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Abstract 
  
After a strong earthquake the damage in the affected area can be so extended that it is not possible to make all 
building evaluations only by expert engineers. It is common the tendency of non-expert inspectors to aggravate or to 
underestimate the real level of damage. But, due to the fact that the damage levels are usually linguistic 
qualifications such as light, minor, moderate, average, severe, etc., an expert  system  implemented  in  a  computer  
for  post-earthquake  evaluation  of building damage has been developed using an artificial neural network and fuzzy 
sets technique. This expert system allows performing the building damage evaluation by non-experts that participate 
in a massive survey of buildings. The model considers different possible damages in structural and architectural 
elements and potential site seismic effects in the ground. It takes also into account the pre-existing conditions that 
can make the building more vulnerable, such as the quality of construction materials, plant and height irregularities 
and bad structural configurations. The system makes decisions about the building habitability and reparability 
applying fuzzy rule bases to the available building information. The global level of the building damage is estimated 
taking into account the structural and non-structural damage. The global building state is determined adding the 
rule base on ground conditions, obtaining thus the habitability of the building. The building reparability also depends 
on other fuzzy rule base: the pre- existent conditions. Thus, the expert system aids to make decisions on habitability 
and reparability of each building that are basic in the emergency response phase after the occurrence of a strong 
earthquake. 
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1. Introduction 
 

1 In case of a strong earthquake, the damage evaluation 
process must be made by a broad group of 
professionals related to building construction. It is 
highly desirable that people involved in this process 
have expertise and experience in these tasks. 
Nevertheless, the professionals having these skills are 
usually only a few and it is necessary to involve 
inexperienced voluntary engineers or architects. As a 
consequence,   the   damage   underestimation   or   
overestimation   is   common. Therefore, this work 
proposes the use of the computational intelligence as 
support to this task, developing an expert system for 
supporting the building damage evaluation process, 
using artificial neural networks and fuzzy sets. 
 
2. Damage evaluation after an earthquake 
 
As a result of earthquakes occurred in different 
countries located in seismic areas, the development of 
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guidelines to damage evaluation in buildings has been 
necessary, with the aim of deciding as soon as possible 
whether the buildings may continue being used or not. 
After a strong earthquake, the identification of the 
constructions which suffered serious damage, and that 
can represent thus a danger for the community, is 
crucial. The identification of the safe constructions that 
can be used as temporary shelters for evacuated 
people is also necessary. Some countries have 
developed systematic guidelines and procedures to 
evaluate the building damage, namely Mexico, Japan, 
United States, Italy, Macedonia, and Colombia, among 
others. Damage evaluations are useful to improve the 
effective earthquake-resistant construction codes, by 
identifying the type of failure of the structural systems. 
ATC, (1985, 2001). 

 
2.1. Problems with the damage evaluations 
 
When the damage in the area struck by an earthquake 
is extensive, local experts in earthquake engineering 
are always insufficient to make all the evaluations on 
the state of the buildings. Professionals with little or no 
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experience must be part of the evaluation teams. 
According to the findings of risk perception 
researchers, the tendency of inexpert inspectors is to 
aggravate or to underestimate the damage level. The 
information on the damage evaluation is highly 
subjective and depends on heuristic criteria and the 
biases of introduced by the inspectors in each case. The 
damage   levels   are   defined   in   all   evaluation   
guidelines   using   linguistic qualifications like light, 
moderate, severe or strong; these concepts may have 
different meanings according to the judgment of each 
person and a defined limit between these assessments 
does not exist clearly. ATC (2005) 
 
3. Computational modeling for post-earthquake 
damage evaluation 
 
The problems that appear in the process of damage 
evaluation suggested to the author to look for new 
tools that facilitate the work. The proposed model uses 
the fuzzy logic approach motivated by the incomplete 
and subjective character of the information. Post-
earthquake damage evaluations use qualitative and 
linguistic expressions that are appropriately handled 
by the fuzzy sets approach. On the other hand, an 
artificial neural network (ANN) is used to calibrate the 
expert system using the criterion of specialists. This 
enables the use of computational intelligence for the 
evaluation of damage by neophytes. For the model 
development, several building damage evaluation 
guidelines were taken into account. In addition, several 
members of the Colombian Association for Earthquake 
Engineering technically supported this work. The 
model has been implemented as a Visual BASIC 6.0 
computer program, and has been called Earthquake 
Damage Evaluation of Buildings, EDE. 

 
3.1. Artificial Neural Network structure. 

 
The ANN has three layers. The variables in the input 
layer of the neural network are grouped in four types, 
namely Structural Elements (SE), Non-structural 
Elements (NE), Ground Conditions (GC), and Pre-
existent Conditions (PC). Each one contributes with 
information to neurons in the intermediate layer; they 
only affect the intermediate neurons in the group to 
which they correspond. The number of input neurons 
or variables in the model is not constant; it depends on 
the class of the structural system that will be evaluated 
and on the importance of the different groups of 
variables selected for the evaluation. The number of 
neurons of the input layer of the structural elements 
group changes according to the class of building. Table 
1 presents the structural elements or variables 
considered according to the structural system. A 
qualification is assigned depending on the observed 
damage, using five possible damage levels that are 
fuzzy sets. For structural and non- structural elements, 
the following linguistics damage qualifications are 
used: None (N), Light (L), Moderate (M), Heavy (H) and 

Severe (S). Figure 1 illustrates the membership 
functions for these qualifications. The fuzzy sets are 
based on selected damage indices (section 3.2). 
Damage in the non-structural elements do not 
endanger the stability of building, but may represent a 
hazard for the occupants. The non-structural elements 
are classified in two groups: common and optional 
elements. Table 2 illustrates the groups. 
 The variables of the ground and pre-existent 
conditions are valuated through the qualification of 
their state at the evaluation moment. The linguistic 
qualifications are: Very Good (VG), Good (G), Medium 
(M), Bad (B), and Very Bad (VB). The ground 
conditions comprise the occurrence of landslides and 
soil liquefaction. Preexistent conditions are related to 
the quality of the materials of construction, plane and 
vertical shape irregularities of building, and the 
structural configuration. In the intermediate layer, one 
index is obtained by defuzzification of each group of 
variables. Taking into account the four available 
indices, it is possible to define in the output layer the 
building damage using fuzzy rules with the structural 
and nonstructural evaluations. The building 
habitability is obtained also involving the assessment 
of the ground conditions. Finally, using the pre-existent 
conditions it is possible to define the required level of 

reparability. 

 
Table 1 Structural elements according to the structural 

System 
 

Structural Elements Structural System 

Columns/walls, beams, joints 
and floors 

RC frames or (with) shear 
walls 

Columns, beams, connections 
and floors 

Steel frames 

Bearing walls and floors Unreinforced/Reinforced 
/Confined masonry 

 
Table 2 Non-Structural elements. 

 

Common elements 

Partitions 

Elements of façade 

Stairs 

Optional elements 

Ceiling and lights 

Installations 

Roof 
Elevated tanks 

 
3.1.1. Input layer of the ANN 

 
The fuzzy sets for each element or variable i (for 
instance columns or walls), in the input layer, are 
obtained from the inspector's linguistic qualifications 
of damage Dj in each level j and its extension wj . The 
damage extension (percentage of each damage level in  
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Damage Indicator 

 
Fig.1Membership functions for linguistic qualifications 

 
each element) varies from 0 to 100 and it is 
normalized. 
 

   
  

∑    
   ∑                  (1) 

 
The aggregated qualification of damage Di for each 
variable is obtained with the union of the scaled fuzzy 
sets, taking into account the damage membership 
functions 
µDj (Dj)) and its extensions or weights assigned by the 
inspector 
 
                                                           (2) 
 

                    
(    )            
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Union in the theory of the fuzzy sets is represented by 
the maximum membership or dependency. By means 
of defuzzification, using the Centroid of Area method 
(COA), a qualification index Ci is obtained for each 
variable of each group of neurons 
 

   *    (         
(    )          

     
      )+Centroid               (4) 

 

3.1.2. Intermediate layer of ANN 
 

In this layer, there are four neurons corresponding to 
every group of variables: structural elements, non-
structural elements, ground conditions, and pre-
existent conditions. Figure 2 shows a general scheme 
of the evaluation process. In this model of neural 
network, the inputs of the four neurons are the 
qualifications Ci obtained for each variable of the each 
group of neurons and its weight Wi, or degree of 
importance on the corresponding intermediate neuron 
introduced by the inspector according to its own 
criteria. These weights are normalized and are 
calibrated by means of a learning function (section 
3.2). The initial values and the training process of 
theses weights have been defined and made by the 
participation of experts in earthquake damage 
evaluation. Using these qualifications and weights of 
each variable i, a global index could be obtained, for 

each group k, from the defuzzification of the union or 
maximum membership of the scaled fuzzy sets. The 
membership functions μCki(Cki) and their weights Wki 

 

            (          
                

     
       )                                                                          (5) 

 

    *   (          
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Show the notation for the group of structural elements. 
The groups of variables related to ground and pre-
existing conditions are optional then they can be or 
cannot be considered within the evaluation. If this 
happens, the habitability and reparability of building is 
assessed only with the structural and non-structural 
information. 
 

3.1.3. Output layer of the ANN 
 

In this layer the global indices obtained for structural 
elements, non-structural elements, ground and pre-
existent  
 Conditions correspond to one final linguistic 
qualification in each case. The damage level is obtained 
according to the "proximity" of the value obtained to a 
global damage function of reference. In this layer, it 
takes place also the process of training of the neural 
network. The indices that identify each qualitative level 
(center of cluster) are changed in agreement to the 
indices calculated in each evaluation and with a 
learning rate.  
 Once the final qualifications are made, it is possible 
to determine the global building damage, the 
habitability and reparability of the building using a set 
of fuzzy rules bases. 
 

3.2. Learning process of the ANN 
 

The output layer of the neuronal network is calibrated 
when the damage functions are defined in relation to 
the damage matrix indices. In order to start the 
calibration, a departure point is defined, that means 
the initial indices of each level of damage.  
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Table 3 Comparative table for damage indicators 
 

Damage Level Park, Ang and Wen Sanchez-Silva Proposed 
Very light   0.1 0.10 0.07 

Light 0.10-0.25 (0.175) 0.20 0.17 
Moderate 0.25-0.40 (0.325) 0.35 0.33 

Severe 0.40-0.80 (0.60) 0.60 0.55 
Destruction  0.80 0.90 0.76 

 

 
 

Fig.2 Structure of the proposed ANN 
 

The indices proposed by the ATC-1310, Park et al., 
(1984), the fragility curves used by Goretti , (2005), 
and the indices used by Sanchez-Silva, et al., (2001) 
have been considered. The values of these indices 
correspond to the area of the centroids of each 
membership function related to each damage level. 
Table 3 shows the indices proposed in this work, which 
can be compared with those proposed by Park, Ang 
and Wen and Sanchez-Silva. The selection of the initial 
indices is based on those of Park; this choice can be 
justified on the basis that they have been calibrated 
with information of several studies. Those authors 
consider that collapse occurs in 0.8, although Stone et 

al., (1993) propose a collapse threshold of 0.77. 
Considering this, 0.76 is the selected index for the 
destruction level or collapse. In the selection of the 
damage index, the authors decided to be conservative, 
since the Indices corresponding to severe and 
moderate damage have been highly discussed, and 
doubts exist on whether they should be smaller. 
 The calibration is performed for each damage level 
and only the indices corresponding to the groups of 
variables considered in each evaluation are calibrated. 
The network learning is made using a Kohonen 
network 
                    [          ]        (7) 
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Fig. 3Method for building habitability and reparability 
 
Where Ikj is the value of the index of a group of 
variables k recalculated considering a learning rate α 
and the difference between the resulting index of the 
present evaluation and the previous indices in each 
level of damage j. The learning rate is defined by 
 
                                                                     (8) 
 
Where t is the number of times that has been used the 
index or weight that is calibrated. For training, the 
damage evaluations made during the Quindío’s 
earthquake in Colombia (1999) were used. The neural 
network has been calibrated for reinforced concrete 
framed buildings, however more information is 
necessary to complete the network training for other 
structural classes, such as the wood and steel frame 
structures, because these building classes are not 

common in that area struck by the earthquake. 
Reinforced concrete frames with shear walls were only 
a few also, therefore the number of building 
evaluations to calibrate this structural system were 

insufficient. 
 

Fuzzy rule bases 
 
Once obtained the damage level of the structural and 
non-structural elements, the state of the ground and 
pre-existent conditions, the habitability and the 
reparability of the building are assessed. Figure 3 
displays the fuzzy rule bases used. The global level of 
building damage is estimated with the structural and 
non-structural damage results. This has five possible 
qualifications: none, light, moderate, heavy and severe 
damage. The global building state is determined taking 
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into account the rule base of ground conditions and 
thus the habitability of the building. The linguistic 
qualification for the building habitability has four 

possibilities: usable, restricted, prohibited and 
dangerous. They mean habitable immediately, usable 
after reparation, usable after structural reinforcement, 
and non-usable at all. Besides, the building reparability 
depends on another fuzzy rule base: the pre-existent 
conditions. The building reparability has also four 
possibilities: not any or minor treatment, reparation, 

reinforcement, and possible demolition. 
 
Conclusions 
 
After a review of different guidelines for post-
earthquake building damage evaluation, an innovative 
expert system has been proposed. The distinct 
advantages and disadvantages of each method were 

considered for the development of the tool. 
 The expert system was developed by using artificial 
neural networks and fuzzy logic approach in order to 
improve the existing field methodologies. This type of 
tool is very appropriate in the practice, due to the 
subjective nature of the building damage evaluations 
and the incomplete information. 
 The evaluations made by expert engineers after the 
earthquake of Quindío, Colombia, in 1999, have been 
very useful for the expert system training. FEMA 
(1999). 
 The use of AI tools in Civil Engineering has very 
little diffusion until present, thus it is recommended to 
promote their use to provide suitable and versatile 
solutions to different problems in this field of 
knowledge. 
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