
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2015 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

1525| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

Survey of Software Fault Localization for Web Application

Swati B. Ghawate†* and Sharmila Shinde†

†Department of Computer Engineering, JSCOE, Hadapsar, Pune, India

Accepted 20 April 2015, Available online 01 May 2015, Vol.5, No.3 (June 2015)

Abstract

Fault localization or localizing the root cause of failure is one of the most difficult processes in software debugging.
Hence, many automated techniques have emerged to help in this process. Most of these techniques are based on the
principles used in real life for fault diagnosis. These techniques are based on statistical analysis of program constructs
executed by passing and failing test case executions. Fault localization in dynamic web application is the problem of
decisive where source code modification has to be completed in order to fix the perceived failures. The cause of the
failure is called as execution bug that also called as fault. In the recent years automatic fault localization techniques
are more demanding , that guide programmers to the locations of faults with minimal human intervention. Such
high demand of fault localization led to development of various fault localization techniques. Although fault
localization in general has been an active research topic, automatically localizing web faults has received very
limited attention as of now. Therefore, in this paper we aim to understand existing fault localization techniques, we
primarily focus on state of the art techniques and discuss some of the key issues and concerns that are relevant to
fault localization.

Keywords: Dynamic web application, Automatic Fault localization Techniques, Testing

1. Introduction

1 Computer program may contain bugs regardless of the
effort spent on developing it . As larger and more
complex a program, the higher the chances of it
containing bugs. Effectively and efficiently remove
bugs in programs is always challenging for
programmers, while not unknowingly introducing new
ones at the same time. Furthermore, to debug,
programmers must first be able to identify exactly
where the bugs are, which is known as fault
localization; and then find a way to fix them, which is
known as faultfixing. In this paper, we focus only on
fault localization.

 Automated fault localization (AFL) techniques are
developed to reduce the effort of software debugging,
which is very frustrating task, often time-consuming
and the costliest process in software development. Also
finding root cause of a failure is the most difficult
process in debugging. So techniques to automatically
localize fault in software have come up.

 Debugging can be divided into two main parts (H.
Agrawal & R.A. DeMillo et al, 1993). The initial part is
to recognize harmful code by using available testing
technique. The next part is for programmers to actually
examine the identified code to decide whether it
certainly contains bugs. In the first part harmful code is

*Corresponding author: Swati B. Ghawate

prioritized based on its probability of containing bugs,
the next part assumes that bug detection is perfect. All
the fault localization techniques referenced in this
paper focus on the first part, such that suspicious code
is prioritized based on its likelihood of containing bugs.
Code with a higher priority should be examined before
code with a lower priority, as the former is more
suspicious than the latter, i.e., more likely to contain
bugs. As for the second part, we assume perfect bug
detection, i.e., programmers can always correctly
classify faulty code as faulty, and non-faulty code as
non-faulty. If such perfect bug detection does not hold,
then the amount of code that needs to be examined
may increase.
 Software fault localization for web application has

not completely addressed yet. In this paper we

referenced existing system Apollo (Shay Artzi et al,

2012) which localizes PHP based web application fault.

WEB applications are typically written in a

combination of several programming languages, such

as Java-Script on the client side, and PHP with

embedded Structured Query Language (SQL)

commands on the server side. Such applications

generate structured output in the form of dynamically

generated HTML pages that may refer to additional

scripts to be executed. When a failure is detected in

web application, there is no HTML file or line number

to point the developer.

Swati B. Ghawate et al Survey of Software Fault Localization for Web Application

1526| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

2. Problem Statement

Given a software that contains one or more faults, the
objective of software fault localization is to localize
code region that is most likely to contain fault. Here,
some information about the bug may be initially
present like a failing execution of the software, source
code of the software, feedback from user about type of
fault that occurs etc. Different techniques use different
information about the fault. Given such information,
the techniques pinpoint code regions that contain or
are likely to contain the fault.
 Failure represents a condition where the software
either crashes or produces incorrect output in an
execution of the software. A fault / bug represent code
in the software that is the source of failure and thus
needs to be modified. Failing output represents the
location in the source code where failure is finally
observed by the user. Hence, the aim of software fault
localization is to locate code region that is likely to
contain fault, given a failure or failing output. An
execution trace represents the sequence of statements
executed in the corresponding execution of the
software. A failing trace corresponds to execution trace
in an execution with failure and correct / passing trace
represents an execution that is correct and does not
show failure.
 In traditional programming languages, the goal of
fault localization is to find the faulty lines of code. Fault
localization for web application is more difficult than
this. Failures HTML code may be difficult to localize in
the web application because HTML code is often
dynamically generated by serverside code written, in
PHP or Java and so, when a failure is detected, there is
no HTML file or line number to point the developer to.
Debugging and locating fault of web applications is
very expensive and mostly manual task. When the
developers observe an error in a web program either
spotted manually or through automated testing
techniques , the fault-localization process get started .

3. Fault Localization Techniques

One common way to locate bugs when a program
execution fails is to insert print statements around the
suspicious code. This approach adds the burden on
programmers to decide where to insert print
statements, as well as decide on which variable values
to print. These choices are subjective, and may not be
meaningful. And it is also not an ideal technique for
identifying the locations of faults.

3.1 More Advanced Fault Localization Techniques

Classification of fault localization techniques including,
but not limited to, the following.

3.1.1 Static, Dynamic, and Execution Slice-Based
Techniques

Program slicing is a commonly used technique for
debugging. Reduction of the debugging search domain
via slicing is based on the idea that if a test case fails

due to an incorrect variable value at a statement, then
the bug should be found in the static slice associated
with that variable-statement pair. Lyle & Weiser and H.
Agrawal extended the above approach by constructing
a program dice to further reduce the search domain for
possible locations of a fault. A disadvantage of this
technique is that it might generate a dice with certain
statements which should not be included. To exclude
such extra statements from a dice (as well as a slice),
we need to use dynamic slicing instead.
 An alternative is to use execution slicing and dicing
to locate program bugs, where an execution slice with
respect to a given test case contains the set of code
executed by this test. There are two principles:

 The more successful tests that execute a piece of
code, the less likely for it to contain any fault.

 The more that failed tests with respect to a given
fault execute a piece of code, the more likely for it
to contain this fault.

The problem of using a static slice is that it finds
statements that could possibly have an impact on the
variables of interest for any inputs instead of
statements that indeed affect those variables for a
specific input. Stated differently, a static slice does not
make any use of the input values that reveal the fault.
The disadvantage of using dynamic slices is that
collecting them may consume excessive time and file
space, even though algorithms have been proposed to
address these issues. On the other hand, the execution
slice for a given test can be constructed easily if we
know the coverage of the test.

3.1.2 Program Spectrum-based Techniques

A program spectrum records the execution information
of a program in certain aspects such as how statements
and conditional branches are executed with respect to
each test. When the execution fails, such information
can be used to identify suspicious code that is
responsible for the failure. Tarantula (J. A. Jones and M.
J. Harrold et al, 2005) is a popular fault localization
technique based on the executable statement hit
spectrum. It uses the execution trace information in
terms of how each test covers the executable
statements, and the corresponding execution result
(success or failure) to compute the suspiciousness of
each statement as X/(X+Y), where X = (number of
failed tests that execute the statement)/(total number
of failed tests), and Y = (number of successful tests that
execute the statement)/(total number of successful
tests). One problem with Tarantula is that it does not
distinguish the contribution of one failed test case from
another, or one successful test case from another. To
overcome this problem, (Wong et al, 2010) propose
that, with respect to a piece of code, the contribution of
the nth failed test in computing its suspiciousness is
larger than or equal to that of the (n+1)th failed test.
The same applies to the contribution provided by
successful tests. In addition, the total contribution of
the failed tests is larger than that of the successful.

Swati B. Ghawate et al Survey of Software Fault Localization for Web Application

1527| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

Renieris & Reiss propose a program spectrum-based
technique, nearest neighbor, which contrasts a failed
test with another successful test that is most similar to
the failed one in terms of the distance between them.
The execution of a test is represented as a sequence of
basic blocks that are sorted by their execution counts.
If a bug is in the difference set between the failed
execution and its most similar successful execution, it
is located. For a bug that is not contained in the
difference set, the technique continues by first
constructing a program dependence graph, and then
including and checking adjacent un-checked nodes in
the graph step by step until the bug is located. The set
union, and set intersection techniques are also
reported in (Renieris & Reiss et al, 2003)

3.1.3 Statistics-based Techniques

Several statistical fault localization techniques have
also been proposed, such as Liblit05 (B. Liblit & M. Naik
et al , 2005) and SOBER(C. Liu &L. Fei, X et al, 2006)
which rely on the instrumentations and evaluations of
predicates in programs to produce a ranking of
suspicious predicates, which can be examined to find
faults. However, these techniques are constrained by
the sampling of predicates. They are also limited to
bugs located in predicates, and offer no way to
attribute a suspiciousness value to all executable
statements. In light of such limitations, (Wong et al,
2008) propose a cross tabulation (crosstab) based
statistical technique which uses only the coverage
information of each executable statement, and the
execution result with respect to each test case. It does
not restrict itself to faults located only in predicates.
More precisely, a crosstab is constructed for each
statement with two column-wise categorical variables
of covered, and not covered; and two row-wise
categorical variables of successful execution, and failed
execution. The exact suspiciousness of each statement
depends on the degree of association between its
coverage (number of tests that cover it) and the
execution results.

3.1.4 Program State-based Techniques

A program state consists of variables, and their values
at a particular point during the execution. A general
approach for using program states in fault localization
is to modify the values of some variables to determine
which one is the cause of erroneous program
execution. Zeller, et al. propose a program state-based
debugging approach, delta debugging, to reduce the
causes of failures to a small set of variables by
contrasting program states between executions of a
successful test and a failed test via their memory
graphs. Based on delta debugging, Cleve & Zeller
propose the cause transition technique to identify the
locations and times where the cause of failure changes
from one variable to another. A potential problem is
that the cost is relatively high; there may exist

thousands of states in a program execution, and delta
debugging at each matching point requires additional
test runs to narrow the causes. Another problem is that
the identified locations may not be where the bugs
reside. Gupta et al. 2005 try to overcome these issues
by introducing the concept of failure inducing chops.

3.1.5 Machine Learning-based Techniques

Machine learning techniques are adaptive, and robust;
and have the ability to produce models based on data,
with limited human interaction. The problem at hand
can be expressed as trying to learn or deduce the
location of a fault based on input data such as
statement coverage, etc. (Wong et al,2006) propose a
fault localization technique based on a back-
propagation (BP) neural network, which is one of the
most popular neural network models in practice. The
statement coverage of each test case, and the
corresponding execution result, are used to train a BP
neural network. Then, the coverage of a set of virtual
test cases that each covers only one statement in the
program are input to the trained BP network, and the
outputs can be regarded as the likelihood of the
statements being faulty. However, as BP neural
networks are known to suffer from issues such as
paralysis, and local minima, Wong et al. also propose
an approach based on radial basis function (RBF)
networks, which are less susceptible to these
problems, and have a faster learning rate.

3.1.6 Fault Localization Tool Apollo For Dynamic Web
application

Apollo (Shay Artzi et al, 2012) tool shows how the
Tarantula, Ochiai, and Jaccard similarity coefficient
faultlocalization algorithms can be enhanced to localize
faults effectively in web applications written in PHP by
using an extended domain for conditional and
function-call statements and by using a source
mapping. It also propose several novel test-generation
strategies that are geared toward producing test suites
that have maximal fault-localization effectiveness.
Apollo implemented various fault localization
techniques and test-generation strategies, and
evaluated them on several open-source PHP
applications.
 It is also found that all the test-generation
strategies that are considered are capable of
generating test suites with maximal fault-localization
effectiveness when given an infinite time budget for
test generation. However, on average, a directed
strategy based on path-constraint similarity achieves
this maximal effectiveness after generating only 6.5
tests, compared to 46.8 tests for an undirected test-
generation strategy

3.1.7 Other Techniques

There are other fault localization techniques including,
but not limited to, data mining-based (P. Cellier& S.

Swati B. Ghawate et al Survey of Software Fault Localization for Web Application

1528| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

Ducasse et al,2008) which discuss a combination of
association rules and Formal Concept Analysis (FCA) to
assist in fault localization), and model-based.
Similarity-based coefficients such as Ochiai & Jaccard
(R. Abreu, P. Zoeteweij et al , 2009 ; J. A. Jones & M. J.
Harrold et al 2005) are used. Studies also examine the
impact of coincidentally-successful tests on the
effectiveness of fault localization techniques.

4. Important Aspects of Fault Localization
Techniques

4.1 Effectiveness, efficiency, and robustness of a Fault
Location Technique

One important criterion to evaluate a fault localization
technique is to measure its effectiveness in terms of the
percentage of code, examined by programmers to
locate the bug(s). In addition, a fault localization
technique should also be efficient in that it should be
able to present quality results in a reasonable amount
of time without consuming extensive resources. Also, a
test set when executed against the same program, but
in two different environments, may result in two
different sets of failed test cases. For a fault localizer
relying on the coverage and test case execution results
as its input, its effectiveness may therefore also vary
depending on which environment it is employed in (or
rather depending on which environment its input data
is collected in). A fault localization technique should be
robust to such variations in input (noise), and still
perform effectively irrespective of environment.

4.2 Impact of Test Cases

All empirical studies independent of context are
sensitive to the input data. Similarly, the effectiveness
of a fault localization technique also depends on the set
of failed, and successful test cases employed. Using all
the test cases to locate faults may not be the most
efficient approach. Therefore, an alternative is to select
only a subset of these tests. An important question that
remains to be answered is how to select an appropriate
set of test cases to maximize the effectiveness of a
given fault localization technique.

4.3 Faults introduced by missing code

One critique against all the fault localization techniques
discussed is that they are incapable of locating a fault
that is the result of missing code. However, the
omission of the code may have triggered some adverse
effect elsewhere in the program, such as the traversal
of an incorrect branch in a decision statement. This
abnormal program execution path may possibly assign
certain code with unreasonably high suspicious values
that provides a clue to programmers that some omitted
code may be leading to control flow anomalies. Still, a
more robust approach should be included in any fault
localization technique to handle such faults.

4.4 Programs with multiple bugs

The majority of current research on fault localization
focuses on programs with a single bug. A possible
extension to programs with multiple bugs can be
achieved as follows. When two or more test cases
result in a failed program execution, it is not necessary
that all the failures are caused by the same fault(s).
However, if there is a way to segregate or rather
cluster failed executions together such that failed tests
in each cluster are related to the same fault(s), then
these failed tests, along with some successful tests, can
be used to localize the corresponding causative
fault(s). However, there are two significant challenges
that need to be overcome. First, there may be more
than one possible fault responsible for a failed
execution. Second, a precise due to relationship
between execution failures and causative fault(s) may
not even be found without expensive manual
investigation. Different clustering approaches have
been proposed to address these challenges. However,
significant research still needs to be done before such
problems can be completely overcome.

Conclusion

Choosing an effective debugging strategy usually
requires expert knowledge regarding the program in
question. In general, an experienced programmer’s
intuition about the location of the bug should be
explored first.
 We have seen different principles for fault
localization and their application in various software
techniques used for automatic fault localization. These
principles are orthogonal to each other and cover
different aspects of fault localization. Hence, we can
explore combining these principles to build techniques
that provide better fault diagnosis for web application.
 However, even with the presence of so many
different techniques, fault localization is far from
perfect. While these techniques are constantly
advancing, software too is becoming increasingly more
complex, which means the challenges posed by fault
localization are also growing. Thus, there is a
significant amount of research still to be done, and a
large number of breakthroughs yet to be made.

References

R. Abreu, P. Zoeteweij, and A. J. C. van Gemund (2009), A

Practical Evaluation of Spectrum-based Fault
Localization, Journal of Systems and Software, 82(11):1780-
1792

H. Agrawal, R. A. DeMillo, and E. H. Spafford (1993),
Debugging with Dynamic Slicing and Backtracking,
Software – Practice & Experience, 23(6):589-616

M. Renieris and S.P. Reiss (2003), Fault Localization with
Nearest Neighbor Queries, Proc. IEEE Int’l Conf.
Automated Software Eng.,pp. 30-39.

P. Cellier, S. Ducasse, S. Ferre, and O. Ridoux(2008), Formal
Concept Analysis Enhances Fault Localization in Software,

Swati B. Ghawate et al Survey of Software Fault Localization for Web Application

1529| International Journal of Current Engineering and Technology, Vol.5, No.3 (June 2015)

Proc. of the 4th International Conference on Formal Concept
Analysis, pp.273-288,

H. Cleve and A. Zeller (2005), Locating Causes of Program
Failures, Proc. of the 27th International Conference on
Software Engineering, pp. 342-351,

N. Gupta, H. He, X. Zhang, and R. Gupta (2005), Locating
Faulty Code Using Failure-Inducing Chops, Proc. of the
20th IEEE/ACM International Conference on Automated
Software Engineering, pp. 263-272.

J. A. Jones, J. Bowring, and M. J. Harrold (2007), Debugging in
Parallel,Proc. of the 2007 International Symposium on
Software Testing and Analysis, pp. 16-26.

J. A. Jones and M. J. Harrold (2005), Empirical Evaluation of
the Tarantula Automatic Fault-Localization Technique,
Proc. of the 20th IEEE/ACM Conference on Automated
Software Engineering . pp. 273-282

W. E. Wong, T. Wei, Y. Qi, and L. Zhao(2008), A Crosstab-

based Statistical Method for Effective Fault

Localization, Proc. of the 1st International Conference on

Software Testing, Verification and Validation,pp. 42-51.

A. Zeller and R. Hildebrandt (2002), Simplifying and Isolating

Failure-Inducing Input, IEEE Transactions on Software

Engineering, 28(2):183-200.

Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia (2012)

Fault Localization For Dynamic Web Applica-tion , IEEE

Int’l Conf. Software Eng.,vol. 38

S. Artzi, J. Dolby, F. Tip, and M. Pistoia (2010), Practical Fault

Localization for Dynamic Web Applications, Proc. 32nd

ACM IEEE Int’l Conf . Software Eng., vol. 1, pp. 265-274.

