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Abstract 

  

This paper deals with non-Darcian convective hydromagnetic flow in an inclined composite porous medium. It is 

assumed that the flow is steady, laminar fully developed and that fluid properties are constant. The flow in both phases is 

assumed to be driven by a common constant pressure gradient 
   

  
  and temperature gradient   

1 2W WT T T   where TW1 

and TW2 are the temperatures of upper and lower plates. It is also assumed that at any given instant, the temperatures of 

fluid and the solid are the same. The viscous and Darcy dissipation terms and included in the energy equation. The 

governing equation is coupled and non-linear because of inclusion of dissipation terms and buoyancy force. The 

equations are solved using perturbation method. The effects of various parameters such as Hartmann number, porous 

parameter, inclination angle and Grashoff number on the flow quantities are discussed. 

 

Keywords: Hydromagnetic flow, Darcy dissipation, buoyancy force, Hartmann number. 

 

 

1. Introduction 

 
1
 Convection in a porous medium has attracted a great deal 

of research attention because of the fundamental nature of 

the problem and a broad range of applications, including 

geothermal systems, thermal insulation, storage of nuclear 

waste materials, solidification of castings, direct contact 

heat exchangers, enhanced recovery of petroleum 

resources, and geothermal energy extraction. These 

applications together with the fact that the porous media 

occur naturally in many practical problems have motivated 

an increasing number of different types of studies in the 

last two decades. Extensive reviews of prior work on 

convective flows in porous media have been presented by 

Combrarnous and Bories (1975), Chenge (1978), Rudraiah 

(1984, 1988), Niedl (1984), Kariang (1991) and Neild and 

Bejan (1992). Most of the theoretical work has been based 

on Darcy’s law and as noted by Prasad et. al., (1985). But 

the experimental results did not agree with the theoretical 

results obtained with the Darcy model. This has led to 

inclusion of inertia and viscous effects in studies of 

convection in porous medium (Vafai and Tien 1981, 1982,  

Becker man et al., 1986, Geurgiadias and Cattan 1986, 

Lauriant and Prasad 1986, Rudraiah 1988 and  Prasad 

1990).  

 Based on our review of the current literature, it is 

evident that very few studies are available an conventional 

flow and heat transfer in inclined porous layer (Bories and 

Cambarnous 1973; Chaeng 1977; Rudraiah 1986; 

                                                           
*Corresponding author: S.Nanda Kishore 

Oosthuizen and Paul, 1987) and further studies on 

composite porous layers with inclined geometry are rare. 

Malashetty et al.,  (2001) discussed convective flow and 

heat transfer in an inclined composite porous medium. 

Thus it is the objective of the present studies to investigate 

the effect of magnetic field on convection in composite 

porous layer with inclined geometry. As a first step 

towards introducing this complexity into the problem. We 

consider only the Brinkman extended Darcy-Lapwood 

model to obtain realistic predictions.  

 

Mathematical Model  

 
 

Fig. 1 Physical Model 

 

Consider the steady laminar conducting flow of a viscous 

incompressible fluid through differentially permeable 
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porous layers bounded two infinite inclined parallel plates 

maintained at different constant temperatures, extending in 

the Z and X directions making an angle with the 

horizontal. (Fig. 3.1) The region  10 y h Phase I  is 

filled with a homogeneous isotropic porous material 

having permeability K1. This phase is saturated with a 

viscous fluid having density, P1 viscosity 1 and thermal 

conductivity k1. The region  2 0h y Phase II   is  filled 

with another homogeneous isotropic porous material 

having permeability K2. This Phase is saturated with a 

different viscous fluid having density, 
2 Viscosity    

2

and thermal conductivity k2. A uniform transfer magnetic 

field of strength B0 is applied perpendicular to the plates.  

 It is assumed that the flow is fully developed and that 

fluid properties are constant. The flow in the both phases 

is assumed to be driven by a common constant pressure 

gradient p

x

 
 
 

and temperature gradient 
1 2w wT T T  

where 
1wT is the temperature of the boundary at 

1 2, wy h and T that at 
2y h  . It is also assumed that at any 

given instant, the temperatures of the fluid and the 

temperature of the solid are the same.  

 

2. Nomenclature  

 

Cp - Specific heat at constant pressure  

Ec - Ecket number  

G - Acceleration due to gravity  

K - Permeability of the porous medium  

K - Thermal conductivity of the fluid saturated 

porous medium  

P - Non dimensional pressure gradient  

Pr - Prandtl number  

Re - Reynolds number  

U - Velocity  

1u  
- Average velocity  

T - Temperature  

Tw - Wall temperature  

  - Coefficient of thermal expansion  

  - Porous parameter  

  - Angle of inclination  

  - Density of the fluid  

V - Kinematic viscosity  

  - Viscosity  

  - Product of prandtl number and Ecket 

number (Pr.Ec) 

T  - Difference of temperature  1 2w wT T  

  - Non dimensional temperatures 

 2 /wT T T   

 

3. Mathematical formulation of the problem  
 

The momentum and energy equations governing the flow 

in the two phases are given below  

Phase I 

 
2

21 1
1 1 1 1 2 1 0 12

1

sinw e

d u p
g T T B u

dy k x


    

  
     

 
               (1.1) 

22
21 1 1 1
12

1 1 1

0
d T du

u
dy k dy K k

  
   

 

       (1.2) 

 

Phase I 

 
2

22 2
2 2 2 2 2 2 0 22

2

sinw e

d u p
g T T B u

dy k x


    

  
     

 

 

               (1.3) 
22

22 2 2 2
22

2 2 2

0
d T du

u
dy k dy K k

  
   

 

            (1.4) 

 

where u is the x component of fluid velocity. T is the fluid 

temperature, g is acceleration due to gravity and   is the 

coefficient of thermal expansion. The subscripts 1 and 2 

denote the values of Phase I and Phase II respectively.  

 In reality by the experimental observations of Givler 

and Attobellie (1994), they are not equal. But it is assumed 

that the fluid viscosity and the Brinkman viscosity (i.e., 

effective viscosity) are same. This assumption has been 

made to restrict the number of parameters governing the 

system.  

 The boundary conditions an velocity are no-slip 

conditions requiring that the velocity must vanish at the 

wall. The boundary conditions on temperature are 

isothermal conditions. The two boundaries are held at 

constant different temperatures. In addition the continuity 

of velocity, shear stress, and temperature and heat flux at 

the interface between the two porous layers is assumed. 

The boundary conditions on velocity are  

 

 1 1 0u h   

   1 20 0u u  

 2 2 0u h                   (1.5) 

1 2
1 2 0

du du
at y

dy dy
    

 

The boundary and interface conditions for temperature are  

 

 1 1 1wT h T          

   1 20 0T T          

 2 2 2wT h T  

1 2
1 2 0

dT dT
K K at y

dy dy
          (1.6) 

 

4. Non-dimensionalization of the flow quantities  

 
We introduce the following non dimensional quantities to 

make basic equations and boundary conditions 

dimensionless 

* * * *1 2 1 2
1 2 1 2

1 21 1

, , ,
u u y y

u u y y
h hu u

     ,  2 /wT T T     
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1 1

2 2

, ,
K

m K
k




   

2 2 2 1

1 1 1 2

, , ,
h k

h n b k
h k

 

 
     

1 2
1 22 2

1 2

, ,
k k

Da Da
h h

   

2

1

e

e





 ,  

 

In the view of the above non-dimensional quantities the 

equations (1.1) to (1.4) take the following form after 

dropping asterisks;  

 

Phase I  

 
2

21
1 1 12

1

1

Re

d u Gr
Sin M u u P

dy Da


  
     
   

    (1.8) 

22
21 1
12

Pr
Pr 0

d du Ec
Ec u

dy dy Da

  
   

 

      (1.9) 

 

Phase II  

 
2

22
2 22 Re

d u Gr
Sin u b u mp

dy
             (1.10) 

22
22 2
22

2

Pr
Pr 0

.

d k du EcK
Ec u

dy m dy m Da

  
   

 

       (1.11) 

 

where 

2 2k
b mM

Da
   

3

1 1

2

1

g h T
Gr

v

 
  

1 1Pr /pc k  

1 1 1Re /u h v  

1

1

h

k
   

 
2

1 / pEc u c T   

2

1 1 1/
p

P h u
x


 

  
 

 

 

The non dimensional term of the velocity, temperature 

boundary and interface conditions (3.5) and (3.6) becomes 

(asterisks are neglected hereafter).  
 

       1 2 21 0, 0 0 , 1 0u u u u     

1 21 0
du du

at y
mhdy dy

             (1.12) 

 

and 

 

       1 1 2 21 1, 0 0 , 1 0        

1 21
0

d d
at y

dy kh dy

 
                   (1.13) 

5. Solution of the problem  

 

The governing equations of momentum (1.8) , (1.10) along 

with the energy equations (1.9) , (1.11) are solved subject 

to the boundary and interface conditions (1.12) and (1.13) 

from the velocity and temperature distributions. In this 

case the equations are coupled and nonlinear because of 

buoyancy force and the inclusion of the dissipation terms 

in the energy equation. In many practical problems the 

Eckert number is very small and is of order 10
-5

 so the 

product  Pr.Ec   is very small and can be exploited to 

apply the regular perturbation method in view of this the 

solutions are assumed in the form   

 

     0 0 1 1, , , .......i i i i i iu u u          (1.14)  

Where 1,2i  ….
0 0,i iu  are solutions for the   equal to 

zero. 
1 1,i iu  are perturbed quantities to 

0 0,i iu   

respectively. Substituting the above identities in equations 

(1.8) – (1.11) are equating the coefficients of like powers 

of   to zero we obtain the zeroth and first order equations 

as follows:  

 

Phase I 

 

Zeroth – order equations  

 
2

210
10 102 Re

d u Gr
Sin a u P

dy
 

 
   
 

         (1.15) 

2

10

2
0

d

dy


                               (1.16) 

 

First – order equations  

 
2

211
11 112 Re

d u Gr
Sin a u P

dy
 

 
   
 

        (1.17) 

22
21011
102

1
0

dud
u

dy dy Da

  
   
 

           (1.18) 

 

Phase II 

 

Zeroth – order equations 

 
2

220
20 202 Re

d u Gr
Sin b u mp

dy
            (1.19) 

2

20

2
0

d

dy


                               (1.20) 

 

First order equations  
 

2
221

21 212
0

Re

d u Gr
Sin b u

dy
              (1.21) 

 
22

22021
202

2

1
0

dud k k
u

dy m dy m Da

  
   

 

        (1.22) 

 
The corresponding boundary and interface conditions 

(1.12) and (1.13) reduce to  
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 10 1 0u            

   10 200 0u u          

 20 1 0u                           (1.23) 

10 201
0

du du
at y

dy mh dy
   

 10 1 1   

   10 200 0   

 20 1 0                           (1.24) 

10 201
0

d d
at y

dy kh dy

 
   

 11 1 0u   

   11 210 0u u  

 21 1 0u                           (1.25) 

11 211
0

du du
at y

dy mh dy
   

 11 1 0   

   11 210 0   

 21 1 0         

11 211
0

d d
at y

dy kh dy

 
            (1.26) 

 

Solutions of the zero-order equations (1.15) , (1.16), (1.19) 

and (1.20) subject to the boundary conditions (1.23) and 

(1.24) are  

10
1

y kh

kh






                        (1.27) 

 

 
20

1

1

kh y

kh







                       (1.28) 

 10 1 2 1 22

1
coshu B ay B Sinhay a y a

a
          (1.29) 

 20 3 4 3 42

1
sinhu B coshay B ay a y a

b
               (1.30) 

 

Solution of the first order perturbation equations (1.17), 

(1.18),  (1.21) and (1.22) subject to the boundary 

conditions (1.25) and (1.26) are  

 

11 19 20 21 22cosh sinh 2 sinha ay a ay ay a y ay a ycoshay    

 
4 3 2

23 24 25 26 27 1 2cosh sinha ay a ay a y a y a y E y E      

                  (1.31) 

21 1 2 3 4 5cosh 2 sinh 2 cosh sinh coshf by f by f y by f y by f by        

4 3 2

6 7 8 9 1 2sinhf by f y f y f y d y d            (1.32) 

2

11 1 2 1 2 3cosh sinh cosh 2 sinh 2 coshU A ay A ay g ay g ay g y ay    

 
2 4 3 2

4 5 6 7 8 9 10 11sinh cosh sinhg y ay g y ay g y ay g y g y g y g y g       

                  (1.33) 
 

2

21 3 4 1 2 3cosh sinh cosh 2 sinh 2 sinhU A by A by e by e by e y by    

 
2 4 3 2

4 5 6 7 8 9 10 11cosh cosh sinhe y by e y by e y by e y e y e y e y e         

                       (1.34) 

where 

3
1

c
c

kh
 , 

3
1

kh
c

kh



, 

1 3 2 4,c c c c   

1 1
Re

rG
a Sin c  , 

2 2
Re

rG
a p Sin c   

2

3 3
Re

rG
a Sin mn h c   , 2 2

4 4
Re

rG
a mph Sin mn h c    

5 2 3a B Sinha B Cosha  , 

6 2 4a B Sinha Coshb B Sinhb Cosha   

3 1
7 62 2

a ma h
a Sinha Coshb maha

b a

 
     

 

 

8

1

sinh cosh sinh cosh
a

b a b mah b a



 

 
 1 2

1 2 2

a aSinha
B B

Cosha a Cosha


    

3 1
2 4 2 2

1 a mha
B bB

mah b a

 
   

 

 

4 2
3 1 2 2

a a
B B

b a
   , 

4 7 8B a a  

2
2 2 2

9 1

B
a a B

Da

 
   

 

, 
2

2 2 1
10 2

B
a a B

Da

 
   

 

 

2 1 2
11 1 2

B B
a a B B

Da

 
   

 

, 1 2 2
12 1 2

2
2

a B a
a B

a a

 
   

 

 

1 1 2
13 2 2

2
2

a B a
a B

a a

 
   

 

, 

 

2

1
14 4

a
a

a Da
   

 
1 2

15 4

2a a
a

a Da
  , 

 
1 2

16 2

2a B
a

a Da
  

 
1 1

17 2

2a B
a

a Da
 , 

2 2

1 2
18 4 4

1a a
a

a Da a

 
   

 

 

9 10
19 2 28 8

a a
a

a a
  , 11

20 24

a
a

a
 , 12

21 2

a
a

a
 ,  

13
22 2

a
a

a
 , 914

23 2 3

2aa
a

a a
  , 9 11

24 2 3

2a a
a

a a
   

14
25

12

a
a  , 15

26
6

a
a  , 9 10 11

27
4 4 2

a a a
a      

2
2 2 4

1 2

k B
r b B

m Da

 
   

 

, 
2

2 2 3
2 4

Bk
r b B

m Da

 
   

 

 

2 3 4
3

B Bk
r b

m Da

 
   

 

, 3 3
4 2

2a Bk
r

m b Da

 
  

 
 

3 4
5 2

2a Bk
r

m b Da

 
   

 

, 3 4 3
6 2

2 2a a Bk
r

m b b Da

 
    

 

 

3 4 4
7 2

2 2ak a B
r

m b b Da

 
    

 

, 
2

3
8 4

2

ak
r

m b Da

 
   

 

 

2 2

3 4
9 4 4

2

ak a
r

m b b Da

 
   

 

,  

1 2
1 24

r r
f

b


 , 3

2 24

r
f

b
 , 4

3 2

r
f

b
  

5
4 2

r
f

b
 , 5 6

5 3 2

2r r
f

b b
   ,  

74
6 3 2

2 rr
f

b b
   , 8

7
12

r
f  . 9

8
6

r
f  , 101 2

9
2 2 2

rr r
f      



S.Nanda Kishore et al                            Hydro-Magnetic Flow and Heat Transfer in an Inclined Composite Porous Medium Bounded by Parallel Plates 

 

4067 | International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014) 

 

31 2 4
1 2 3 42 2

, , ,
3 3 4 4

sfsf sf sf
e e e e

b b b b
     

6 3 5 4
5 62 2

,
2 4 2 4

sf sf sf sf
e e

b b b b
     

7 8 7
7 8 92 2 4

12
, ,

sf sf f s
e e e

b b b
      9

2

sf

b
  

8 3
1 4 2

6sf sE
j

b b
   , 7 9 4

2 6 4 2

24 2sf sf se
j

b b b
     

31 2 4
1 2 3 42 2

, , ,
3 3 4 4

stst st st
g g g g

a a a a
     

5 3 6 74
5 6 72 2 2

, ,
2 4 2 4

st st st stst
g g g

a a a a a
       

8 7 9
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6. Deductions and discussions 
 

An analytic solution for convection flow and heat transfer 

for a composite fluid saturated inclined porous layer is 

obtained using the regular perturbation method. The flow 

is modeled with the Darcy – Lapwood - Brinkman 

equation. The viscous and Darcy dissipation terms are 

included in the energy equation. The product  Pr.Ec  is 

used as a perturbation parameter.  

 The effect of the ratio of the heights of the two porous 

layers on velocity field is shown in fig. (1.2). for fixed K = 

1, L = 5, / 4, 3,Da   2,  0.5, 2,P m 

2, 2, 0.01, 0.1M K n    . We observe that the larger 

the height of the upper phase compared to the lower phase 

the smaller the velocity of the fluid flow between the 

parallel plates.  

 The effect of the Grashoff number  on velocity field is 

shown in fig. (1.3) for fixed K=2, Da=5, 
4

  ,   =2, 

p=0.5, m=2, M=2, k=1, 0.01 , n=0.1.  The effect of 

increasing Grashoff number is to increase the convective 

motion. Physically an increase is the value of the Grashoff 

number means on increase of buoyancy for which supports 

the motion.  

 The effect of Darcy number on the velocity field is 

shown in figure (1.4) for fixed K=2, L=3, 
4

  ,  =2, 

p=0.5, m=2, M=2, k=1, 0.01 , n=0.1. increasing  the 

Darcy number  increases the velocity fields.  

 The velocity distribution for different inclination  

angles is shown in fig. (1.5) for fixed K=2, L=5, Da=5, 
=2, p=0.5, m=2, M=2, k=1, 0.01 , n=0.1. We 

observed that the increase in the inclination angle increase 

the flow.  

In figure (1.6) for fixed K = 1, L = 5, / 4, 3,Da  

2,  0.5, 2,P m  2, 2, 0.01, 0.1M K n    , we 

find that an increase in the ratio of the permeabilities 

decreases the velocity fields.  

 The effect of Groshoff number on the velocity field is 

shown in fig.3. We observe that the effect of increasing 

Grashoff number is to increase the convective motion. An 

increase in the value of Grashoff number. Physically 

means an increase of buoyancy force which supports the 

motion.  

 The effect of Darcy Number on the temperature field 

as shown in fig. (1.7). for fixed K=1, L=5, 
4

  ,  =2, 

p=0.5, m=2, M=2, k=1, 0.01 , n=0.1. It is observe that 

an increase in the value of Darcy number increases the 

temperature field.  

 The effects of the ratio of the heights of the two porous 

layers on the temperature field is shown in fig (1.8) for 

fixed K=1, L=5, 
4

  ,  =2, p=0.5, m=2, M=2, k=1, 

0.01 , n=0.1 ,Da=3.   It is observed that an increase in 

the ratio of heights of the porous layers.  

 The effects of temperature profiles for different values 

of the ratio of the permeabilities  is discussed in fig. (1.9) 

for fixed  L=5, 
4

  ,  =2, p=0.5, m=2, M=2, k=1, 

0.01 , n=0.1, Da=3. Increasing the ratio of 

permeabilities increases an increasing in the temperature.  

In fig (1.10) we observe that the temperature increases 

from the lower plate y=-1, to upper plate y=1. For fixed y, 

the temperature increases L i.e. increasing with the ratio of 

Gr and Re . 
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From in Fig. (1.11) we observe that the temperature 

increases with increasing   for a given value of angle of 

inclination  , for fixed y,  temperature increases with 

increasing . 
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