
International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
©2015 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet

 Research Article

288| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

Unintentional use of USB Channels and Protection

Pravin Phule†* and Rekha Kulkarni†

†Department of Computer Engineering, PICT, Pune, Maharashtra, India

Accepted 30 Jan 2015, Available online 05 Feb 2015, Vol.5, No.1 (Feb 2015)

Abstract

Protecting an organization against the information leakage is a big task, especially when the attacker is an insider.
This paper covers an insider attack based on Unintentional use of USB channels. Endpoint Protections are available
to guard against the leakage of information over USB Mass Storage and USB Printer interfaces but they fail to keep
watch on flow of data over USB Human Interface Devices such as USB speaker, USB keyboard and USB mouse etc.
Operating system allows USB device to identify itself as any USB device. To exploit this vulnerability a Hardware
Trojan horse device is developed which can identify itself as USB audio device or USB Keyboard device and make
Unintentional use of USB channels to steal the data. This paper also gives a possible protection scheme to detect and
block the stealing of data over Unintended USB Channels.

Keywords: Hardware Trojan horse, Protection, USB Channels, USB Security

1. Introduction

1 USB devices have now become the most reliable and
most frequently used type of devices. Almost every
purpose is satisfied with an appropriate USB device-
storage (flash drive), printing (printer), typing
(keyboard); dimensional input (mouse) or audio
(speaker) etc. All this has become possible because
USB specification provides a single physical interface
with base protocol for all USB devices. Whatever may
be the type of USB device interface remains same (USB
Implementers Forum, 2001). Ease of USB device lies in
its Plug and Play feature that signifies no need to install
the device on computer system with some kind of
software driver, just plug it and use. Plug and play
feature makes USB device more favorable. But this
feature also leads to the risk of malware and Trojan
attacks (Stasiukonis, 2006).
 To deal with plug and play protective software
solutions are available to keep your system safe and
block the information leakage through plug and play
(Centenial Software, 2012), (CheckPointSoftware,
2009), (Device Lock Inc., 2014). Endpoint security
solutions (ESSs) for a corporate can be employed to
govern the flow of information from computer system
to the attached devices so that there is no leakage of
information. ESSs can allow certain users to access
certain devices (but not all the devices) inside the
organization by enrolling their serial numbers in the
Access Control List (ACL). This strategy works, when
only the ACL enrolled devices are permitted for inside

*Corresponding author: Pravin Phule

use. But ESSs cannot guarantee the same in case of USB
Human interface devices like mouse, keyboard,
headsets or speakers etc., (Centenial Software, 2012),
(CheckPointSoftware, 2009), (Device Lock Inc., 2014).
This breach into security can be exploited with a
development of a Hardware Trojan horse Device to
make an unintentional insider attack to the computer
system in an organization to steal the information of
interest. Unintentional use of USB channel means that,
using USB channel for doing something which is not
signified in USB specification (Clark, et al., 2009),
(Clark, et al., 2011). Let’s take an example of
communications between a USB keyboard and a
computer. There are two channels between USB
Keyboard and computer system for intentional use.
One for the transmission of key presses from keyboard
to computer and other for the transmission of
keyboard LEDs status (Caps Lock, Num Lock and Scroll
Lock) from computer to USB keyboard. An application
running on the computer system could make an
unintentional use of USB keyboard channel to transfer
the information of interest in the form of toggling
keyboard status LEDs (Clark, et al., 2009), (Clark, et al.,
2011). Similarly unintentional use of USB Audio
Channel to transfer the information of interest in the
form of audio packets is also possible.

2. Related Work

As per the USB specification operating system allows
the attached USB device to identify itself as any kind of
USB device. Using this subjection a USB Meta-Device
can be programmed to enumerate itself as any kind of

Pravin Phule et al. Unintentional use of USB Channels and Protection

289| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

USB device with a mischievous driver loaded on the
computer system (D. Barral and D. Dewey, 2005).
 The permitted use of USB devices can be exploited
using USB Auto Run and Auto Play features to copy
data of a computer system and automatically execute
malicious code on a network endpoint without the
user’s knowledge (M. Al-Zarouni, 2006). A software
Trojan horse can be developed using covert channels of
various network layers. Unintended USB channel is
same as covert channel though we don’t put any extra
effort to make it unobservable (Shah, et al., 2006). It
can be used between the keyboard and computer as a
key logger. It can also be used to pull out the data from
a computer system by adjusting the timing information
details of packets transferred over the internet.
However, it requires that the computer with internet to
maintain the session. In our project there is no need of
internet connectivity to pull out the information of
interest from the computer system.
 Use of less reliable integrated circuits (ICs) may
lead to the process reliability Trojans (Shiyanovskii,
2010). Due to the high cost of new fabrication facilities,
industries are choosing the less reliable integrated
circuits(IC). Vulnerabilities of such integrated circuits
(ICs) can be exploited to make a hardware Trojan and
there are some ways to detect it (Ronald Smith and
Scott Knight, 2008). Digital IP cores from the third
party cannot be assumed as trusted because a Trojan
can be inserted into them (Xuehui Zhang and
Tehranipoor, 2011). However, in this project we are
not focusing on less reliable ICs or untrusted IP cores.
But this paper focuses on the liability of the operating
system which relies on USB device for its identification.
The device may identify itself as any kind of USB device
such as USB keyboard or USB speaker and
communicate over Unintended USB audio channel.
 Vulnerable keyboard controller can be maliciously
used to gain the passwords using the noise mingling
technique even in presence of the keyboard protection
software. However, the attacker can be blocked from
gaining the exact password (Kangbin Yim and
Soonchunhyang, 2010). Another noise mingling
technique is discussed in (Lee, et al., 2010). There is a
solution that can be applied to the vulnerable keyboard
controller. But, in this paper we have focused on the
possible solution to block unintentional use of USB
channels.
 The Hardware Trojan horse device for the

unintentional use of USB Channels is implemented in

(Clark, et al., 2009), (Clark, et al., 2011). The Hardware

Trojan horse device is built using PLXs Net 2280

Programmable Peripheral Controller (PLX Technology,

2008) which is an expensive development platform.

We have used a low cost USB prototyping device for

the development of Hardware Trojan horse device for

the unintentional use of USB Channels: Mbed NXP

LPC11U24 Microcontroller (Mbed, 2012). Also, in this

paper we have implemented the possible solution to

block the exfiltration of data over unintended USB

channels.

3. Problem Definition and Solution

The concept of Hardware Trojan horse device (Clark, et
al., 2009), (Clark, et al., 2011) and the solution is
discussed below.

3.1 Problem Definition

An application on the computer system could create an
unintended USB keyboard channel to pull out the
information of interest in the form of toggling
keyboard status LEDs. Also an application on the
computer system can be used to send the confidential
data over unintended USB audio channel by using
Isochronous Out Transfer line ((USB Implementers
Forum, 2001) and send the confidential data by putting
it in audio packets and playing the audio file. Fig.1
shows Interrupt In, Control Out and Isochronous Out
lines of communication between USB Device and
computer system.

Fig.1 Hardware Trojan horse Device

The Human Interface Devices: USB keyboard and USB
speaker are targeted in this project. According to
previous research (Clark, et al., 2009) and (Clark, et al.,
2011); Human Interface Devices: USB keyboard and
USB speaker are not well regulated by Endpoint
Security Solutions. But ESSs do regulate the devices
such as USB flash, USB printer etc.

3.2 Protection Software (Solution)

The solution can be in the form of software application
on the computer system. This software will keep a
watch on USB keyboard channel by detecting
continuous toggling of Keyboard status LEDs and USB
audio channel by recording audio being played for
specific pattern of data in audio packets.
 After detecting such type of activity, it will be
automatically blocked (Pravin Phule, 2012). But with
this approach there is a chance of exfiltration till it gets
detected. Therefore the exact source of exfiltration
needs to be blocked. The source of this exfiltration lies
in the specific pattern observed in the files used for
exfiltration. The files with suspicious patterns that may
cause the exfiltration of data by making Unintentional
use of USB Channels must be immediately removed.

Pravin Phule et al. Unintentional use of USB Channels and Protection

290| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

Implementation of the Protection Software based on
detection and removal of files with specific suspicious
patterns is discussed in more detail in section 5.2.
Fig.2 shows the solution regulating the flow of data
over Control Out and Isochronous Out lines.

Fig.2 Protection Software (Solution)

4. Unintentional Use of USB Channels

In this research we are considering USB channels
which are not well regulated by the Endpoint Security
Protections. These USB channels are classified into two
types: User-Space and Kernel-Space channels (Clark, et
al., 2009), (Clark, et al., 2011). In case of User-Space
channels, the USB protocol is enough to make
unintentional use of USB channels; but in case of
Kernel-Space channels, the computer system’s kernel
can be disrupted and the USB System Software can be
modified to make unintentional use of USB channels. In
this paper we focus only on User-Space unintended
USB channels.
 There are four types of USB transfers: Bulk Transfer
(used by USB flash drives), Control Out (used by the
operating system to send LED status to the all attached
keyboards), Interrupt In (used by USB keyboards to
send the key presses to the computer system) and
Isochronous Out (used by the operating system to send
audio packets to the USB Speaker when an audio file is
played). Bulk transfers are protected with the use of
Endpoint Security Solutions. Interrupt transfers are not
considered because they send the key presses from
USB keyboard device to the computer system,
therefore Interrupt In cannot be used to pull out the
information of interest from computer system. Control
Out and Isochronous Out transfers are only considered
for this research. As per the need of this project,
Hardware Trojan must be capable of identifying itself
as USB keyboard or USB speaker during the
enumeration process. Almost every computer requires
the keyboard. The Endpoint Security Solutions don’t
consider it for regulating the flow of data.
Consequently, the Control Out transfer to the USB
keyboard can be used unintentionally to pull out the
information of interest. USB keyboards are Low-Speed
devices. Higher throughput can’t be expected from
unintentional use of USB keyboard channel. For a good,
considerable throughput the Isochronous Out transfer

to the USB speaker is used. As USB speaker can only
receive audio packets, it is not considered by Endpoint
Security Solutions for regulating the flow of data.

4.1 Unintentional use of USB Keyboard Channel

As compared to USB speaker, USB keyboard is a Low
Speed Human Interface Device. There are two channels
between USB Keyboard and computer system used
intentionally: Interrupt transfer for the transmission
of key presses from keyboard to computer and Control
Transfer for the transmission of keyboard LED status
(Caps Lock, Num Lock and Scroll Lock) from computer
system to USB keyboard. Thus Control Transfer line of
USB Keyboard can be used to pull out the information
of interest from computer system to the attached USB
keyboard.

Table 1 Keyboard Output Report (USB Implementers
forum, 2001)

 As given in the USB Specification (USB Implementers
forum, 2001) and the USB Device Class Definition for
Human Interface Devices (USB Implementers forum,
2001) the format of Keyboard Output Report used by
the Control Transfer is given in Table 1. Computer
system generates the Keyboard Output Report each
time the keyboard transfers the modifier key press to
computer system.
 Keyboard Output Report is transmitted by
computer system to all attached keyboards. Using the
Keyboard Output Report, the attached USB keyboards
toggle their corresponding LEDs. The three modifier
bits from the Keyboard Output Report can be used for
the exfiltration of data. Keyboards Output Reports can
be generated after every 109.5 milliseconds. That
indicates the exfiltration of 3 bits of information after
every 109.5 milliseconds. The theoretical throughput is
3.42 bytes/sec.

Fig.3 Keyboard LED Coding Scheme (Clark, et al., 2009)

Keyboard LED coding scheme used in this project is
based on simple state diagram as shown in Fig.3. The

Pravin Phule et al. Unintentional use of USB Channels and Protection

291| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

Keyboard LED Coding Application on the computer
system can make the use of status modifiers (Scroll
Lock, Caps Lock, and Num Lock) to encode the
information of interest in the form of toggling
keyboard LEDs. It encodes the data of input file in the
form of toggling keyboard LEDs using a VBScript file
and that VBScript file is executed. In this coding
scheme seven symbols are used to represent 7-bit
ASCII characters. In Fig.3 we see that the state
machine can begin at an arbitrary state to toggle the
status modifier keys, ABC: where A, B, C contain the
current states of Scroll Lock, Caps Lock and Num Lock
respectively. A 7-bit ASCII code can be generated using
a Keyboard Output Report from which one, two or all
the three LED bits are toggled. In these seven symbols,
four symbols represent 2-bit information; two symbols
represent 1-bit information (padded with zero on the
left), which also represent Start of Character and the
remaining one symbol represents Start/End of Frame
(SOF/EOF). Toggling of SOF/EOF symbol twice
indicates start and end of a message which creates
overhead of 1 byte for the message of any arbitrary
size. To exfiltrate a single character, four Keyboard
Output Reports are generated. For example, to
exfiltrate character “R” (7-bit ASCII: 0101 0010) the
following four Keyboard Output Reports are generated:
Toggle AB (Scroll Lock and Caps Lock) (SOC 01);
Toggle B (Caps Lock) (01); Toggle C (Num Lock) (00);
and Toggle BC (Scroll Lock) (10).
 Keyboards Output Reports can be generated after
every 109.5 milliseconds. This delay is imposed to
ensure that Keyboard Output Report is successfully
received by the USB keyboard interface (Clark, et al.,
2009). For a message of size n bytes, the Keyboard LED
Channel Throughput (Clark, et al., 2009) can be
calculated as follows:

 (1)

The theoretical throughput of 3.42 bytes/sec can never
be achieved with the chosen LED coding scheme due to
the overhead of framing characters. Because of the
imposition of overhead by the framing symbols
(SOF/EOF), the maximum throughput that can be
achieved is about 2.283 bytes/sec.

4.2 Unintentional use of USB Audio Channel

Unlike USB keyboard, USB speaker is a Full-Speed USB
audio device. USB audio device uses two types of USB
Transfers with the computer system: Control Transfer
which is used to communicate the control data with the
computer system; the other is an Isochronous Transfer
which is used to receive the audio packets from the
computer system. The USB Specification specifies the
maximum size of data packet using Isochronous
Transfer as 1023 bytes. Also a Full-Speed device can
receive a data packet of size 1023 bytes every
millisecond which indicates the throughput of 1023
kB/s.

The encoding style outlined in the USB Device Class
Definition for Audio Devices 2.0 (USB Implementers
forum, 2006), is used for the transmission of
isochronous data to an audio device into structured
blocks. The size of each audio block in bytes/sample
can be given as follows:

 (2)

As we are using MBED LPC11U24 microcontroller, a
low speed, low cost USB prototyping device, we cannot
expect the Full-Speed audio interface on the device. We
have chosen the audio coding scheme to match with
the audio interface that works well with the device.
The PCMWAVEFORMAT (Microsoft, 2014) audio
format is used in this project with sample resolution of
2 bytes/sample and one channel. That means we get a
block size of 2 bytes. The sample rate of the audio file is
also responsible for the number of data blocks that can
be embedded into one audio packet. The
PCMWAVEFORMAT audio format is used with a sample
rate 48000 samples per second for each channel. That
means 48 blocks of 2 bytes, per data packet are
transmitted every 1 millisecond. With these details for
an audio file we can calculate the size of an audio
packet as follows:

 (3)

Therefore the audio packet size is 48 * 2 = 96 bytes.
Thus with PCMWAVEFORMAT, we get the Theoretical
Throughput of the Audio Channel as about 96 kB/s.
 To ensure Theoretical Throughput we used
Teraterm Terminal Emulator (Sourceforge projects,
2013) to observe audio data that is being sent to the
device. We developed the USB Audio Coding
Application in C# which allows us to select the text file
to embed the data of text file into the audio packets and
create a wave files according to the above mentioned
format. Also the USB Audio Receive interface, to
receive and store audio packets, for the device Mbed
LPC11U24 was developed in C++ using Mbed Online
Compiler (Mbed, 2013). Wave files created using USB
Audio Coding Application were played using

PlaySound() API and Windows Media Player. After the
series of experiments, the observed obstacles and
solutions to cope up with them are as follows:

1) Change in audio representations

For representing every ASCII character embedded in
the audio file there are 3 equivalent audio codes
observed when the audio is played (Clark, et al., 2009),
(Clark, et al., 2011). But in our project we observed up
to 8 audio codes for the ASCII character. Therefore we
considered a single audio code and its nearby values
for decoding an audio code to its equivalent ASCII
character. We also observed that these audio codes
change after an unidentified period of time but not
immediately. So we programmed USB Audio Coding
Application as follows: USB Audio Coding Application

Pravin Phule et al. Unintentional use of USB Channels and Protection

292| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

first creates and plays the wave files which are
embedded with the ASCII characters. After that
similarly it embeds the text file’s data in a wave file and
plays it over the USB Isochronous Transfer line.

2) Size of data

We observed that exfiltrated audio codes get disturbed
when the full size (96 bytes) data is embedded in an
audio packet. We tried for different values for the size
of data to be embedded in an audio packet and then
came to the conclusion that the data size should be 47
bytes. USB Audio Coding Application was
reprogrammed so that it embeds 47 bytes of data
repetitively in an audio packet till it reaches the
maximum value i.e. Audio Packet Size: 96 bytes. After
that it was observed the consistent audio codes for
each character which were played in the form of audio
over the USB Isochronous Transfer line.

3) Type of Characters

Due to the observed inconsistency in audio codes, we
were not able to map the lowercase letters and other
remaining symbols to their equivalent audio
representations. Because of the variability in the data
transmitted, we decided to use only uppercase ASCII
letters, numbers and some punctuation symbols. Total
68 ASCII characters were used for the transmission of
data in the form of audio packets. Each of the
transmitted symbols can be mapped to its equivalent
audio representations after it has been played.

4) Receiving capability of device

On the other hand, we also observed that Mbed audio
device receives and stores the inconsistent audio codes
when we tried to save the full 96 bytes packet on the
device. Then we tried to save the half of the audio
packet and after that we found that consistent audio
codes were stored on the device. So we programmed
the USB Audio Receive interface on the device so that
when it receives an audio packet, only half of the audio
packet is stored on the device.

5) Size of wave

It was observed that when we played a small sized
wave file, nothing was stored on the device. After that
we observed that when we played a wave file which is
at least 5 seconds long in duration then only the half of
the audio packet (48 bytes) is stored on the device.
Already we made the conclusion for the size of data to
be embedded in an audio packet as 47 bytes. So we
modified USB Audio Coding Application in such a way
that for every 47 bytes of data it creates a separate
wave file by embedding the data repetitively in audio
packets so as to make it of at least 5 seconds long in
duration. Also we kept a digital silence of 2 seconds
after each file is played so that audio device
successfully receives and stores the audio data.

6) Ordering

The audio data packet stored on the device was not in
the ordered sequence making it difficult to decode. It
was observed that if the first audio code stored on the
device whose equivalent ASCII character was at odd
location in played audio packet, then it was followed by
the audio code whose equivalent ASCII character was
found at the next odd location in the played audio wave
file. That means if first byte is odd then it will be
followed by next odd bytes which does not mean that
first byte stored on the device whose equivalent ASCII
character code is always at the first location in played
audio packet. Finally we made conclusion that odd
bytes will be followed by the next ordered odd byte
and this continues up to the last odd byte in the audio
packet; next to that all even bytes are stored; followed
by the remaining odd bytes if any, starting from the
first odd byte. The same pattern was observed for even
bytes. That means equivalent audio code for the first
ASCII character in played audio packet can be at any
location in the data packet stored on the device. So we
used starting delimiters, ASCII character ‘>’ to indicate
the start of odd bytes and ‘?’ to indicate the start of
even bytes.

7) Security Restriction

Upload Application to reside on Mbed LPC11U24
device as an USB Keyboard interface is discussed in
section 5.1. This application can be used to upload
either Keyboard LED Coding Application or USB Audio
Coding Application in the form of key presses to the
computer system. For this we converted both of the
Keyboard LED Coding Application and USB Audio
Coding Application from exe to VBScript using
Exe2VBS binary encoder as used in previous research
(Tarasco, 2003). VBScript file contains ASCII characters
that can be converted into key presses. Upload
Application converts ASCII characters from VBScript
file into their equivalent key presses and send them to
computer system. This method was worked well on
Windows XP (Clark, et al., 2009). Exe2VBS binary
encoder just wraps the exe file into VBScript file. After
executing such VBScript file, it first, unwrap an exe file
and then that exe file is executed. But now an exe (or
any other file) file generated from VBScript file is
identified as a Trojan and immediately gets
quarantined before it executes (McAfee Inc., 2014).
Therefore we decided to upload the C# code files
without any conversion in the form of key presses. We
chose three files from C# project for uploading in the
form of key presses: Form1.cs, Form1.designer.cs and
Form1.resx. The Keyboard LED coding application also
makes the use of VBScript file for toggling keyboard
LEDs. But it uses the plain VBScript code instead of
wrapping exe inside it. It implies that plain VBScript
code can directly execute and it does not get caught by
the antivirus protections.
 After considering all the above discussed things, it
is clear that we can exfiltrate 47 bytes in a period of 5

Pravin Phule et al. Unintentional use of USB Channels and Protection

293| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

seconds and 2 more seconds are required to put the
gap between two consecutive exfiltrations. That means
we are exfiltrating 47 bytes per 7 seconds. In those 47
bytes, 2 bytes are used to indicate the start of odd and
even bytes; and remaining 45 bytes are for data.
Throughput of exfiltration is 45/7= 6.42 bytes per
second. It is not that high but definitely it is higher as
compared to the exfiltration throughput of keyboard
LED channel (between 2 to 3 bytes/s). A consistent
throughput can be achieved when PlaySound() API is
used for playing wave files, instead of Windows Media
Player. We are considering both the PlaySound() API
and Windows Media Player for the analysis of
exfiltrated data. The highest possible throughput by
considering all the methods of exfiltration
implemented in this project is not more than 6.42 bytes
per second. Because no matter whatever is the
throughput, our ultimate aim is not only to develop a
Hardware Trojan horse device based on Unintentional
use of USB Channels but also to find the exact source
that is responsible for the exfiltration of data by
making Unintentional use of USB Channels with the
probable solution to block them.
 We know that USB speaker is a high speed device,
but still when we play the audio we are able to store
only the half of audio packet within duration of 5
seconds. The obvious reason behind this is that when
we are using Mbed LPC11U24 device as an USB
speaker, it is only intended for playing the audio. But
still we are able to catch half of the audio packet within
duration of 5 seconds. Even this half packet is sufficient
to make the unintentional use of USB Audio Channel.

5. Implementation

Design specific details for this project such as the
Mathematical Model, Objects identified in the Project,
Morphism, Overloading functions, Implementation
methodology and Feasibility Assessment are already
discussed in our previous research papers (Pravin
Phule, 2012), (Pravin Phule, 2013). Preliminary results
of implementation can be found in (Pravin Phule,
2013). In this paper we have focused on the final
implementation of a low cost Hardware Trojan horse
device based on unintentional use USB channels and
the probable solution to block it.

5.1 Development of Hardware Trojan horse Device

Development of Hardware Trojan horse can be divided
into 6 modules (Pravin Phule, 2012), (Pravin Phule,
2013):

1) Keyboard LED Coding Application:
It is a malicious code used to send the information of
interest to the attached device by making unintentional
use of USB keyboard channel in the form of toggling
keyboard LEDs.
 Keyboard LED Coding Application was developed in
C# which can encode the input text in the form of

toggling keyboard LEDs and write the equivalent
Keyboard LED toggling sequence in the VBScript file
and the VBScript file is executed. USB Keyboard
Receive interface on the device continuously receives
the status of keyboard LEDs with a gap of 109.5
milliseconds. Based on the received Keyboard Output
Reports, the data is decoded to plaintext characters
and stored on the local storage of device. VBScript file
is chosen because it provides the way to toggle the
keyboard LEDs and windows allow a VBScript file to
execute directly. The Keyboard LED Coding scheme
used for developing this application is discussed in
section 4.1.

2) USB Audio Coding Application

It is a malicious code used to send the information of
interest to the attached audio device in the form of
audio packets by making Unintentional use of USB
audio channel.
 USB Audio Coding Application is developed in C#
which is able to embed the data in the form of audio
packets and plays them by making Unintentional use of
USB audio channel so that USB Audio Receive interface
on the device receives and stores them. More
information about the coding scheme used in USB
Audio Coding Application can be found in section 4.2.

3) Upload Application on the device

It is the application on Mbed LPC11U24 device which
will act as USB keyboard interface and upload the
malicious code to the computer system in the form of

key presses.
 Upload Application is developed in C++ using Mbed

Online Compiler (Mbed, 2013). This application can be
used to upload either Keyboard LED Coding
Application or USB Audio Coding Application in the

form of key presses to the computer system. For this
we converted both of the Keyboard LED Coding

Application and USB Audio Coding Application from
exe to VBScript using ExetoVBS binary encoder
(Tarasco, 2013) as used in previous research (Clark, et

al., 2009). As discussed in section 4.2, Exe2VBS binary
encoder just wraps exe file into VBScript file instead of

converting it to VBScript. It first unwraps and then
executes. But now such file is identified as a Trojan and
immediately gets quarantined before the execution

(McAfee Inc., 2014). Therefore we decided to upload
the C# code files without any conversion in the form of
key presses. We chose three files from C# project for

uploading in the form of key presses: Form1.cs,
Form1.designer.cs and Form1.resx. C# project files

contain ASCII characters that can be converted to their
equivalent key presses. Upload Application converts
ASCII characters into key presses and then sends them

to computer system. After uploading, the C# project
can be executed to exfiltrate the data by making

Unintentional use of USB Channels.

Pravin Phule et al. Unintentional use of USB Channels and Protection

294| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

4) USB Keyboard Receive Application

It is the application on Mbed LPC11U24 device which
will act as USB keyboard interface; which will be able
to receive Keyboard LED status report from the
computer system and decode the LED encoding to the
characters of data. USB Keyboard Receive Application
is developed in C++ using Mbed Online Compiler
(Mbed, 2013).
 Data to be exfiltrated is encoded in the form of
toggling keyboard LEDs in a VBScript file and it is
executed to toggle the keyboard LEDs. At the same
time USB Key-board Receive Application receives,
decodes and stores the decoded text on the device.

5) USB Audio Receive Application

It is the application on Mbed LPC11U24 device which
will act as USB audio interface and it is able to store the
audio packets received from the computer system.
USB Audio Receive Application is developed in C++
using Mbed Online Compiler (Mbed, 2013). When USB
Audio Coding Application starts exfiltrating the data in
the form of audio packets, USB Audio Receive
Application on the device receives and stores them.

6) USB Audio Decode Application

It is the application required for decoding and
extracting the data from the exfiltrated audio packets.
USB Audio Decode Application is developed in C#
which takes input as the text file containing audio
packets stored by the USB Audio Receive Application
and outputs the decoded text. The more clear idea
about decoding the exfiltrated audio packets can be
found in section 4.2.

5.2 Development of Protection Software

Here we discuss the implementation of the Solution
(i.e. Protection Software) mentioned in section 3.2. As
shown in Fig.2, the Solution prevents the exfiltration of
data by making unintentional use of USB Audio and
USB Keyboard channels. The Protection Software can
be discussed in two parts:

1) Exfiltration of data from the computer system to the
attached device in the form of toggling Keyboard LEDs
can be prevented as follows:

C# application is developed to keep the watch on file
system looking for the specific VBScript files.
Whenever a VBScript file is saved on the computer
system storage, the software will check whether the
file contains the code to toggle keyboard LEDs with a
delay of 109.5 milliseconds between the toggling
sequences. Such code may be used to exfiltrate the data
and if found then the file will be deleted immediately
with the message, “The file may lead to the
Unintentional use of USB Keyboard Channel. Therefore
it has been removed.” The software deletes the

VBScript file before it exfiltrates the data in the form of
toggling keyboard LEDs. Therefore there is no chance
of exfiltrating the data by making unintentional use of
USB Keyboard Channel.

2) Exfiltration of the files from the computer system to
the attached device through the USB Audio Channel
can be blocked as follows:-

Once again using C# file system watcher, we
implemented this part. Whenever an audio wave file is
saved on the computer system storage, the software
will check whether the file contains the plaintext and if
found then it will be deleted immediately with the
message that “The file may lead to the Unintentional
use of USB Audio Channel. Therefore it has been
removed.” The software deletes the audio file before it
plays. Therefore there is no chance of exfiltrating the
data by making unintentional use of USB Audio
Channel.
 Both the solutions work in parallel to block the
Unintentional use of USB Keyboard and USB Audio
Channel.

6. Experiments and Results

This section provides performance results of data
exfiltration using USB Keyboard and USB Audio
Channel. It also gives the comparison between various
methods used for exfiltration. We have used a low cost
USB Prototyping Device: Mbed LPC11U24
Microcontroller. With the help of USB Keyboard LED
Coding Application and USB Audio Coding Application,
we have exfiltrated 753 bytes of data. The bulk data is
not considered for this analysis, because the
throughput of exfiltration is not suitable for bulk data.
The selected amount of data is enough to prove the
Unintentional use of USB Channels. Also we have
implemented the solution which is adequate to block
the Unintentional use of USB Channels.

We implemented a low cost Hardware Trojan horse
Device based on Unintentional use of USB Channels,
using Mbed LPC11U24 Microcontroller. A Hardware
Trojan horse is just like Software Trojan; because it
also provides malicious functionality in addition to that
it makes itself a legitimate activity. The researchers are
now considering the risks of Unintentional Insider
Threats as in (Bureau, Federal Infrastructure
Protection, 2013). However, as discussed in Section 3.3,
most of the methods used to detect the Hardware
Trojan are based on analysis of computer system’s IC;
which may be used to find out the time at which Trojan
activates and power that it consumes (Salmani, et al.,
2009). The Hardware Trojan implemented in this paper
is different because it is in the form of USB device. It
has its own chip processor. It is not dependent on
computer system for its processing.

 We have developed a Hardware Trojan interface as
given in Fig.1 based on Unintentional use of USB
Channels. The Hardware Trojan may identify itself as
USB Keyboard or USB Speaker and exfiltrate the data

Pravin Phule et al. Unintentional use of USB Channels and Protection

295| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

using Keyboard LED Channel (Control Out Transfer)
and the Audio Channel (Isochronous Out Transfer).

6.1 Attack Scenario

Hardware Trojan horse device with a keyboard
interface on it is attached to computer system. The
Hardware Trojan horse device works like a keyboard; it
can send the key presses to computer system and
receive the keyboard output reports from computer
system. The Hardware Trojan is operated outside the
organization’s regular hours. After that it uploads the
malicious code required to make Unintentional Use of
USB Keyboard and USB Audio Channels. Uploaded
Applications execute and attacker may select the data
to be exfiltrated. Then it causes the exfiltration for the
information of interest from the computer system to
the Hardware Trojan horse device by making
Unintentional Use of USB Audio Channel. Finally, the
Hardware Trojan ends its attack by returning the
computer system to normal state.

6.2 Uploading Code

To upload the malicious code to computer system we
have used the Upload Application. Upload Application
resides on Mbed LPC11U24 device which will act as
USB keyboard interface and upload the malicious code
to the computer system in the form of key presses.
Upload Application is developed in C++ using Mbed
Online Compiler (Mbed, 2013). This application can be
used to upload either Keyboard LED Coding
Application or USB Audio Coding Application in the
form of key presses to the computer system. Hardware
Trojan is setup to act like USB keyboard; it can send the
key presses to the computer system. Following files
were uploaded to a target computer system, in the
form of key presses generated using the Hardware
Trojan’s keyboard interface:

1) Keyboard LED Coding Application’s C# Project Code
files:

Form1.cs, Form1.designer.cs and Form1.resx;
Keyboard LED Coding Application encodes the data to
be exfiltrated in the form of VBScript code for toggling
keyboard LEDs which will cause the generation of
Keyboard Output Reports which will be received by
USB Keyboard Receive Application.

2) USB Audio Coding Application’s C# Project Code
files:

Form1.cs, Form1.designer.cs and Form1.resx; USB
Audio Coding Application embeds data to be exfiltrated
in audio packet, creates a wave file using
PCMWAVEFORMAT (Microsoft, 2014), (Stanford,
CCRMA, 2003) and plays it with Windows Media Player
or PlaySound() API and audio packets of the played
audio will be received by USB Audio Receive
Application.

The basic knowledge about C# programming with
Visual Studio is sufficient to build a complete C#
project from the files: Form1.cs, Form1.designer.cs and
Form1.resx. The total size for both the applications is
based on 3 files to be uploaded to computer system in
the form of key presses is 52KB as shown in Table 2.
The time required to Upload Code was calculated. We
observed that within 1 second approximately about 30
key presses can be typed using the Upload Application.
Therefore the time TU seconds is the time required to
upload these files of size SU in bytes and the number of
key presses NK typed per second is given as

 (4)

Table 2 Size of Applications to Be Uploaded

Total size of files to be uploaded is 38 + 14 = 52KB and
the Time required to upload these files is
{52*1024/30} = 1775 seconds. Also to notify the start
of a new file about 5 to 10 seconds gap is used. That
implies approximately the time of 30 minutes(1800
seconds) is required to upload the applications.

6.3 Results of Attack

We carried out number of attacks and made the
analysis of the observed results. We attacked the
computer system using four different methods as
discussed below:

Method 1 (Uk): Keyboard LED Channel Attack:

We put USB Keyboard Receive interface on device and
connected the device to the computer system. We
started Keyboard LED Coding Application on computer
system. Data to be exfiltrated is provided as an input to
the Keyboard LED Coding Application. As given in
equation (1), the maximum achievable throughput of
exfiltration with Unintentional use of USB Keyboard
Channel is 2.283 bytes/sec.

Table 3 Audio Representations for ASCII Characters

Pravin Phule et al. Unintentional use of USB Channels and Protection

296| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

The data was exfiltrated in the form of toggling
keyboard LEDs using a VBScript file generated by
Keyboard LED Coding Application. We observed that
the writing speed of USB Keyboard Receive interface
on Mbed LPC11U24 device is very low when it is acting
as an USB Keyboard device. Most of the times, it was
not able to write anything on the device. Sometimes it
was able to write the data decoded from the keyboard
output reports received from computer system to the
local storage of the device but not more than 3 or 4
characters with insertion and deletion errors.
 Only the three or four characters of exfiltrated text
were stored in a file and all were from first word. Other
letters were not stored in file due to the many deletion
errors and slower File I/O operations on the local
storage of device when it is acting as keyboard.

Method 2 (Ua with PlaySound() API): USB Audio
Channel Attack With PlaySound() API:

USB Audio Receive interface is on the device and
device is connected to the computer system. It
recognizes itself as an USB Speaker. USB Audio Coding
Application is started on the computer. It takes the
input as the text file that is to be exfiltrated. First it
embeds 94 ASCII Characters into the audio packet and
creates two wave files and plays them using
PlaySound() API; each for 5 seconds duration. Then it
embeds the data from the input text file in audio
packets to create and play a separate wave file for
every data section of 45 bytes; each of 5 seconds
duration. Also there is 2 seconds gap after playing
every wave file. Now we can calculate the observed
throughput for a message of MO bytes as the original
message length, length of each data section is D bytes,
TS is the time required to exfiltrate each data section of
D bytes, TG is the time gap after playing a wave file and
ME is the length of exfiltrated message in bytes.

 (5)

We decided to exfiltrate the file of 753 bytes. The
number of data sections considering the overhead of 2
data sections used for ASCII are {(MO/D) + 2} =
{(753/45) + 2} = {17 + 2} = 19. The value of (TS + TG) =
(5 + 2) = 7 seconds. For the experiment with this
method original message length (MO) is 753 bytes and
exfiltrated message length (ME) is 747 bytes. Therefore
the throughput of exfiltration is {747/ (19*7)} = 5.62
bytes/sec. For a message size 96 Kbytes and above,
maximum throughput of 6.42 bytes/sec can be
achieved.

Table 4 Accuracy of Exfiltration

Total 753 bytes were exfiltrated to the device in the
form of audio packets and device received those audio
packets and stored them as 16 bit integer values to the
local storage. The first two wave files were for ASCII
characters, which are used to map the ASCII characters
with their equivalent 16 bit audio representations.
These two wave files are always exfiltrated before the
data, because 16 bit audio representations may not
remain same for each exfiltration, they may change to
some other representations. The first two wave files
are the basic requirement of exfiltration, because they
are used for decoding the audio values stored on the
device. These representations are mapped to
equivalent ASCII characters using Microsoft Access
database. Some of the representations are given in
Table 3. Audio representations may take any nearby
value. For example as given in Table 3, instead 16704,
the character ‘A’ may be represented as 16701, 16702,
16703, 16705, 16706, 16707 etc. All the values are
decoded to the character ‘A’.
 The data of 753 bytes were exfiltrated to the device
in the form of separate wave files. They were stored on
device in the form of their audio representations.
These audio representations are decoded using USB
Audio Decode Application. After decoding the text, the
word accuracy was calculated using Microsoft Word
Spellchecker Component and by comparing with
original data. We can write the formula for calculating
the Word Accuracy W,

 (6)

Where,

NC: is Number of Correct Words in the exfiltrated data.
NW: is Number of Words in the original data

We calculated the word accuracy NC = 100 and NW =
123. Therefore Percentage Word Accuracy (W) is
{(NC/NW) * 100} = {(100/123) * 100} = 81.3 %.
Optionally, Microsoft Word Spellchecker Suggestions
can be used to apply word corrections for the incorrect
words and we may get closer to the 100% accuracy.
Even if we didn’t succeed in achieving the 100%
accuracy, 81.3% is the sufficiently good accuracy.

Method 3 (Ua with WMP): USB Audio Channel Attack
with Windows Media Player:

USB Audio Receive interface is on the device. Device is
connected to the computer system. It recognizes itself
as an USB Speaker. USB Audio Coding Application is
started on the computer with the input as the text file
which is to be exfiltrated. First it embeds 94 ASCII
characters into audio packet to create two wave files
and plays them using WMP (Windows Media Player);
each for 5 seconds duration. Then it embeds data of the
input text file into audio packets to create and play a
separate wave file for every data section of 45 bytes;
each of 5 seconds duration. Also there is 2 seconds gap
after playing every wave file.

Pravin Phule et al. Unintentional use of USB Channels and Protection

297| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

The data of 753 bytes was divided into 17 data sections
each of size 45 bytes and exfiltrated to the device in the
form of separate wave files. They were stored on
device in the form of their audio representations. After
decoding the data, we recognized many deletion errors.
This may be due to the inconsistent behavior of WMP
which was also observed in (Clark, et al., 2009). Using
equation (5), the throughput of exfiltration is
calculated for this method. The throughput value
considering the overhead of 2 data sections for ASCII
characters is: {592 / (19 * 7)} = {592 / 133} = {592 /
133} = 4.45 bytes/sec. We cannot guarantee the same
throughput for all the exfiltrations using WMP.
 Using equation (5), the word accuracy with Number
of correct Words in exfiltrated data (NC) = 62 and
Number of Words in original data (NW) = 123, is
calculated. Therefore Percentage Word Accuracy (W) is
(NC/NW) * 100 = (62/123) * 100 = 50.41 %.
Optionally, Microsoft Word Spellchecker Component
can be used to apply word corrections for the incorrect
words and improve the accuracy. Table 4 comprises
the accuracies of exfiltration for Method 2 and Method
3.

Method 4 (Ua with PlaySound() API, Store Packet): USB
Audio Channel Attack With Play Sound API, Store
Packet:

USB Audio Receive interface was modified so that it
can be used to store the packet instead of separate
integer values and the device is connected to the
computer system. It recognizes itself as an USB
Speaker. USB Audio Coding Application is started on
the computer. It takes the input as the text file. It
embeds data of the input text file repetitively into the
audio packets to create and play a separate wave file
using PlaySound() API; each of 5 seconds duration.
Also there is a 2 seconds gap after playing every wave
file.
 We observed that bytes stored on the device were

the plaintext characters. All the stored data was similar
to exfiltrated data in plaintext. No decoding was

needed. The device received 285 bytes when a single
wave file of 5 seconds duration was played.
Considering the gap of 2 seconds after each wave file is

played, the throughput is {285/7} = 40.71 bytes/sec. In
the received data, there were many insertion and

deletion errors. These errors can’t be corrected easily.
The attacker cannot do much to correct the incorrect
words. Without the knowledge of original data it is

very hard to read. Percentage word accuracy is not
calculated because of many errors in the data. With a

good accuracy it can become the simplest way of
exfiltration using Unintended USB Audio Channel.
 With a high quality device Method 4 may give the

better results. In our case we can conclude that Method
2 provides better results as compared to other

methods discussed above. Table 5 summarizes the
throughputs of exfiltration for all the methods.

Table 5 Throughput of Exfiltration

Uk= Unintentional use of USB Keyboard Channel; Ua=
Unintentional use of USB Audio Channel; WMP=
Windows Media Player.

6.4 Solution Applied

Finally, we applied the solution to test the successful
prevention of Unintentional use of USB Channels. As
discussed in section 5.2, the Protection Software is
developed in two parts Sk and Sa. It is clear that both
the solutions will work in parallel at the same time.

1) Sk- Solution to block the Unintentional use of USB
Keyboard Channel:

The solution will keep looking the memory storage for
VBScript files. When it sees the VBScript file is saved on
the computer, it checks the file. If it is found that the
file may result in Ik, i.e. the illegal activity that can be
performed by making Unintentional use of USB
Keyboard Channel, such file is immediately removed
from the memory. If no suspicious code found in the
file after scanning, the file will stay on the storage disk.
More details about the solution are available in section
5.2.

2) Sa- Solution to block the Unintentional use of USB
Audio Channel:

The solution will keep looking the storage disk for
audio wave files. Whenever the wave file is saved on
the computer, it will scan the file. If it is found that the
file may result in Ia, i.e. the illegal activity that can be
performed by making Unintentional use of USB Audio
Channel, such file is immediately removed from the
memory. If no suspicious data found in the wave file,
the file will stay on the storage disk.
 More details about the solution are available in
section 5.2. The probable solution is implemented in
this project is based on the theme of Real Time
Protection. The technique used for developing the
Protection Software is based on the ways that are
currently available for exfiltration by making
Unintentional use of USB Channels. In future, if the new
ways exfiltration are found then the solution must be
updated to deal with them.

Conclusion

In this paper, we examined the issues related to the
Unintentional use of USB Channels; especially, the

Pravin Phule et al. Unintentional use of USB Channels and Protection

298| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

exfiltration of data by making Unintentional use of USB
Keyboard Channel and Unintentional use of USB Audio
Channel. Here we first implemented the Hardware
Trojan horse device based on Unintentional use of USB
Channels and then we provided the solution to block or
prevent them.
 We have implemented Hardware Trojan horse
device based on Unintentional use of USB Channels
using a low cost device: Mbed LPC11U24
Microcontroller. Due to the local file storage
restrictions imposed by the device and the chosen
coding scheme, we got the low throughput of
exfiltration. The throughput for the exfiltration by
making Unintentional use of USB Keyboard Channel is
2.283 bytes/s and the same for Unintentional use of
USB Audio Channel is 6.42 bytes/sec. Though the
throughput of exfiltration using the developed
Hardware Trojan horse device observed in this
dissertation is low as compared to previously
developed Hardware Trojan horse device (Clark, et al.,
2009), then also it is good enough for the successful
insider attack. This project implements a low cost
Hardware Trojan horse device on the basis of
Unintentional use USB Channels. Also it proves that the
Unintentional use of USB Channels can be prevented
using the probable solution implemented in this
project. The solution is based on the concept of Real
Time Protection (Microsoft, 2012). Real Time
Protection means identifying the problem before it
becomes threat. The implemented solution identifies
the things that may cause exfiltration of data over
Unintended USB Channels and blocks it before the
exfiltration starts.
 The implemented solution to block Unintended USB
Channels cannot be the only solution, but it is one of
the possible solutions to block Unintentional use of
USB Channels for the exfiltration of data. Unintentional
use of USB Channels can’t be neglected while
developing a better Endpoint Protection Software. The
research about the Unintended USB Channels has been
considered in the Foundational Study of Unintentional
Insider Threats at Carnegie Mellon University (Bureau,
Federal Infrastructure Protection, 2013). Now it’s time
that Endpoint Security Vendors should take a note of
this.

Acknowledgment

We are thankful to our college, Pune Institute of
Computer Technology, Pune, Maharashtra, India for the
ideal support and patience during the research.
 We are also thankful to the author J. Clark for
resolving our queries about his research based on
Unintended USB Channels.

References

USB Implementers Forum, (2001), USB 2.0 Specification,
http://www.usb.org/developers/docs

S. Stasiukonis, (2006), Social engineering, the USB way,
http://www.darkreading.com/security/article/20880363
4/social-engineering-the-usb-way.html

Centenial Software, (2012), DeviceWall: Endpoint Security
homepage,
http://www.frontrange.com/ProductsSolutions/Detail.asp
x?id=9416

CheckPointSoftware, (2009), Pointsec protector homepage,
http://www.checkpoint.com/products/datasecurity/prote
ctor

Device Lock Inc., (2015), “Devicelock homepage,”
http://www.devicelock.com

John Clark, Sylvain Leblanc, and Scott Knight, (2011),
Compromise through usb-based hardware Trojan horse
device, Future Generation Computer Systems, vol. 27, no. 5,
pp. 555–563, doi:10.1016/j.future.2010.04.008.

John Clark, Sylvain Leblanc, and Scott Knight, (2009),
Hardware Trojan horse Device Based on Unintended USB
Channels, Network and System Security, NSS '09. Third
International Conference on, vol., no., pp.1,8, doi:
10.1109/NSS.2009.48

D. Barral and D. Dewey, (2005), Plug and Root, the USB Key
to the Kingdom,” http:// www.blackhat.com/
presentations/bh-usa-05/BHnUSn05-Barrall-Dewey.pdf

M. Al-Zarouni, (2006), The reality of risks from consented use
of USB devices, in Proc. Fourth Australian Information
Security Conference, pp. 5–15.

G. Shah, A. Molina, and M. Blaze, (2006), Keyboards and
covert channels, in Proc. the 15th conference on USENIX
Security Symposium.

Shiyanovskii, Y. Wolff F., Rajendran, A.; Papachristou, C.;
Weyer, D.; Clay, W.; , (2010), Process reliability based
Trojans through NBTI and HCI effects, Adaptive Hardware
and Systems (AHS), NASA/ESA Conference on , vol., no.,
pp.215-222.

Ronald W. Smith, G. Scott Knight, (2008), Predictable Design
of Network-Based Covert Communication Systems,
Security and Privacy, IEEE Symposium on, vol., no., pp.311-
321, 18-22.

Xuehui Zhang; Tehranipoor, M.; , (2011), Case study:
Detecting hardware Trojans in third-party digital IP cores,
Hardware-Oriented Security and Trust (HOST), IEEE
International Symposium on , vol.,no., pp.67-70.

Kangbin Yim, Soonchunhyang, (2010), A New Noise Mingling
Ap-proach to Protect the Authentication Password, In
International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS).

Kyungroul Lee; Wansoo Kim; KwangjinBae; Kang-binYim; ,
(2010), A Solution to Protecting USB Keyboard Data,
Broadband, Wireless Computing, Communication and
Applications (BWCCA), International Conference on , vol.,
no., pp.108-111.

PLX Technology, (2008), Net2280 home page,
http://www.plxtech.com/products/net2000/net2280.asp

Mbed, (2012), Mbed NXP LPC11U24 home page,
http://mbed.org/handbook/mbed-NXP-LPC11U24

Pravin Phule, (December 2012), A Low Cost Hardware Trojan
horse Device Based on Unintended USB Channels, In
International Journal of Advanced Computer Research,
Volume2, Number 4, Issue 7, pp 114-118.

USB Implementers forum, (2001), USB Device Class
Definition for Human Interface Devices (HID) 1.11,
http://www.usb.org/developers/devclass_docs/HID1_11.
pdf

USB Implementers forum, (2006), USB Device Class
Definition for Audio Devices 2.0, http://www.usb.org/
developers/devclass/docs/Audio2.0/fifin.zip.

Microsoft, Multimedia Structures, (2014),
PCMWAVEFORMAT structure, http:// msdn. microsoft.
com/ en-us/ library/ windows/ desktop/ dd
743663(v=vs.85).aspx.

http://www.usb.org/developers/docs
http://www.darkreading.com/security/article/208803634/social-engineering-the-usb-way.html
http://www.darkreading.com/security/article/208803634/social-engineering-the-usb-way.html
http://www.frontrange.com/ProductsSolutions/Detail.aspx?id=9416
http://www.frontrange.com/ProductsSolutions/Detail.aspx?id=9416
http://www.checkpoint.com/products/datasecurity/protector
http://www.checkpoint.com/products/datasecurity/protector
http://www.devicelock.com/
http://www.blackhat.com/
http://www.plxtech.com/products/net2000/net2280.asp
http://mbed.org/handbook/mbed-NXP-LPC11U24
http://www.usb.org/developers/devclass_docs/HID1_11.pdf
http://www.usb.org/developers/devclass_docs/HID1_11.pdf
http://www.usb.org/%20developers/devclass/docs/Audio2.0/fifin.zip
http://www.usb.org/%20developers/devclass/docs/Audio2.0/fifin.zip

Pravin Phule et al. Unintentional use of USB Channels and Protection

299| International Journal of Current Engineering and Technology, Vol.5, No.1 (Feb 2015)

Sourceforge projects, (2013), Teraterm Terminal Emulator,
http://sourceforge. jp/projects/ttssh2/releases/

Mbed, (2013), Mbed Online Compiler, https://
mbed.org/handbook/ mbed-Compiler.

Tarasco, (2003), EXEtoVBS: VBS executable Encoder,
http://www.tarasco.org/security/exe_to_vbs_encoder/ind
ex.html.

McAfee Inc., (2014) Virus Profile: Generic.df, http://home.
mcafee.com/VirusInfo/ VirusProfile.aspx?key=141407

Pravin Phule, (2013), A Low Cost Approach towards
Unintended USB Channels, at C-PGCON: Second Post
Graduate Symposium for Computer Engineering.

Bureau, Federal Infrastructure Protection, (2013),
Unintentional Insider Threats: A Foundational Study,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.366.4437&rep=rep1&type=pdf

H. Salmani, M. Tehranipoor, J. Plusquellic, (2009) New design
strategy for improving hardware Trojan detection and
reduction Trojan activation time, in: IEEE Intl. Wkshop. on
Hardware-Oriented Security and Trust, HOST’09, pp. 66–
73.
Stanford, CCRMA, (2003) WAVE PCM sound file format,
https://ccrma.stanford.edu/courses/422/projects/WaveF
ormat/

Microsoft, (2012), Microsoft Security Essentials Product
Information page, http://windows.microsoft.com/en-
US/windows/products/security-essentials/ product-
information

http://www.tarasco.org/security/exe_to_vbs_encoder/index.html
http://www.tarasco.org/security/exe_to_vbs_encoder/index.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.4437&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.4437&rep=rep1&type=pdf
https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
http://windows.microsoft.com/en-US/windows/products/security-essentials/
http://windows.microsoft.com/en-US/windows/products/security-essentials/

