
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2015INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

409| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

Supercharging web applications with Dart and MongoDB

Shrikar Chonkar†*, Siddaharth Suman†, Shreyas Sawant† and Shikha Moondra†

†Department of Computer Engineering, Atharva College of Engineering, Marve Rd, Malad (West), Mumbai-95, Maharashtra, India

Accepted 12 Feb 2015, Available online 17 Feb2015, Vol.5, No.1 (Feb 2015)

Abstract

Dart is an open source, structured programming language for the web. The syntax of Dart closely resembles to that of
Java, JavaScript and C#. It can be used in both the server and client environment, which makes it a sturdy bridge
between a backend and a front-end. MongoDB is a new age database solution. Although it may not replace the
relational databases as completely in near future, it has certain advantages over traditional databases which allow it
to work seamlessly over the distributed storage like the cloud. Hence, Dart coupled with MongoDB can be a perfect
formula for growing demand of faster and more scalable web applications.

Keywords: Dart, MongoDB, JavaScript, NoSQL, Open Source, Mongo-Dart.

1. Introduction

1 The World Wide Web was a very simple collection of
static html pages for some time after it was launched in
1990. This could have sufficed for that time but now it
is much more than a mere collection of simple static
web pages. Today’s web is much more complex and full
of possibilities but it is not as fast as desktop
applications.
 The world today lives on complex web applications
namely Gmail, Facebook, Twitter, YouTube, etc. We do
more than just browse through plain text documents,
we listen to music, watch movies, play games and what
not. Crave for speed still exists today. The world wants
the web to be faster to load and easier to access.

2. Javascript

JavaScript is a programming language most commonly
used as part of developing web based applications. The
JavaScript language provides the developers with the
ability to make their pages dynamic.
 JavaScript however, should not be confused with
the Java programming language. First appeared in
1995, the language has evolved from just being a
simple scripting language to be able to become basis
for full-stack web application frameworks. Although it
has been proved to work for the web developers for so
many years, it has some of its own shortcomings.
 As Paul Rubens says in his article, “JavaScript is
often used in a way that was never intended: as a
platform for the development of large Web

*Corresponding author: Shrikar Chonkar; Shikha Moondra is
working as Assistant Professor

applications that are hosted in the browser. If that had
been its intended use rather than simply for adding
simple dynamism to Web pages - it would almost
certainly have been designed differently.” (Paul
Rubens, 2013)
 JavaScript proved fast enough at the start for the
simple things, but as it became a large part and
demanded performance, it simply couldn’t live up to it.
This is when Google developed the V8 engine for
JavaScript and embedded it into its Chrome browser in
2008. Since then, it has seen considerable
improvements in performance and it seemed that
JavaScript still had some hope left. Now, the web
demands for much faster and efficient solutions since it
is no longer just limited to desktops and laptops but
also expanded towards smartphones as well and
JavaScript kills battery life on embedded devices. When
dealing with JavaScript, there are usually two problem
areas found: Performance and Code Structure.

2.1 Performance

Performance wise, JavaScript is only good for small
things. When used for making large applications,
JavaScript is quite slow and thus impacts the user
experience end.

2.2 Code Structure

JavaScript was not meant to be used as basis for large
complex applications, thus it is a difficult language for
large teams to develop in. This is because the language
lacks structure. For a single developer, there is no
problem, but for a team working on a big project,
communicating the intent of the code becomes difficult.

Shrikar Chonkar et al Supercharging web applications with Dart and MongoDB

410| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

Fig.1 Performance of Dart, dart2js and JS (www.dartlang.org)

3. Dart

Dart, appeared in 2013, is an open source, structured,
object oriented, programming language developed by
Google for developing browser-based, complex web
applications.
 Google created Dart because even though JavaScript
engines (V8) are becoming faster, web apps start and
work very slowly. We expect dart to help in two main
ways: better performance and better productivity.
(Kathy Walrath and Seth Ladd, 2012)

3.1 Performance

Performance wise, JavaScript is only good for small
things. When used for making large applications,
JavaScript is quite slow and thus impacts the user
experience end.

3.2 Productivity

Dart has a wide range of support libraries and
packages which help in working with other developers
and can easily reuse code from other projects.
 Dart has familiar syntax code. Whether it is for a
client-side developer experienced in JavaScript or for a
server-side developer familiar with Java and C#, both
will find the Dart code syntax very familiar. The
creators of Dart have taken special care in making the
language utterly easy to pick up.
 To help with this developer diversity, Dart has an
optional typing feature, which allows developers to
specify absolutely no types (by using the var keyword,
as in JavaScript), or use type annotations everywhere
(such as String, int, Object), or use any mixture of the
two approaches. This allows Dart’s type system to
bridge the gap between JavaScript’s dynamic type
system and Java’s and C#’s static type system. (Chris
Buckett, 2013)

Dart is suitable for building single page web
applications which are the norm these days. Dart can
run in the client as well in the server, hence the
developers don’t have to switch to different languages
when dealing with client and server applications.
 Therefore, Dart can act as a full-stack programming
language.
 When reading JavaScript, it is hard to point out the
entry point code, whereas Dart has a single entry point
called main() function. So, it is easier to find out where
the code is going to start from and hence, more
structure.
 Dart is fairly new and it needs a browser which
comes with a Dart VM to run it. Therefore, it runs on a
special version of Google’s open source Chromium
browser called Dartium. To maintain backward
compatibility with other browsers, Dart code compiles
to JavaScript by use of the dart2js compiler. The thus
obtained JavaScript code is claimed to be faster and
lighter than conventional handwritten JavaScript code
because of the tree-shaking technique. The tree-
shaking technique “shakes” off unused code, thus
decreasing the size of resultant JavaScript code.
 Apart from these, Dart has many other features like:
simple concurrency with Isolates, asynchronous tasks
with Futures, Method Cascades, separate light-weight
editor, static compilation with help of Type Annotation.
 Keeping the evolution of the web applications in
mind, it is always necessary to have a back-end that is
able to withstand the growing possibilities and
capabilities in web applications. Considering this, we
require databases that are able to store large amounts
of data effectively and provide a significantly high
performance when reading-writing-updating the data.

4. Relational databases

Relational databases are the most commonly used and
widely trusted type of databases till date. However

Shrikar Chonkar et al Supercharging web applications with Dart and MongoDB

411| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

these databases perform well only when it comes to
small read and write operations.
 As quoted by Buzz Moschetti in his blog, “RDBMS
came into the picture in 1974, since then the business
goals have changed and the pace of business has
increased.” (Buzz Moschetti, 2014) Along with the
business goals, the technologies and programming
languages that are using the databases have changed
drastically.
 During this change, the traditional relational
databases faced many challenges. Especially in the web
applications, that scale up and down constantly, it is
difficult for relational databases to scale accordingly
due to their rigid and schema based structure. Such
structure takes away the ability of relational databases
to store and query the dynamic user data.

This is where MongoDB comes in.

5. MongoDB

“MongoDB is an open-source document database that
provides high performance, high availability, and
automatic scaling.” (www.docs.mongodb.org) MongoDB
is of the leading NoSQL databases that supports the
schema-less data storage and portrays the ability of
handling large amount of unstructured as well as
structured data. Since the schema of this NoSQL
database is not fixed, it is highly possible to change the
structure of the data as per the scaling of the web
application.

5.1 Data Structure

Each entry in the MongoDB database is essentially a
key and value pair. Such a pair is called a ‘document’
and is equivalent to a tuple in relational databases.
When compared to relational databases, key holds the
same significance as a column. Such documents are
very much similar to JSON objects and can include
other documents, arrays or arrays of documents.

{
name : “Stephen”,
id : 45,
hobbies:[“soccer”, ”reading”]

}

Fig.2 Example of a JSON object in MongoDB

The advantages of using documents are:

•Documents (i.e. objects) correspond to native data
types in many programming languages.

•Embedded documents and arrays reduce need for
expensive joins.

•Dynamic schema supports fluent polymorphism.
(www.docs.mongodb.org)

Each document is a part of a larger bunch of
documents, called a ‘collection’. The collections are

similar to tables in a relational database. Lastly,
number of collections together form a database and
hence in order to access a record, one must first access
the database, then the appropriate collection and
finally the document.

5.2 Productivity

The productivity of NoSQL databases was designed
while keeping their distributed usage in mind. To
perform well in such environments, NoSQL databases
use two technologies. Scaling and MapReduce.
 The MongoDB supports automatic scaling and is
known for its outward and horizontal scalability as a
core feature.
 Here scaling out refers to partitioning the data
across different machines by adding additional
commodity servers or by adding extra storage space.
The document oriented data model of MongoDB makes
it easier for the database to split up data across
multiple servers. MongoDB automatically takes care of
balancing data and load across a cluster, redistributing
documents automatically and routing use requests to
the correct machines. This allows developers to focus
on programming the application, not scaling it. When a
cluster needs more capacity, new machines are added
and MongoDB will figure out how the existing data
should be spread to them. (Kristina Chodorow, 2010)
 The MongoDB implements scaling using two
alternatives – Replication and Sharding.
 Replication is the way of storing same data on
different node machines. Such replication allows the
application or a machine to establish multiple parallel
accesses to the database allowing faster and easier
access to data. Replication is also known to make
databases ‘fault-tolerant’. If one of the sources of a
replicated database fail, the other replicated copies of
that database act as backups and allow application
server to continue the operation.
 The biggest challenge with replication however, is
the data inconsistency. Multiple copies of same data
clearly mean that they need to be updated from time to
time or at the right time in order to provide the
accurate results irrespective of the source.
 Sharding is the ability of the database to split the
data into pieces and store each piece on a different
node machine, which is called a ‘Shard’.
 The result of this is a segregated collection of
objects spread on different nodes. The database system
must have a service to route the operations through
each node, so data can be stored, retrieved and deleted
on the right shard. (Maxmiliano F. BRAGA et al, 2011)
 The MapReduce is the combination of two
processes – Map and Reduce. This process
cumulatively ensures the compression of large amount
of data in order to provide aggregated results.
 The Map function returns key-value pairs and for
those keys that has multiple values, MongoDB applies
reduce function to produce the aggregated data. Both
of this function are JavaScript functions. MapReduce

Shrikar Chonkar et al Supercharging web applications with Dart and MongoDB

412| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

can return the results of a map-reduce operation as a
document, or may write the results to collections. The
input and the output collections may be sharded.
(www.docs.mongodb.org)

6. Dart with MongoDB

A Dart program alone, is not capable of establishing a
connection to a MongoDB database. However, there are
external libraries like Mongo-Dart, which allow a Dart
program to easily connect and interact with a Mongo
database.

Each Mongo database, when hosted on server, has its
own URL. This URL can be passed to MongoDart’s‘Db(
)’ class’ constructor which in turn connects to that
database, and returns an object. Thus obtained object
is then used to select one of the database’s collection.
Further using the same object of Db, one can call a
‘.open()’ method, which opens the collection in
background, asynchronously.

Once the collection is opened, the dart program is

free to read or write data into this collection.

{

Dbdb = new Db(“mongo://127.0.0.1/mongo-

example/sample”);

varsample_coll = db.collection(“first”);

db.open().then(() {

returnsample_coll.find();

});

}

Fig.3 Example of Mongo-Dart’s connection to database

Future work

Considering the various advantages of Dart and
MongoDB over conventional web technologies
available, it is certain that many new and powerful web
applications would be built based on them. The next
step in this realm is of developing a large scale
information system by harnessing the powers of Dart’s
properly structured code and swift operations
withMongoDB’sflexible and scalable databases.

Conclusion

From this, it is easy to conclude that Dart may as well
be backbone of upcoming web applications. With its
close resemblance to the well-known languages and
sophisticated code structure Dart is very much capable
of replacing JavaScript in the near future.
 MongoDB paired with Dart makes a solid platform
for the web applications to build upon. Using
technologies like AngularJS for the front end it is very
much possible to build a completely working cloud-
based, platform-independent application from the
scratch.

Acknowledgement

We would like to thank our project guide professor
ShikhaMoondra for helping and inspiring us
throughout this project. We are also grateful to our
head of the department, ProfessorMahendraPatil for
the support. Lastly we would not be able to conduct
this research without the infrastructure and facilities
provided by Atharva College of Engineering.

References

Paul Rubens (2013), Can Google Dart Solve JavaScript's

Speed and Scale Problems? http: // www. cio.com/
article/2382855.

www.dartlang.org.
Kathy Walrath and Seth Ladd (2012), Dart: Up and

Running, O’Reilly Media, Inc.
Chris Buckett (2013), Dart in Action, Manning

Publications Co.
Buzz Moschetti (2014), MongoDB vs SQL: Day 1-2,

www.mongodb.com/blog.
www.docs.mongodb.org.
Kristina Chodorow (2010), MongoDB: The Definitive

Guide, O’Reilly Media, Inc.
Maxmiliano F. BRAGA, F´abio N.D. LUCENA (2011),

Using NoSQL Database to Persist Complex Data
Objects. Brazilian Society for the Progress of Science
(www.sbpcnet.org.br)

http://www.dartlang.org/
http://www.mongodb.com/blog

