 0 0 0 0 A 0
0 0 1 1 1 1 A 0
0 0 r r r r B 0

=
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B 01 1 e e e e

B 00 0 r e r e r e r e

 

 

The analytical natural frequencies are derived by the 
resolution of the matrix form defined in Table 3 
applying Newton-Raphson scheme while the finite 
elements solutions are obtained by substituting  Z  

and  iZ  by their expressions in this case:  
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0 1 0 1 0

z
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Z h
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i

z z

Z

z

 
 

  
 
 

 

 

with the same procedure presented in section (2.2.2). 

3. Numerical Results and discussion 

In this section, numerical applications of sandwich 
beam using the three displacements field forms 
presented in the previous sections and subjected to 
various boundary conditions will be illustrated. The 
dynamic behavior of the sandwich beam in terms of 
natural frequencies are analyzed and compared for 
various displacement field forms. 
The sandwich beam is constituted by three layer 
(Nc=3) with two faces made of Aluminum and a 
homogeneous Honeycomb core materials (Fig.2). The 
mechanical and geometrical characteristics of the 
sandwich beam are shown in Table 4. 
 

Table4 Characteristics of the sandwich beam: 
Aluminum/Honeycomb/Aluminum 

 
 

Elastic faces 
Young Modulus 

Poisson ratio 
Mass density 

Thickness 

  =70×109  N/m2 

  =0.3 
  =2700 Kg/m3 

  =0.75 mm 

Homogeneous 
Honeycomb 

core 

Young Modulus 
Poisson ratio 
Mass density 

Thickness 
Shear Modulus 

  =130×106  N/m2 

  =0.33 
  =573 Kg/m3 

  =5 mm 
  =5600×106  N/m2 

 
Sandwich 

beam 
Dimensions 

 

 
Length 
Width 

 
L= 250 mm 
b=53 mm 

 

 

 

Fig.2. Sandwich beam configuration Al/Honeycomb/Al  
 
The obtained results in terms of natural frequency of 
vibration for the various studied boundary conditions 
are shown in (Tables 5, 6 and 7). Then, they are 
compared in terms of relative error, as presented 
respectively in (Tables 8, 9 and 10), in order to analyze 
the effect of the displacement field form on the 
vibration characteristics of the sandwich beam.  
 

Table5. Comparison of natural frequencies of a 
Clamped-free sandwich beam 

 

Mode 
N° 

SCG (FEM) 
[Hz] 

SCG 
(Analytical) 

[Hz] 

ACSG 
[Hz] 

ACG 
[Hz] 

1 55.11 55.25 57.68 59.2 

2 332.8 333.1 348.45 365.44 

3 824.48 825.53 871.23 898.35 

4 1138.1 1142.35 1398.43 1560.77 

5 1339.5 1340.34 1444.28 1687.23 

6 1765.4 1753.97 1820.18 2154.23 

7 1803.9 1806.03 2200.23 2564.12 

8 2246 2265.05 2600.65 3120.44 

9 2645.23 2648.78 3170.35 3545.81 

10 3635.18 3633.45 4101.23 5120.56 

 

Homogeneous 
Honeycomb core 

Aluminium faces 
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Table6. Comparison of natural frequencies of a Simply-
supported sandwich beam 

 

Mode 
N° 

SCG (FEM) 
[Hz] 

SCG 
(Analytical) 

[Hz] 

ACSG 
[Hz] 

ACG 
[Hz] 

1 306.41 306.73 310.07 312.34 
2 602.29 602.39 654.76 658.76 
3 682.3 682.32 703.38 783.98 
4 1115.5 1114.11 1250.04 1434.12 
5 1177.1 1182.69 1276.87 1598.01 
6 1411.5 1421.69 1587.12 1723.3 
7 1529.4 1555.94 1733.23 2045.76 
8 1780.2 1783.96 2340.77 2780.34 
9 1787.9 1791.77 2567.34 4873.02 

10 2056.5 2136.7 3000.2 5120.45 
 

Table7. Comparison of natural frequencies of a 
Clamped-clamped sandwich beam 

 

Mode 
N° 

SCG (FEM) 
[Hz] 

SCG 
(Analytical) 

[Hz] 

ACSG 
[Hz] 

ACG 
[Hz] 

1 361.45 361.5 361.7 360.98 
2 739.20 739.64 738.76 737.99 
3 815.5 815.92 817.98 820.23 
4 1185.9 1201.07 1250.77 1310.34 
5 1494.6 1497.62 1522.16 1634.23 
6 1632.6 1651.52 1688.12 1820.73 
7 2029.4 2052.74 2200.34 2500.34 
8 2080.3 2132.80 2320.12 2783.92 
9 2452.7 2469.47 2470.34 3132.84 

10 2524.8 2527.35 2745.98 4567.71 

 
The relative error associated to natural frequencies 

 f is evaluated using the following expression: 

 % 100 /ref cal ref

f f f f     

With: calf  is the natural computed frequency and 
reff is the reference natural frequency. 

 
Tables 8, 9 and 10 shows that the natural frequencies 
of the sandwich beam derived from (FEM) and those 
derived from analytical solutions, in the case where 
shear and warping parameters are not considered 
(SCG), are in good agreement. In fact, the relative error 
does not exceed 3% for the ten modes in the studied 
frequency band for all boundary conditions. This 
satisfactory between (FEM) and analytical natural 
frequencies leads to validate the proposed analytical 
solutions in this (SCG) case. Then, it is compared to 
others analytical solutions where shear and warping 
parameters are considered: (ACSG) or (ASC) cases. 
 As can be seen from Table 8, the introduction of 
only shear parameter induces a smaller increase in 
natural frequencies relative to (SCG) case while the 
addition of warping parameter leads to significant rise 
in natural frequencies which reaches 41% with 10th 
mode. This effect can be explained by the addition of 
high term  



3
0

2

w x,tz

3h x

which indicates a cubic variation 

of the displacements through the thickness of the 
sandwich beam generating hence a parabolic 

distribution of shear deformations. 

Table8. Relative errors between three displacements 
forms for Clamped-free sandwich beam 

 
Mode 

N° 
   %
SCG

f  
   %
ACSG

f  
   %
ACG

f  

1 0.25 4.39 7.14 
2 0.09 4.60 9.70 
3 0.46 5.53 8.82 
4 0.37 22.42 36.63 
5 0.06 25.89 25.89 
6 0.64 3.78 22.83 
7 0.11 21.83 41.98 
8 0.84 14.81 37.77 
9 0.11 19.69 33.68 

10 0.05 12.78 40.92 

  
Table9. Relative errors between three displacements 

forms for Simply-supported sandwich beam 
 

Mode 
N° 

   %
SCG

f  
   %
ACSG

f  
   %
ACG

f  

1 0.1 1.08 1.82 
2 0.02 8.69 9.35 
3 0.002 3.08 11.81 
4 0.12 12.20 28.72 
5 0.40 7.96 35.11 
6 0.70 11.63 21.21 
7 1.70 11.39 31.48 
8 0.20 31.21 55.85 
9 0.21 43.28 171.96 

10 3.89 40.42 139.65 

  
Table10. Relative errors between three displacements 

forms for Clamped-clamed sandwich beam 
 

Mode 
N° 

   %
SCG

f  
   %
ACSG

f  
   %
ACG

f  

1 0.01 0.05 0.15 
2 0.05 0.12 0.10 
3 0.05 0.25 0.53 
4 1.27 4.14 9.10 
5 0.20 4.94 8.28 
6 1.15 2.22 10.25 
7 1.15 7.20 21.80 
8 2.51 8.79 30.53 
9 0.68 0.03 26.87 

10 0.10 8.66 80.73 
  
Furthermore, the relative error of the 9th mode reaches 
171.96% in the case of simply supported sandwich 
beam (Table9). This leads to conclude that the warping 
phenomenon generate an amplification on natural 
frequencies which must be controlled in the design of 
industrial sandwich structures. This fact is affirmed 
with the Clamped-clamped sandwich beam in which 
the natural frequencies increase especially for the last 
vibration modes (Table 10). Thus, the enrichment of 
the displacement field form by shear and warping 
effects increases the natural frequencies for each 
studied boundary conditions. Consequently, the 
inclusion of shear and warping parameters increases 
significantly the natural frequencies of the sandwich 
beam which must be considered in the analysis for 
such structures. The more the form of displacements 
field is enriched by shear and warping parameters, the 
better is the prediction of dynamic behavior of 
sandwich beams. 
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Conclusions 
 
1) Three displacements field forms based on the 

introduction of shear and warping effects have 
been developed for the purpose of studying the 
free vibration analysis of laminated sandwich 
beams. 

2) Analytical and finite elements (FEM) solutions are 
established for various boundary conditions. 

3) Natural frequencies are computed and compared 
without and with the inclusion of shear and 
warping parameters. 

4) The comparison study shows that the introduction 
of these parameters increases the natural 
frequencies especially for the last three modes in 
the frequency band of interest. 

5) This allows controlling the dynamic behavior of 
such structures with regard to the potential 
dynamic calculation of the complex mechanical 
structures. 

6) The use of various displacement forms and various 
boundary conditions enables us a good estimation 
of free vibration for flexure problems of laminated 
sandwich beams. 

 
Future work 
 
An experimental investigation of a honeycomb 
sandwich beam will be presented in future work to 
more validate these numerical results. 
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