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Abstract 
  
Classification of Low-Resolution Remotely Sensed data using suitable classification methods depends on the quality of 
the data. For low resolution images, it is always difficult if not impossible to differentiate classes as the number of 
classes is increased above 8. Hence, as a prerequisite to image classification, Pan Sharpening or merging the low 
resolution image with a high resolution image of the same area considered, can improve the quality of the data. The 
method used for Pansharpening in this paper is Wavelet Resolution Merge. Further, image enhancement techniques 
can be applied to data for making the considered dataset more interpretable.  In this paper, Histogram equalization 
is employed on the data after Pansharpening process to study the improvements. Image parameters such as Standard 
Deviation and Mean are considered for decision making. It has been found that, by Pansharpening and Histogram 
Equalization, the quality of the input data is improved, which can further yield better classification results. 
 
Keywords: Pansharpening, Resolution Merge, Wavelet Transform, Histogram Equalization, Image Fusion, Remote 
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1. Introduction 
 

1 Pansharpening is a process of merging high-
resolution panchromatic and lower resolution 
multispectral imagery to create a single high-resolution 
colour image. Google Maps and nearly every map 
creating company use this technique to increase image 
quality. Pansharpening produces a high-resolution 
colour image from three, four or more low-resolution 
multispectral satellite bands plus corresponding high-
resolution panchromatic bands. 
  Pansharpening uses spatial information in the high-
resolution gray scale band and colour information in 
the multispectral bands to create a high-resolution 
colour image, essentially increasing the resolution of 
the colour information in the data set to match that of 
the panchromatic band. 
 Common colour-space transformations used for 
pan sharpening are HSI (hue-saturation-intensity), and 
YCbCr. The same steps can also be performed using 
wavelet decomposition or PCA and replacing the first 
component with the pan band. 
 Pansharpening techniques can result in spectral 
distortions when pan sharpening satellite images as a 
result of the nature of the panchromatic band. The 
Landsat panchromatic band for example is not 
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sensitive to blue light. As a result, the spectral 
characteristics of the raw pansharpened colour image 
may not exactly match those of the corresponding low-
resolution RGB image, resulting in altered colour tones. 
 
2. Prerequisites and Limitations 
 

 Precise Coregistration 
 
A first prerequisite is that the two images be precisely 
co-registered. For some sensors (e.g., Landsat 7 ETM+) 
this co-registration is inherent in the dataset. If this is 
not the case, a greatly over-defined 2nd order 
polynomial transform should be used to coregister one 
image to the other. By over-defining the transform 
(that is, by having far more than the minimum number 
of tie points), it is possible to reduce the random RMS 
error to the subpixel level. This is easily accomplished 
by using the Point Prediction option in the GCP Tool. In 
practice, well-distributed tie points are collected until 
the predicted point consistently falls exactly where it 
should. At that time, the transform must be correct. 
This may require 30-60 tie points for a typical Landsat 
TM—SPOT Pan Co-registration.  
 When doing the coregistration, it is generally 
preferable to register the lower resolution image to the 
higher resolution image, i.e., the high resolution image 
is used as the Reference Image. This will allow the 
greatest accuracy of registration. However, if the 
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lowest resolution image has georeferencing that is to 
be retained, it may be desirable to use it as the 
Reference Image. A larger number of tie points and 
more attention to precise work would then be required 
to attain the same registration accuracy. Evaluation of 
the X- and Y-Residual and the RMS Error columns in 
the ERDAS IMAGINE GCP Tool will indicate the 
accuracy of registration.  
 It is preferable to store the high and low resolution 
images as separate image files rather than 
Layerstacking them into a single image file. In ERDAS 
IMAGINE, stacked image layers are resampled to a 
common pixel size. Since the Wavelet Resolution Merge 
algorithm does the pixel resampling at an optimal stage 
in the calculation, this avoids multiple resamplings.  
 After creating the coregistered images, they should 
be codisplayed in an ERDAS IMAGINE Viewer. Then the 
Fade, Flicker, and Swipe Tools can be used to visually 
evaluate the precision of the coregistration.  
 
 Identical Spectral Range 
 
Secondly, an underlying assumption of resolution 
merge algorithms is that the two images are spectrally 
identical. Thus, while a SPOT Panchromatic image can 
be used to sharpen TM bands 1-4, it would be 
questionable to use it for TM bands 5 and 7 and totally 
inappropriate for TM band 6 (thermal emission). If the 
datasets are not spectrally identical, the spectral 
fidelity of the MS dataset will be lost.  
 It has been noted that there can be spectrally-
induced contrast reversals between visible and NIR 
bands at, for example, soil-vegetation boundaries. This 
can produce degraded edge definition or artifacts 
(Lemeshewsky G. P, 1999a, 2002b) 
 
 Temporal Considerations 
A trivial corollary is that the two images must have no 
temporally-induced differences. If a crop has been 
harvested, trees have dropped their foliage, lakes have 
grown or shrunk, etc., then merging of the two images 
in that area is inappropriate. If the areas of change are 
small, the merge can proceed and those areas removed 
from evaluation. If, however, the areas of change are 
large, the histogram matching step may introduce data 
distortions.  
 

 Theoretical Limitations 
 

As described in the discussion of the discrete wavelet 
transform, the algorithm downsamples the high spatial 
resolution input image by a factor of two with each 
iteration. This produces approximation (a) images with 
pixel sizes reduced by a factor of two with each 
iteration. The low (spatial) resolution image will 
substitute exactly for the “a” image only if the input 
images have relative pixel sizes differing by a multiple 
of 2. Any other pixel size ratio will require resampling 
of the low (spatial) resolution image prior to 
substitution. Certain ratios can result in a degradation 
of the substitution image that may not be fully 

overcome by the subsequent wavelet sharpening. This 
will result in a less than optimal enhancement. For the 
most common scenarios, Landsat ETM+, IKONOS and 
QuickBird, this is not a problem.  
 Although the mathematics of the algorithm is 
precise for any pixel size ratio, a resolution increase of 
greater than two or three becomes theoretically 
questionable. For example, all images are degraded due 
to atmospheric refraction and scattering of the 
returning signal. This is termed “point spread”. Thus, 
both images in a resolution merge operation have, to 
some (unknown) extent, been “smeared”. Thus, both 
images in a resolution merge operation have, to an 
unknown extent, already been degraded. It is not 
reasonable to assume that each multispectral pixel can 
be precisely devolved into nine or more subpixels.  
 
3. Wavelet Resolution Merge 
 
The ERDAS IMAGINE Wavelet Resolution Merge allows 
multispectral images of relatively low spatial 
resolution to be sharpened using a co-registered 
panchromatic image of relatively higher resolution. A 
primary intended target dataset is Landsat 7 ETM+. 
Increasing the spatial resolution of multispectral 
imagery in this fashion is, in fact, the rationale behind 
the Landsat 7 sensor design.  
 The ERDAS IMAGINE algorithm is a modification of 
the work of King and Wang with extensive input from 
Lemeshewsky. Aside from traditional Pan-
Multispectral image sharpening, this algorithm can be 
used to merge any two images, for example, radar with 
SPOT Pan (Lemeshewsky G. P, 1999, 2002, King R. L et 
al, 2001) 
 Fusing information from several sensors into one 
composite image can take place on four levels; signal, 
pixel, feature, and symbolic. This algorithm works at 
the pixel level. The results of pixel-level fusion are 
primarily for presentation to a human 
observer/analyst (Rockinger O et al, 1998). However, 
in the case of pan/multispectral image sharpening, it 
must be considered that computer-based analysis (e.g., 
supervised classification) could be a logical follow-on. 
Thus, it is vital that the algorithm preserve the spectral 
fidelity of the input dataset. 
 

 Wavelet Theory 
 

Wavelet-based image reduction is similar to Fourier 
transform analysis. In the Fourier transform, long 
continuous (sine and cosine) waves are used as the 
basis. The wavelet transform uses short, discrete 
“wavelets” instead of a long wave. Thus the new 
transform is much more local (Szabo V et al, 1997). In 
image processing terms, the wavelet can be 
parameterized as a finite size moving window.  
 A key element of using wavelets is selection of the 
base waveform to be used; the “mother wavelet” or 
“basis”. The “basis” is the basic waveform to be used to 
represent the image. The input signal (image) is broken 
down into successively smaller multiples of this basis.  
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Wavelets are derived waveforms that have a lot of 
mathematically useful characteristics that make them 
preferable to simple sine or cosine functions. For 
example, wavelets are discrete; that is, they have a 
finite length as opposed to sine waves which are 
continuous and infinite in length. Once the basis 
waveform is mathematically defined, a family of 
multiples can be created with incrementally increasing 
frequency. For example, related wavelets of twice the 
frequency, three times the frequency, four times the 
frequency, etc. can be created.  
 Once the waveform family is defined, the image can 
be decomposed by applying coefficients to each of the 
waveforms. Given a sufficient number of waveforms in 
the family, all the detail in the image can be defined by 
coefficient multiples of the ever-finer waveforms.  
 In practice, the coefficients of the discrete high-pass 
filter are of more interest than the wavelets 
themselves. The wavelets are rarely even calculated 
(Shensa M.J, 1992). In image processing, we do not 
want to get deeply involved in mathematical waveform 
decomposition; we want relatively rapid processing 
kernels (moving windows). Thus, we use the above 
theory to derive moving window, high-pass kernels 
which approximate the waveform decomposition.  
 For image processing, orthogonal and biorthogonal 
transforms are of interest. With orthogonal transforms, 
the new axes are mutually perpendicular and the 
output signal has the same length as the input signal. 
The matrices are unitary and the transform is lossless. 
The same filters are used for analysis and 
reconstruction.  
 In general, biorthogonal (and symmetrical) 
wavelets are more appropriate than orthogonal 
wavelets for image processing applications (Szabo V et 
al, 1997). Biorthogonal wavelets are ideal for image 
processing applications because of their symmetry and 
perfect reconstruction properties. Each biorthogonal 
wavelet has a reconstruction order and a 
decomposition order associated with it. For example, 
biorthogonal 3.3 denotes a biorthogonal wavelet with 
reconstruction order 3 and decomposition order 3. For 
biorthogonal transforms, the lengths of and angles 
between the new axes may change. The new axes are 
not necessarily perpendicular. The analysis and 
reconstruction filters are not required to be the same. 
They are, however, mathematically constrained so that 
no information is lost, perfect reconstruction is 
possible and the matrices are invertible.  
 The signal processing properties of the Discrete 
Wavelet Transform (DWT) are strongly determined by 
the choice of high-pass (bandpass) filter (Shensa M.J, 
1992). Although biorthogonal wavelets are phase 
linear, they are shift variant due to the decimation 
process, which saves only even-numbered averages 
and differences. This means that the resultant 
subimage changes if the starting point is shifted 
(translated) by one pixel. For the commonly used, fast 
discrete wavelet decomposition algorithm, a shift of 
the input image can produce large changes in the 

values of the wavelet decomposition coefficients. One 
way to overcome this is to use an average of each 
average and difference pair (Mallat S, 1998).  
 Once selected, the wavelets are applied to the input 

image recursively via a pyramid algorithm or filter 

bank. This is commonly implemented as a cascading 

series of highpass and lowpass filters, based on the 

mother wavelet, applied sequentially to the low-pass 

image of the previous recursion. After filtering at any 

level, the low-pass image (commonly termed the 

“approximation” image) is passed to the next finer 

filtering in the filter bank. The high-pass images 

(termed “horizontal”, “vertical”, and “diagonal”) are 

retained for later image reconstruction. In practice, 

three or four recursions are sufficient.  

 
 Histogram Equalization 
 
Histogram modelling techniques (e.g. histogram 

equalization) provide a sophisticated method for 

modifying the dynamic range and contrast of an image 

by altering that image such that its intensity histogram 

has a desired shape. Unlike contrast stretching 

histogram modelling operators may employ non-linear 

and non-monotonic transfer functions to map between 

pixel intensity values in the input and output images. 

Histogram equalization employs a monotonic, non-

linear mapping which re-assigns the intensity values of 

pixels in the input image such that the output image 

contains a uniform distribution of intensities (i.e. a flat 

histogram). This technique is used in image 

comparison processes (because it is effective in detail 

enhancement) and in the correction of non-linear 

effects introduced by, say, a digitizer or display system.  

Histogram modelling is usually introduced using 

continuous, rather than discrete, process functions. 

Therefore, we suppose that the images of interest 

contain continuous intensity levels (in the interval 

[0,1]) and that the transformation function f which 

maps an input image A(x,y) onto an output image 

B(x,y) is continuous within this interval. Further, it will 

be assumed that the transfer law (which may also be 

written in terms of intensity density levels, e.g., DB 

=f(DA) is single-valued and monotonically increasing 

(as is the case in histogram equalization) so that it is 

possible to define the inverse law DA = f-1(DB). An 

example of such a transfer function is illustrated in 

Fig.1.  

 All pixels in the input image with densities in the 
region DA to DA+dDA will have their pixel values re-
assigned such that they assume an output pixel density 
value in the range from DB to DB+dDB. The surface 
areas hA(DA)dDA and hB(DB)dDB will therefore be equal, 
yielding:  
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This result can be written in the language of 
probability theory if the histogram h is regarded as a 
continuous probability density function p describing 
the distribution of the (assumed random) intensity 
levels:  

)()()( AAABB DdDPDP                (2) 

 

 

Fig. 1 Histogram transformation function 

In the case of histogram equalization, the output 
probability densities should all be an equal fraction of 
the maximum number of intensity levels in the input 
image DM (where the minimum level considered is 0). 
The transfer function (or point operator) necessary to 
achieve this result is simply:  
 

)(*)( AAMA DPDDd                (3) 

 
Therefore,  

AAM

AD

AMM DFDduupDDf ()*)()(
0

              (4) 

 
where, FA (DA) is simply the cumulative probability 
distribution (i.e. cumulative histogram) of the original 
image. Thus, an image which is transformed using its 
cumulative histogram yields an output histogram 
which is flat!  
 A digital implementation of histogram equalization 
is usually performed by defining a transfer function of 
the form:  
 

)1]/[,0max()( 2  NnDroundDf kMA                     (5) 

Where N is the number of image pixels and nk is the 
number of pixels at intensity level k or less.  
 In the digital implementation, the output image will 
not necessarily be fully equalized and there may be 
`holes' in the histogram (i.e. unused intensity levels). 
These effects are likely to decrease as the number of 
pixels and intensity quantization levels in the input 
image are increased. 
 

4. Result and Analysis 
 
To validate the applicability of the proposed fusion 
method, a case study is presented in this section, which 
is carried out on IRS-p6/LISS III sample image with 
23.5 meter spatial resolution. The area considered is 
Mysore District, Karnataka, India, as illustrated in Fig.2. 
Fig.3 illustrates the panchromatic image of the same 
area with spatial resolution of 5 meter. The software 
used for performing Pansharpening and Histogram 
equalization is ERDAS IMAGINE v9.1  
 Fig.4 indicates the fused image after wavelet 
resolution merge technique is carried over images 
shown in Fig.2 and Fig.3. To improve the image 
characteristics, histogram equalization is carried out 
on pansharpened image and is presented in Fig.5. 
 Table I and Table II illustrate image parameters for 
the fused image before and after histogram 
equalization method is applied. 
 

Table 1 Results for Pan Sharpening before histogram 
equalization is applied 

 

Method Applied Min Max Mean Std dev 

Wavelet Transform 
without Histogram 
Equalization image 

0 254 37.754 48.577 

Original Multispectral 
Image 

0 255 38.158 49.491 

Original Panchromatic 
Image 

0 255 
69.108 

 
74.906 

 
Table 2 Results for Pan Sharpening after histogram 

equalization is applied 
 

Method applied Min Max Mean 
Std 
dev 

Wavelet Transform After 
Histogram Equalization 

Image 
77 255 127.471 65.168 

Original Multispectral 
Image 

0 255 38.158 49.491 

Original Panchromatic 
Image 

0 255 69.108 74.906 

 
Fig.6 indicates a bar-chart indicating the changes in 
image parameters before and after histogram 
equalization technique being applied to fused image. 
Image parameters such as Maximum and Minimum 
Intensity value of the pixels, Average Intensity values 
of the pixels, and standard deviation are considered for 
result analysis. As it can be seen from Fig.6, the mean 
and standard deviation values undergo significant 
change once histogram equalization method is applied. 
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Fig.2 3.5 meter Spatial Resolution Multispectral Data Considered for case study 
 

 
 

Fig.3  5 meter Panchromatic Data considered for case Study 
 

 

 

 
Fig.4 Wavelet resolution Merged Image 

 
 
Fig. 5 Wavelet resolution Merged Image After 
Histogram Equalization Process 
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Fig. 6 Comparison Chart showing Variations in Image 
Parameters for Wavelet Transformation merged image 
before and after Histogram Equalization Process. 
 
Conclusions 
 
Pansharpening plays a vital role in the Remote Sensing 
Image classification results. It is learnt from the 
literature survey that Pansharpened images tend to 
yield higher classification accuracy because of 
increased spatial resolution process during merging 
process. It is also learnt from the literature survey that 
as the Spatial resolution of the image increases, the 
classification process becomes less complex leading to 
clear bifurcation of image classes.   
 In this paper, Wavelet resolution merge technique 
is used for fusing the data and the results are analyzed. 
The image parameters are listed in TABLE I to 
illustrate the changes in image parameters before and 
after Wavelet resolution merge technique is applied. 
The results show positive growth of image parameters. 
Histogram Equalization provides a sophisticated 
method for modifying the dynamic range and contrast 
of an image by altering that image such that its 
intensity histogram has a desired shape. TABLE II 
shows the results for the image after it has gone 
through Wavelet resolution merge and Histogram 
Equalization. There is clearly improvement is image 
quality. Hence, we conclude that both Resolution 
merge and histogram Equalization techniques improve 
the quality of the data for further processing. For more 
satisfactory results, image classification and accuracy 
assessment methods can be carried out. 
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