

4234 | International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014)

Research Article

International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161

©2014 INPRESSCO
®

, All Rights Reserved

Available at http://inpressco.com/category/ijcet

An Approach to generate Reusable design from legacy components and Reuse

Levels of different environments

N Md Jubair Basha
Ȧ*

, Humera Sabhia
Ḃ
 and Md Abdul Rawoof Sayeed

Ċ

ȦInformation Technology Department, MJCET, Hyderabad, India.
ḂComputer Science Department, Ummul-Qura, Makkah,Saudi Arabia.

ĊMathematics Department, MJCET, Hyderabad, India

Accepted 20 Nov 2014, Available online 24 Dec2014, Vol.4, No.6 (Dec 2014)

Abstract

Software Components plays a vital role in the software development process in software industry. There are different

artifacts executed throughout the life cycle of the process, each will have it’s own prominence in the work products

achievement. The reuse of each work product helps in the reduction of cost, reduces maintenance, reduces testing efforts

as the benefits. When different components are evolved in different environments in the repository, there is a dire need of

designing reusable components is still an issue. There are different approaches discussed literature which has it’s own

consequences. Many of them were proposed and only considered the code as component in a isolated environment. The

issue of incompatability of legacy components motivates to propose the approach for the generation of reusable design

components from legacy components and reuse levels in different environments. This approach will helps the software

developers for faster software development.

Keywords: Software components, reuse levels, legacy components, component based software development

1. Introduction

1
 Software engineering has been more focused on original

development but it is now recognized that to achieve better

software, more quickly and at lower cost, it is necessary to

adopt a design process that is based on systematic software

reuse.

 Component-based software development is a new

trend in software development. The main idea is to reuse

already completed components instead of developing

everything from the very beginning each time. Use of

component-based development brings many advantages:

faster development, lower costs of the development, better

usability, etc. Component-based development is however

still not mature process and there still exist many

problems. For example, when you buy a component you

do not know exactly its behavior; you do not have control

over its maintenance, and so on. To be able to successfully

develop component-based products, the organizations

must introduce new development methods (Crnkovic et al,

2001), (Clemens Szyperski et al, 2002), (Basha, N.M.J et

al, 2012), (Fahmi, S.A et al, 2008).

 Although source code search systems are well known

as being helpful to reuse source code, they have an issue

that they often suggest larger code than what users actually

need. This is because they suggest code based on the

structure of programming languages such as files or

*Corresponding author: N Md Jubair Basha

DOI: http://Dx.Doi.Org/10.14741/Ijcet/22774106/4.6.2014.85

classes (Tomoya et al, 2013). The main concern of the

identified work was development of components on the

specific programming languages. The discussions were

presented and the drawbacks were brought out with an

extensive literature (Ibraheem et al, 2014).

 This motivates to consider the proposed project solves

the identified issues in the literature. An approach has

been considered for the generation of reusable design from

legacy components in different environments has been

achieved. The reuse level of the design component and

legacy component will be compared for the verification of

reusability in the reusable design components.

 This approach is applicable to the software industry in

the effort reduction and budget minimization. The paper is

organized as follows. Section I provides the detailed

introduction of the paper. Section II includes the Literature

Survey focuses detailed theory on Component based

software engineering and it’s life cycle development. This

section also presents the comparison of CBSD and

traditional software development. It also discusses about

the software reuse and different approaches in software

reuse. The section-III provides the motivation of the work

and the methodology to generate Reusable design from

legacy components work. Section IV provides the related

tools required for implementation of this work. Section- V

concludes the paper.

2. Literature Survey

Lifecycle processes include all activities of a product or a

system during its entire life, from the business idea for its

N Md Jubair Basha et al An Approach to generate Reusable design from legacy components and Reuse Levels of different environments

4235 |International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014)

development, through its usage and its completion of use.

Different models have been proposed and exploited in

software engineering, and different models have exhibited

their inabilities to efficiently govern all activities required

for a successful development and use of products. One

among them which supports for the successful

development is Component Based Software Development

and Software Reuse.

2.1 Component Based Software Engineering

CBSE implies building systems from components as

reusable units and keeping component development

separate from system development. This separation was

significant implications for business goals (for example

building a market of components), technologies (for

example on the-fly deployment of new functionality) and

legal & social issues(for example trust, responsibility and

maintenance). Although there is no IEEE/ISO standard

definition that we know of, one of the leading exponents in

this area, (Clemens Szyperski et al, 2002), defines a

software component as follows: “A software component is

a unit of composition with contractually specified

interfaces and explicit context dependencies only. A

software component can be deployed independently and is

subject to composition by third parties”.

 To achieve its primary goals of increased development

efficiency, quality and decreased time to market, CBSE is

built on the following four principles.

2.1.1 Reusability

The CBSE approach is effectively realized only if the

components developed once, have the possibility for reuse

numerous times in different applications. Industry has

recognized quite a few reusability types as best practices:

COTS (commercial off-the-shelf) components, product-

line components, and open source components. CBSE is

also useful in building architectural components for a

particular system, without intention to reuse the

components in other systems.

2.1.2 Substitutability

With substitutability, systems preserve correctness even

when one component replaces another. This requirement

boils down to the Liskov substitution principle.

 Let q(x) be a property provable about objects x of type

T. Then q(y) should be true for objects y of type S where S

is a subtype of T.

 This principle is realistic for functional properties, but

it isn’t obvious for extra-functional properties because it

depends on other factors, such as a system context. For

example, a faster component can cause a deadlock and

break timing requirements in a system using a non-

preemptive scheduling mechanism.

2.1.3 Extensibility

In CBSE, extensibility aims to support evolution by

adding new components or evolving existing ones to

extend the system’s functionality. A typical solution to

support component evolvability is to provide components

multiple interfaces.

2.1.4 Composability

Composability is a fundamental CBSE principle. Every

component-based technology supports the composition of

functional properties (component binding). More rarely,

there’s support for composition of extra-functional

properties, for example composition of components’

reliability, or execution time, or memory usage.

Composition of extra-functional properties remains one of

the most important challenges of CBSE research.

The major advantages in using the software components

are (Basha, N.M.J et al, 2012), as follows

 Reduced Cost & Schedule: As the component is

reused the cost and the time needed to develop the

component is saved. If needed the component can be

modified.

 Reduced Testing effort: As testing requires more than

60% of software development effort. Using domain

specific component approach testing effort is reduced.

 Enhanced Quality: All successfully developed

components goes through the certification process.

Hence the components available in the repository are

usually of good quality.

Many organizations have developed their own domain

specific components which act as an asset, so that they

could be reused later. Even if the component is not reused

as a mirrored component, it can be modified. The effort

required to alter a component is less compared to that

developed from the scratch. However there is a need for an

effective approach to identify and develop the

components.

 The difference between the traditional software

development and component based software development

has explained below.

Table 1: Comparison of CBSD and Traditional Software

Development (Fahmi S.A et al, 2008)

Component Based Software

Development

Traditional Software

Development

Housing System from already
available components.

Housing system from bottom-
line.

Components and Systems

integrated from those

components are developed
through interfaces.

Software System is developed by

following all the phases of life

cycle.

Component selection,

identification and evaluation are
special life cycle phases.

There is no provision for

selection, identification and
evaluation in this life cycle.

Effort is required for component

selection, testing & verification
only once.

Much effort is required for

throughout the software
development cycle.

Reuse of components guide to

development of component in a

faster manner

Reuse property is applicable in a

less manner.

Cost and time management is

required less.

Cost and time management is

applicable for every project.

Depends on the requirements,

component management can be
done applicable to the project.

Software development activity

has to be carried out for every
project.

N Md Jubair Basha et al An Approach to generate Reusable design from legacy components and Reuse Levels of different environments

4236 |International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014)

2.2 Component Based Software Development Life Cycle

Spiral Models characteristics are involved in the

Component Based Development (CBD) Model. The CBD

Model consists of the applications from the grouped

software components (called Classes). The component

development starts with the identification of the potential

components. This is achieved by identifying the data to

modify by the application and the relevant algorithms that

will be applied. For this the data and algorithms are

encapsulated into the classes.

 The components created in the software projects are

stored in repository. Once potential components are

identified, the repository is mined to check whether the

desired components are present in the repository. If

available, they are retrieved and are reused. If the

component does not exist in the repository, it is engineered

using the object-oriented methodology. The first iteration

of the application to be build is composed of components

retrieved from the repository and new components

engineered to meet the novel needs of the particular

application.

 Process Flow is reversed back to the spiral model and

will ultimately continue the component assembly looping

during subsequent passes through the component life cycle

as shown in Figure 1. Software Reusability can be

achieved by CBD model which is highly useful to the

software engineers. The usage of software reusability by

QSM Associates Inc., reports component assembly moves

to a reduction in development life cycle, 84% reduction in

project cost, and a productivity index of 26.2, compared to

an industry norm of 16.9.With these results, the robustness

of the component repository and CBD model provides

many advantages to the software engineers.

 (Sommerville et al, 2004) has provided a sequential

process for CBSD as in Figure 1. It includes six steps

which are as follows

 The user requirements are developed in outline rather

than in detail as specific requirements limit the

number of components might be used.

 A complete outlined place of requirements are used to

identify as many components as possible for reuse.

 Requirements are sophisticated and tailored so that

they can comply with components.

 Development of Architectural design is possible with

the above steps.

 With this system architecture can be designed. Steps 2

and 3 can be repeated.

 Lastly, the components can be integrated which

makes the complete system.

Figure 1: Component Based Software Development

Process

2.3 Software Reuse

Software Reuse is the use of available software or to build

new software from software knowledge. Reusable assets

can be either reusable software or software knowledge.

Reusability is a property of a software asset that indicates

it’s probability of reuse (William B Frakes et al, 2005).

Software Reuse means the process that use “designed

software for reuse” again and again (Xichen Wang et al,

2011). By reusing software, we can manage complexity of

software development, increase product quality and makes

faster production in the organization.

 The component system includes the selecting,

classifying and managing the components included in the

repository and also the development of new components.

The component repository should be spread throughout the

development organization and that the components are

accessible. The component repository should preferably be

shared between several different products. It means that

the component system should serve several projects.

Whenever the new projects to be taken up, then the

relevant components shall be needed for the development

process. The project proposals should be reviewed by a

group consisting of experienced designers and also

someone from component department forming a software

component committee. They should judge whether the

proposed components are needs to be developed or not. If

it is decided to construct the component, it is forwarded to

component construction with a deadline. When ready, it is

added to the component repository which then takes a new

version state as showed in the Figure 2. As component is

being used, the software component group should analyze

it’s value. Which component is used most? Which are not

used at all? How much you gain from the components?

This analysis helps to develop the component system.

Figure: 2 An Organization for Component Management

2.4 Approaches for Software Component Reuse

The software component reuse benefits the development

with many ways as discussed earlier. There are different

approaches for software component reuse. (James

Neigbors et al, 1984) has proposed a mechanism called

Draco which aids in the construction of software systems.

In particular, it is more concerned with the reuse analysis

and design information in addition to the programming

language code. But still there is an issue this mechanism

will supports only one environment. (Krueger et al, 1992)

has identified about reuse in design and code scavenging,

but the proposed work was limited to the only code

N Md Jubair Basha et al An Approach to generate Reusable design from legacy components and Reuse Levels of different environments

4237 |International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014)

scavenging but not up to the reusable design. This issue

was taken up by many researchers to solve it.

 (Johnson, Ralph E et al, 1997) has identified the

strength of frameworks is the fact that the framework is

expressed in code, it might be better to improve object-

oriented languages so that they can express patterns of

collaboration more clearly. Again the issue generation of

reusable design of components is still highlighted.

 (Maggo et al, 2014) has proposed a approach that

provides a support for reusability evaluation at functional

level rather than at structural level. But still there is a

lagging in structural level reusability. (Ibraheem et al,

2014) surveyed on software reusability and identified an

issue of major incompatability of legacy components. This

motivates to solve the solve the problem of generating

reusable design components in different environments.

 The issue addressed in (Ibraheem et al, 2014) about the

incompatibility of legacy components motivates to focus

on the solution. (Tomoya et al, 2013) has proposed a new

search technique that considers the past reuse. This

technique detects reused code by using a fine grained code

clone detection. But this is limited to only legacy code

which is not focusing to the generation of reusable design

components.

3. Proposed Work

The literature provides a brief introduction to the software

components reuse approaches and the unsolved issues.

This motivates to consider the problems identified in

(Ibraheem et al, 2014), (Tomoya et al, 2013) to develop a

strategy to identify the reusable components.

3.1 A Methodology to generate reusable design from

legacy components

The motivation clearly shows the unsolved issue in the

literature. The proposed methodology will solve the

problem identified as follows

1) Consider the components of different environments

and arrange them in the repository.

2) Construct a Reachability Matrix (RMLC)for every

component.

3) Classify the components based upon the environment

in which they were developed.

4) Make a note of SLOC of each component which was

in the repository.

5) Perform Reverse Engineering process on the

classified components.

6) Repeat step 4 for different environment components.

7) Step 5 generates a design artifact.

8) Generated design artifact in step 5 must match with

the Reachability Matrix (RMDC) with it’s attributes.

9) If RMDC=RMLC then level of reuse can be identified.

10) Step 9 can be achieved by the interaction of the

components (Coupling of components).

11) Step 9 fails, then the level of cannot be checked.

12) Repeat step 2 to step 9, for different environments.

Reachability Matrix (RMLC): This can be generated by

considering the cyclomatic complexity of the code.

Reachability Matrix (RMDC): This can be generated from

the state transition diagram of the structural representation

of the component.

4. Tools

The proposed project needs different set of tools to

perform various activites. NetBeans GUI is used for the

development of legacy components.Net Beans profiler is

used to identify the interaction between the components.

StarUML is a tool to develop artifacts of the system for

achievement of work product. R tool is used to generate

the statistical process for the different environment legacy

components. MATLAB is used to calculate the level of

reusability and to generate the graphs for the proposed

hypothesis.

Conclusion

Software industry demands reuse for budget minimization

and effort reduction. This can be attractively achieved by

reusable components. Many approaches were presented

and limited only upto the mark of reusing code. But the

issue of incompatability of legacy components motivates

for designing reusable components from legacy

components in different environments was discussed.. In

this scenario, an approach for the generation of reusable

design from legacy components and identify the

reusability level has been proposed. The future work leads

for realization of the proposed methodology that can be

tested on different environments with the respective reuse

levels.

References

Crnkovic Ivica, and Magnus Larsson (2001) Component based software

engineering-new paradigm of software development, Invited talk and

Report, MIPRO pp 523-524.

Clemens Szyperski, (2002) Component Software: Beyond Object-Oriented

Programming, 2nd Edition, Addison Wesley Publications.
 Basha, N.M.J.; Moiz, S.A. (2012), Component based software

development: A state of art , Advances in Engineering, Science and

Management (ICAESM),International Conference on , pp 599-604

Fahmi, S.A; Ho-Jin Choi (2008), Life Cycles for Component-Based Software

Development, CIT Workshops. IEEE 8th International Conference on

Computer and Information Technology Workshops, pp 637-642.

Sommerville I (2004), Software Engineering, 7th Edition, Pearson Education.

 William B. Frakes, Kyo Kang (2005), Software Reus and Research:
Status and Future, IEEE Transactions on Software Engineering”, Vol.

31(7), pp 529-536.

Xichen Wang, Luzi Wang (2011) : Software Reuse and Distributed Object

Technology, International Joint Conference in Computational Sciences

and Optimization(CSO), pp 804-807.

Neighbors, James M (1984), The Draco approach to constructing software

from reusable components, IEEE Transactions on Software Engineering,
Vol 5, pp 564 574.

Krueger, Charles W 2 (1992). Software reuse, ACM Computing Surveys

(CSUR), Vol (24), pp 131-183.

Johnson, Ralph E (1997), Frameworks=(components+

 patterns), Communications of the ACM Vol(40), pp 39-42.

Maggo, Surbhi, and Chetna Gupta(2014), MLP based Reusability Assessment

Automation Model for Java based Software Systems, International Journal

of Modern Education and Computer Science, Vol.8, pp 45- 58.
Ibraheem Y.Y. (2014), Taxanomy, Definition, Approaches, Benefits,

Reusability levels, Factors, and Adaptaion of Software Reusability: A

Review of the Research Literature, Journal of Applied Sciences Vol 14(20)

pp 2396-2421.

Tomoya, Keisuke Hotta, Yoshiki Higo, Shinji Kusumoto (2013), Reusing

reused code, Reverse Engineering (WCRE) 20th Working Conference

on, pp 457-461.

