

 4034 | International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014)

General Article

International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161

 ©2014 INPRESSCO
®

, All Rights Reserved

Available at http://inpressco.com/category/ijcet

Java Special Feature: Multithreading

Sangeeta Rani
Ȧ*

 and Neetu Dhingra
Ȧ

ȦBLS Institute of Technology Management, Bahadurgarh- 124507, Haryana, India

Accepted 30 Nov 2014, Available online 01 Dec 2014, Vol.4, No.6 (Dec 2014)

Abstract

Multithreading is the most crucial feature of the java. In real world parallel processing is needed to perform multiple

tasks at the same time for the purpose of resource management and time management. This goal generates an urgent

need for multithreading. In this paper first, we show the importance of multithreading in java and then implementation

of threads in java.

Keywords: Thread, Runnable, Interface, Start, Priority, Life Cycle, Run, Method

Introduction

1
 Multithreading means ―to run multiple threads at the same

time‖

Multithreading concept probably similar to the

multitasking: the ability to have more than one program

working at what seems like the same time. For example

you are playing songs or working in notepad at the same

time. Of course, unless you have a multiple-processor

machine, what is really going on is that the operating

system is doing out resources to each program, giving the

impression of parallel activity. This resource distribution

is possible because while you may think you are keeping

the computer busy by, for example, entering data, most of

the CPU’s time will be idle.

 Multitasking can be done in two ways, depending on

whether the operating system interrupts programs without

consulting with them first, or whether programs are only

interrupted when they are willing to yield control. The

former is called preemptive multitasking; the latter is

called cooperative (or, simply, non preemptive).

Multitasking. Windows 3.1 and Mac OS 9 are cooperative

multitasking systems, and UNIX/Linux, Windows NT,

and OS X are preemptive.

 Multithreaded programs extend the idea of

multitasking by taking it one level lower: individual

programs will appear to do multiple tasks at the same time.

Each task is usually called a thread—which is short for

*Corresponding author Sangeeta Rani and Neetu Dhingra are working

as Assistant Professors.

thread of control. Programs that can run more than one

thread at once are said to be multithreaded. Think of make

it seem as though each thread has its own CPU—with

registers, memory, and its own code. (Addison-Wesley,

1999).

Defining Threads

To understand multithreading, the concepts process and

thread must be understood. A process is a program in

execution. A process may be divided into a number of

independent units known as threads.

Thread:- A thread is a dispatchable unit of work. Threads

are light-weight processes within a process

Process:- A process is a collection of one or more threads

and associated system resources. The difference between

a process and a thread is shown:

A process may have a number of threads in it. A thread

may be assumed as a subset of a process. A process

containing single and multiple threads. If two applications

are run on a computer (MS Word, MS Powerpoint), two

processes are created.

 Multitasking of two or more processes is known as

process-based multitasking. Multitasking of two or more

threads is known as thread-based multitasking. The

MULTI

(Many)

THREAD

(A single
program in
execution)

MULTITH
READ

Sangeeta Rani et al Java Special Feature: Multithreading

4035 | International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014)

concept of multithreading in a programming language

refers to thread-based multitasking. Process-based

multitasking is totally controlled by the operating system.

But thread-based multitasking can be controlled by the

programmer to some extent in a program.

Switching between Threads

Lifecycle of Thread

The life cycle of threads in Java is very similar to the life

cycle of processes running in an operating system. During

its life cycle the thread moves from one state to another

depending on the operation performed by it or performed

on it as illustrated in Fig. 14.4. A Java thread can be in one

of the following state

New State: A Thread is called in new state when it is

created. To create a new thread you may create an instance

of Thread class or you can create a subclass of Thread and

then you can create an instance of your class.

Example

Thread thread = new Thread ();

Newly created thread is not in the running state. To move

the thread in running state the start() method is used.

Runnable State: A Thread is called in runnable state

when it is ready to run and its waiting to give control. To

move control to another thread we can use yield() method.

Example

Thread thread = new Thread();

thread.yield();

Running State: A Thread is called in running state when

it is in its execution mode. In this state control of CPU is

given to the Thread. To execute a Thread the scheduler

select the specified thread from runnable pool.

Blocked State: A Thread is called in blocked state when it

is not allowed to enter in runnable and/or running state. A

thread is in blocked state when it is suspend, sleep or

waiting.

Example

Thread thread = new Thread();

thread.sleep();

Dead/Terminated State: A Thread is called in dead state

when its run() method execution is completed. The life

cycle of Thread is ended after execution of run() method.

A Thread is moved into dead state if it returns the run()

method.

Implementation of threads

There are two ways to implement threads in java

1. By extending Thread class.

2. By implementing Runnable interface in java.

To implement the thread we first introduce about some

methods which are used in the implementation of threads.

1.START():- To execute any thread we use this method.

2.RUN():- It is the heart of any thread.only run() method

is used to perform any task in the java.

By extending thread class

Class A extends Thread

{

public void run()

{

System.out.println(―welcome‖);

}

}

Class B extends Thread

{

public void run()

{

System.out.println(―IN‖);

}

}

Class C extends Thread

{

public void run()

{

System.out.println(―Java‖);

}

}

Sangeeta Rani et al Java Special Feature: Multithreading

4036 | International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014)

Class D

{

Public static void main(String a[])

{

A a1=new A();

B b1=new B();

C c1=new C()

a1.start();

b1.start();

c1.start();

}

}

By implementing Runnable Interface

Class A implements Runnable

{

public void run()

{

System.out.println(―welcome‖);

}

}

Class B implements Runnable

{

public void run()

{

System.out.println(―IN‖);

}

}

Class C implements Runnable

{

public void run()

{

System.out.println(―Java‖);

}

}

Class D

{

Public static void main(String a[])

{

A a1=new A();

B b1=new B();

C c1=new C()

Thread t1=new Thread(a1);

Thread t2=new Thread(b1);

Thread t3=new Thread(c1);

t1.start();

t2.start();

t3.start();

}

}

Thread Priority

In Java, thread scheduler can use the thread priorities in

the form of integer value to each of its thread to determine

the execution schedule of threads . Thread gets the ready-

to-run state according to their priorities. The thread

scheduler provides the CPU time to thread of highest

priority during ready-to-run state.

Priorities are integer values
1 (lowest priority given by the constant

Thread.MIN_PRIORITY)
10 (highest priority given by the constant

Thread.MAX_PRIORITY)

 5 (default priority is

Thread.NORM_PRIORITY)

 Constant Description

 Thread.MIN_PRIORITY The maximum priority of any
thread (an int value of 10)

 Thread.MAX_PRIORITY The minimum priority of any

thread (an int value of 1)

 Thread.NORM_PRIORITY The normal priority of any

thread (an int value of 5)

 The methods that are used to set the priority of thread

shown as:

 Method Description

 setPriority() This is method is used to set the priority

of thread.

 getPriority() This method is used to get the priority of

thread.

When a Java thread is created, it inherits its priority from

the thread that created it. At any given time, when

multiple threads are ready to be executed, the runtime

system chooses the runnable thread with the highest

priority for execution. In Java runtime system, preemptive

scheduling algorithm is applied. If at the execution time a

thread with a higher priority and all other threads are

runnable then the runtime system chooses the new higher

priority thread for execution. On the other hand, if two

threads of the same priority are waiting to be executed by

the CPU then the round-robin algorithm is applied in

which the scheduler chooses one of them to run according

to their round of time-slice.

Thread Scheduler

Threading scheduler usually applies one of the two

following strategies:

Preemptive scheduling? If the new thread has a higher

priority than current running thread leaves the runnable

state and higher priority thread enter to the runnable state.

Time-Sliced (Round-Robin) Scheduling? A running

thread is allowed to be execute for the fixed time, after

completion the time, current thread indicates to the another

thread to enter it in the runnable state.

You can also set a thread's priority at any time after its

creation using the set Priority method. Let’s see, how to

set and get the priority of a thread.

class MyThread1 extends Thread{

MyThread1(String s){

super(s);

 start();

 }

 public void run(){

 for(int i=0;i<3;i++){

 Thread cur=Thread.currentThread();

 cur.setPriority(Thread.MIN_PRIORITY);

Sangeeta Rani et al Java Special Feature: Multithreading

4037 | International Journal of Current Engineering and Technology, Vol.4, No.6 (Dec 2014)

 int p=cur.getPriority();

 System.out.println("Thread Name :"+Thread.currentThr

ead().getName());

 System.out.println("Thread Priority :"+cur);

 }

 }

}

 class MyThread2 extends Thread{

 MyThread2(String s){

 super(s);

 start();

 }

public void run(){

 for(int i=0;i<3;i++){

 Thread cur=Thread.currentThread();

 cur.setPriority(Thread.MAX_PRIORITY);

 int p=cur.getPriority();

 System.out.println("Thread Name :"+Thread.currentThr

ead().getName());

 System.out.println("Thread Priority :"+cur);

 }

 }

}

public class ThreadPriority{

 public static void main(String args[]){

 MyThread1 m1=new MyThread1("My Thread 1");

 MyThread2 m2=new MyThread2("My Thread 2");

 }

}

Output of the Program

C:\sangeeta>javac ThreadPriority.java

C:\sangeeta>java ThreadPriority

Thread Name :My Thread 1

Thread Name :My Thread 2

Thread Priority :Thread[My Thread 2,10,main]

Thread Name :My Thread 2

Thread Priority :Thread[My Thread 2,10,main]

Thread Name :My Thread 2

Thread Priority :Thread[My Thread 2,10,main]

Thread Priority :Thread[My Thread 1,1,main]

Thread Name :My Thread 1

Thread Priority :Thread[My Thread 1,1,main]

Thread Name :My Thread 1

Thread Priority :Thread[My Thread 1,1,main]

In this program two threads are created. We have set up

maximum priority for the first thread "MyThread2" and

minimum priority for the first thread "MyThread1" i.e.

the after executing the program, the first thread is executed

only once and the second thread "MyThread2" started to

run until either it gets end or another thread of the equal

priority gets ready to run state

Conclusion

In this paper, we have proposed life cycle for the thread .In

this we implement the methods to implement the threads

in java. And how we can get the priority to the thread that

execute first.

 The future scope of this paper to provide the

synchronization between the threads for the concurrency

control.

References

K. Arnold, J. Gosling (1998), The Java™ Programming

Language (2nd edition), Addison-Wesley.

ANSI/IEEE IEEE Standard for Binary Floating-Point

Arithmetic; ANSI/IEE Std. 754-1985; 1985.

Aonix(1997); ObjectAda Integrated Development

Environment, 7(1)

K. Arnold (1996); The Java Programming Language,

Professional Development Seminar delivered to Boston

B. Brosgol (1998); A Comparison of the Concurrency

Features of Ada 95 and Java, Proc. SIGAda

T.A. Cargill (1993), The Case Against Multiple

Inheritance in C++, in The Evolution of C++ (J. Waldo,

ed.), The MIT Press pp. 101-110, The MIT Press

D. Flanagan (1997); Java in a Nutshell (2nd edition),

O’Reilly & Associates

J. Gosling, B. Joy, G. Steele (1996); The JavaTM

Language Specification; Addison Wesley

Unicode Consortium (1996); The Unicode Standard:

Worlwide Character Encoding, Version 2.0; Addison-

Wesley, 1996, ISBN 0-201-48345-

Herbert Schildt The Complete Reference, Seventh Edition.

J. Waldo (1993), The Case For Multiple Inheritance in

C++, in The Evolution of C++ (J. Waldo, ed.) ,The MIT

Press, pp. 111-120

