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Abstract 
  

Data security during communication is one of the predominant issues in modern multiple transceiver based 

communication. In this paper, we have presented a highly robust commutative cryptography core for distributed FPGA 

architecture called commutative RSA with Key generation. The commutative RSA algorithm has been developed using 

parallelization of Montgomery multiplication with high radix exponential modular multiplication scheme to suit FPGA 

implementation. The architectural design not only ensures authentication among multiple transceivers or MIMO but also 

reduces overheads caused due to key exchange process. The CRSA algorithm with key generation has been realized with 

multiple FPGA cores using VHDL. The design has been simulated using Modelsim 5.5e and synthesized using Xilinx 

Design Suite 14.3 targeted on Virtex-5, xc5vfx70t-2ff1136 FPGA and Vivado 12.3, Virtex-7, xc7vx330tffg1157-2L. The 

results obtained illustrates that the proposed architecture offers high computational efficiency with minimum overheads 

and memory occupancy even at higher frequency rate. The designed system works at 292 MHz in Vivado and at 199 MHz 

in ISE 14.3 platforms and would be compatible with a standard real time data communication hardware interface. 
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1. Introduction 
 

1
 High speed data communication in multiple transceivers 

and Multiple Input Multiple Output (MIMO) applications 

demand a highly robust and secure system model that 

could facilitate security. The approach of cryptography 

plays a potential role in ascertaining security for Multiple 

Input Multiple Output based on RSA algorithm and plays 

a significant role with public key cryptography. 

Confidentiality, authenticity, data integrity and its non-

repudiation are the major requirements in security. A 

number of approaches and systems have been advocated 

and developed for ensuring data security in competitive 

multiuser scenario and among them, public key 

cryptosystem has been recognized as one of the optimum 

solution (William Stallings, 2003).The public key 

cryptography is found to be better as compared to 

symmetric-key cryptosystem for achieving 

aforementioned objectives.  

 A number of public key cryptosystems have been 

developed, of which RSA cryptosystem (R. L. Rivest, et 

al, 1978) established itself as one of the most optimum 

approaches which is sufficient in delivering high 

performance in multi-party communication scenario with 

distributed processors. RSA can be an effective solution 

for hardware assisted applications of secure 

communication. In RSA algorithm, the predominant 

process is the computation of modular exponentiation by 
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repeated modular multiplication process. The Montgomery 

modular multiplication algorithm (SchneierBruce, et al, 

1997), (Alan Daly, et al, 2001) uses this technique and is 

suited for hardware realization. Public key algorithms are 

based on one way cryptosystem functions and have 

limitations of key exchange overheads. Therefore there is 

an inevitable need to develop schemes that could deliver 

the commutative kind of behaviour. According to 

commutative nature, the order in which RSA encryption is 

done would not influence the decryption if it is done in 

similar way or in a sequence. If this unique approach is 

incorporated with normal RSA, it could be a milestone for 

optimizing RSA implementation with MIMO transceiver 

based communication. This paper explores the 

commutative RSA (CRSA) algorithm with key generation 

for realization using distributed FPGA cores. 

 The rest of this paper has been organized as follows. In 

Section 2, the prior work has been discussed. Section 3 

discusses the Mathematical background which is followed 

by Section 4 that presents Commutative RSA 

Cryptosystem core details. Section 5 discusses the 

experimental study and the results obtained. The last 

section presents conclusion and the scope for future work. 
 

2. Related Work 
 

(G.D. Sutter, et al, 2011), developed a system with 

enhanced Montgomery’s multiplication for performing the 

LSB first and the MSB first algorithms alternately. Their 

developed system model make use of the digital serial 
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scheme, Carry Save Adder (CSA)and Carry Skip Adder. 

The digital serial scheme is used for performing 

Montgomery multiplication. The CSA is used for 

representation of intermediate multiplication and the carry 

skip addition is used for reducing the critical path. Another 

uniqueness of this work is the pre-computation of the 

quotient value in Montgomery’s iteration for speeding up 

the operation frequency. Even if this system made a better 

effort, it could not address the multiparty MIMO kind of 

situation. Further, the robust commutative approaches 

were not explored in this work. 

 (Z. Chen, et al,2011) proposed a parallel system 

implementation of Montgomery multiplication for 

distributed multiple cores. This approach got success in 

achieving balanced partitioning of the task. Additionally, 

the authors analysed the influence overheads caused due to 

inter-core communication. This work does not use the 

optimum commutative communication approach and the 

parallel Montgomery implementation.  

 (Nadia Nedjah, et al,2006), proposed three varied 

prototypes for implementing binary modular 

exponentiation. The first one possessed a sequential 

architecture, second preferred a parallel architecture, while 

the last one considered a systolic architecture.  

(Sahu, et al, 2011) presented a noble scheme for modelling 

RSA public key cryptosystem that supports multiple key 

sizes in the range of 128 bits, 256 bits or 512 bits. The 

author employed this system with FPGA core.  

 (M. Rohit, et al, 2013) made an effort and developed a 

secure algorithm to mitigate the distribution of product of 

two prime numbers (n). If the factors of n are hacked, it 

could compromise the security provided by the RSA 

algorithm.  

 (Chhabra, et al, 2011) advocated a scheme that 

establishes itself as more secure as compared to the 

original RSA algorithm for digital signatures and 

encryption in public key cryptosystems. This scheme 

eliminates the requirements of transferring  , the product 

of two random numbers, but in essence they are large 

prime numbers. 

 (Jiang Huiping, et al,2011) enhanced the mechanism of 

RSA coprocessor while taking into account the power 

analysis for RSA coprocessor. Initially, the shadow 

approach was developed with the RSA algorithm for 

increasing the complicatedness for discrepancy power 

analysis.  

 (Xuewen Tan, et al, 2012)have developed Batch RSA-

S1 Multi-Power RSA algorithm and optimized the overall 

performance of RSA decryption by adding up the load 

transferring approaches and multi-prime schemes in the 

Batch RSA algorithm.   

 (IputHeri K, et al. 2009) proposed RSA-encryption 

model using robust Pipelined radix-2 Montgomery's 

multiplication architecture and in later stage they exploited 

the algorithm for accomplishing higher speed and 

optimum computation efficiency. This approach divides 

the computation of Montgomery modular multiplication 

into numerous clock cycles for accomplishing higher 

speeds.  

 (C. Wen, et al, 2003) developed a model with radix-4 

modular multiplication algorithm that was functional on 

the basis of Montgomery’s algorithm and a fast radix-4 

modular exponentiation algorithm for RSA public-key 

cryptosystem. The authors proved that this multiplier 

performed four-times faster as compared to a direct radix-

2 implementation of Montgomery algorithm. 

 (P. Fournaris, et al,2005)  developed a systolic, 

scalable, superfluous carry-save modular multiplier 

scheme and further developed RSA encryption 

architecture while taking into account the Montgomery 

modular multiplication algorithm where the integrated 

system was used with FPGA core. 

 (Perovic, et al, 2012) proposed a system model for 

RSA implementation with FPGA cores while taking key 

size as 1024 bits. The authors explored the system 

performance with factors like resource occupancy and 

highest operational frequency.  

 Numerous efforts have been made to optimize the 

authentication and its optimization with RSA 

cryptosystems and majority were implemented with 

hardware platforms. But considering a competitive multi-

transceiver or MIMO kind of applications, these 

approaches are found to be limited in terms of critical 

latency, power factor and hence overall performance. Most 

of these schemes are computationally intense since they 

use serial Montgomery multiplication. Further, RSA 

approaches suffer from reorder cryptosystem limitations. 

The proposed implementation of commutative 

cryptography using Parallel Montgomery multiplication 

offers high processing speed and lower power 

consumption. It also avoids the key exchange 

complications. 

 

3. Mathematical Background 

 

In this section, the mathematical modeling and its 

sequential implementation for Commutative RSA system 

realization is presented. The CRSA algorithmic model for 

key generation, commutative encryption and decryption 

process at each of the three transceiver terminals are 

detailed. 
 

3.1 Key Generation 
 

In order to generate the pseudo random number, the Linear 

Feedback Shift Register (LFSR) has been used and more 

precisely the Fibonacci LFSR has been taken into 

consideration. It facilitates a better scenario for hardware 

or multiple core implementations for distributed core 

CRSA. Each output of the pseudo random number 

generator is checked whether it is a prime number or not. 

Using the prime numbers, the variables for encryption 

exponent (e) and decryption exponent (d) are computed. 

These are the commutative encryption and decryption keys 

which have been further employed for creating cipher 

texts C and later converted into plain text M. In order to 

enhance the overall efficiency and reduce critical delay in 

key generation, we have employed two parallel pseudo 

random generators which are succeeded by 32 bit LFSRs. 

The pseudo random bits generated are stored in shift 

registers and once it gets filled, the LFSR stops further bit 

generation till the register memory is available for the next 

random bits. It makes the system power efficient and 
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Fig. 1   Key Generation for Commutative RSA Algorithm 

 

increases the speed. The mathematical approach and ASM 

chart to perform key generation has been presented in 

Figure 1 and Figure 2 respectively. 

 Figure 2 presents the functional architecture of key 

generation in Commutative RSA. In the designed scheme 

of key generation, the seed data bits of size 512 bits are 

fed to the key generator which ultimately generates the 

1024 bits of encryption key e, decryption key d and the 

parameter . Here the prime number of 1024 bits has been 

generated and is fed to the Encryption and Decryption 

processes. The process of  Algorithm may be easily 

designed using Algorithmic State Machine (ASM) charts 

(S. Ramachandran, 2007) rather than by the traditional 

state diagram.  

 

3.2 Commutative Encryption  
 

The RSA cryptosystem is one of the optimum public key 

cryptography approaches. However, its overall robustness 

gets limited due to one way encryption and majority of 

existing RSA schemes suffer from reorder issues. 

Therefore, in order to make this system least complicated 

and more efficient, an approach called Commutative RSA 

has been proposed. In this scheme, the order in which 

encryption has been done would not affect the decryption 

if it is done in the same order. The mathematical scheme 

for performing this encryption is described by a pseudo 

algorithm presented in Figure 3. For accomplishing a 

robust and least critical delay encryption, we have 

employed a modified architecture called the Parallel 

Montgomery Multiplication for distributed cores.  Here we 

have developed a high radix parallel architecture for 

Montgomery multiplication module using the Encryption 

and Decryption from our earlier work ( R. Ambika et al, 

2013). The algorithmic development and details of this 

modified Montgomery has been presented in Section 4. 

 
 

Fig. 2 ASM Chart for Commutative Key Generation 
 

Using encryption key e, the plain text M is converted to 

the cipher text C. Mathematically the commutative  
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RSA encryption algorithm can be stated as follows: 

 

1. Prime numbers:                     p ,q 

2. Compute n:                            n = p X q 

3. Plain text :                                 

4. Cipher text:                                         

 

Fig. 3 Pseudo Algorithm for Commutative Encryption 

 

3.3 Commutative Decryption  

 

In commutative RSA, the decryption would be done in the 

same fashion as was done for the Commutative 

encryption. In this work, we have implemented the parallel 

Montgomery modular exponential modules that decrypt 

the cipher text into a plain text. In Commutative 

decryption, at every individual transceiver terminal, the 

plain text is obtained from cipher text exponent as shown 

in Figure 4. The designed cryptosystem has been presented 

in the next section.  

 

Algorithm for Decryption 

 

Cipher text:                               

Plain text:                                                

 

Fig.4 Pseudo Algorithm for Commutative 

 

 
 

Fig. 5Sequential Model for Commutative RSA Realization 
 

4. Commutative RSA Cryptography Core  
 

In this section, we have presented the overall system 

design of the Commutative architecture of RSA and its 

simulation with multiple distributed FPGA cores. The 

overall system realization was done in a sequential way 

with multiple cores developed with its individual 

commutative cryptosystem. The sequential phases have 

been presented in Figure 5. 

 In commutative cryptosystem architecture, the CRSA 

algorithm has been designed for every encompassing 

distributed FPGA Core. The cryptography encryption as 

well as decryption algorithm has been realized for each 

individual transceiver. The encryption and the decryption 

modules have been realized using the parallel 

implementation of Montgomery Multiplication. The 

design of parallel Montgomery exponential module 

reduces the critical delay as well as the power 

consumption and thus increases the overall efficiency of 

the Commutative RSA authentication scheme. 

 

4.1 CRSA Oriented Montgomery Parallel Multiplier 
 

A number of researchers have advocated the basic 

parallelization of the Montgomery by performing multiple 

self-sufficient Montgomery Multipliers for multiple cores 

in parallel (A. Moss, et al, 2007), (Marcelo E et al, 2005). 

Although they enhance the throughput of the system, 

unfortunately, they represent a static latency approach that 

is ineffective for optimizing latency of individual 

Montgomery multiplier modules. In real time applications, 

the public key cryptosystems like RSA, Elliptic Curve 

Cryptography (ECC) do encompass huge number of 

multiplier modules. It contains higher data dependencies 

and thus the static kind of latency approaches might not be 

fruitful for accelerating the single instance of public key 

cryptosystems like RSA, ECC or Digital Enhanced 

Cordless Telecommunication Standard (DECT) cipher 

(DSC). All these shortcomings can be eliminated while 

taking into account of uniform task partitioning where the 

single Montgomery Multiplier would be divided into 

varied divisions with an assumption that all sub parts are 

assigned uniform load. Similarly, a system needs higher 

tolerability for allied communication delay and thus the 

created inter-core communication is, in general, much 

slower as compared to intra-core communication situation. 

Therefore, for multiple core communication, the inter-core 

communication might be a bottleneck in parallel 

multipliers. The higher tolerability in delay means that the 

system performance of the proposed parallel architecture 

is not much affected by any inter-core communication. 

The parallel Montgomery Multipliers are eminently suited 

for diverse multi-core models and it makes the overall 

system stable even for higher throughputs.  
 

4.2 Parallel Montgomery Multiplier module 
 

The parallel implementation of Montgomery 

multiplication for multi-core applications is effective for 

RSA cryptosystems and its applications. In a number of 

cryptosystems, a series of multiplication functions 

operating concurrently are required. For example, the 

modular exponentiation is estimated while employing the 

chain of processes like modular multiplication and 

squaring. Multiplication and squaring are in general 

implemented by means of an integer multiplication 

followed by a modular reduction with certain predefined 

modulus. In case of RSA algorithm, the modular reduction 

is a pseudo random variable. Reduction in overall 

computational complexity is one of the significant 

contributions of Montgomery residue depiction and its 

resultant multiplication algorithm (Bunimov, et al, 2002), 

(Zhimin Chen, et al,2011).The design of Montgomery  

 Multiplication Algorithm was presented in detail in our 

earlier work (R. Ambika et al, 2013) and the same is used 

in the present work. In operational Montgomery 

multiplication process, initially the functional operands are 

transformed into their allied Montgomery residue 

representation. That is followed by performing integer 
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multiplication and squaring. Finally, the result is converted 

back into its generic integer representation.  

 

4.3 Montgomery Multiplication with Multiple Transceiver  

 

Majority of the Montgomery algorithms need 32 bits 

precision for the computation. For implementing the 

parallel Montgomery multiplication, few schemes like 

bipartite (A. Moss, et al, 2007), (Marcelo E, et al, 2005) 

and tripartite (Marcelo E, et al, 2008) were developed. In 

this work, multiple core hardware architecture is proposed 

for Commutative RSA encryption and decryption. The 

developed scheme involves highly efficient 

communication between incorporated multiple cores. This 

is a robust and efficient CRSA approach and offers real 

time functional hardware architecture.  

 

4.4 Commutative nature of CRSA 

 

Let the variables    and    represent the group members 

required to perform communication over the secure plane. 

Two prime variables         
     and         

        

are selected from a pseudo random number generator in 

order to compute the encryption key and decryption key. 

The products of two prime numbers            and 

           are calculated as follows:   

 

           [(       
    )  (       

    )]         (1) 

 
           [(       

      )  (       
      )] 

                       (2) 

Using these expressions, it can be found that 

        
              

                                     (3) 

  

       
             

     for   and                       (4) 

 

The key pairs called encryption key pair of   and   has 

been achieved by following expression. 

 

         
            

          and

(      
           

    )                                        (5) 

 

The             is retrieved using randomly selected 

variables in such a way that it is a co-prime of 

           or in other terms, it can be expressed as  

 
            

                                             (6) 

 
where            is the greatest common divisor (GCD) 

function that exists between variables   and  . 
 

 

Similarly, the decryption key pair of   and   is presented 

in terms of: 
 

(      
           

    ) and 

(      
           

    )                                        (7) 
 

and the property             is calculated based on the 

expression. 

            

(     
    )

  
   (     

    )                                     (8) 

 

Consider      as the encrypted data    the encryption 

operation may be expressed as: 

                
                                          (9) 

 

Likewise the resulting commutative RSA decryption 

functions on the retrieved encrypted data may be 

expressed as:   
 

         
          

                                 (10) 

 

5. Results and Discussions 
 

A highly robust cryptosystem based on commutative RSA 

algorithm has been designed and simulated on multiple 

FPGA cores. The overall system model has been coded 

using VHDL with multiple transceivers. The design is 

simulated using Modelsim and synthesized using Xilinx 

Design Suite 14.3.  

 Frequency of operation in simulation has been set to 

100 MHz. The various encryption and decryption data 

values at each user’s location are computed using 

equations (1) to (10) and presented in Tables 1, 2 and 3. 

The data values shown in these three tables are remapped 

for the VHDL RTL codes as presented in Table 4. The 

original data which is required to be encrypted is shown as 

data_pram in Figures 6 to 8. The encryption key is shown 

as e_pram and the encrypted output data is shown as 

cypher.  

 The encryption starts at time 150 ns and completes 

processing at 10035 ns for user 1 terminal as shown in 

simulation waveforms presented in Figure 6. Similarly, for 

user 2 terminal, encryption commences at time 10035 ns 

and ends at 22195 ns, whereas for User 3 terminal, start 

and end times are 22195 ns and 34115 ns respectively as 

presented in Figures 7 and 8. The decryption timings for 

the three user terminals are presented in Figures 9, 10 and 

11.  

 The encrypted data are input as incipher for 

Decryption processing. The decryption key is different 

from the encryption key and is shown as d_pram and the 

decrypted output is shown as originalplaintext in the 

waveforms. It may be noted that the encrypted data of user 

1 will be the input data for user 2 and so on. Similarly for 

the decryption. For example, user 1 data 7487875 is 

encrypted as shown in Fig. 6 and decrypted as shown in 

Fig. 11 recovering back the same data. This proves the 

commutative nature of the algorithm and the RTL design. 

The encrypted and decrypted output data have also been 

verified to be correct from Cryptography calculator 

http://rsatools.wforums.net/. From the waveforms, it can 

be seen that the complete encryption as well as the 

decryption process takes 100 clock cycles or 10 µs at 100 

MHz. 

  The Synthesis, Place and Route have been run on the 

RTL design. The design was synthesized using Xilinx 

Design Suite 14.3 targeted on Virtex-5, xc5vfx70t-2ff1136 

FPGA. The design for both the encryption and the 

decryption utilizes about 67% of the chip resources as  
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Table 1: Data at User 1 Terminal 

 

USER 1 

Data Decimal Hexadecimal 

p_val 59083 E6CB 

q_val 33223 81C7 

n_pram 1962914509 74FFB2CD 

e_pram 699776239 29B5BCEF 

data_pram 7487875 724183 

cypher 848084699 328CBEDB 

d_pram 1389794659 52D69563 

Original plain text after decoding 7487875 724183 

 

Table 2: Data at User 2 Terminal 

 

USER 2 

Data Decimal Hexadecimal 

p_val 59083 E6CB 

q_val 33223 81C7 

n_pram 1962914509 74FFB2CD 

e_pram 1154032391 44C92307 

data_pram 848084699 328CBEDB 

cypher 752490942 2CDA19BE 

d_pram 1608356723 5FDD9373 

Original plain text after decoding 848084699 328CBEDB 

 

Table 3: Data at User 3 Terminal 

 

USER 3 

Data Decimal Hexadecimal 

p_val 59083 E6CB 

q_val 33223 81C7 

n_pram 1962914509 74FFB2CD 

e_pram 627898457 256CF859 

data_pram 752490942 2CDA19BE 

cypher 553018001 20F66291 

d_pram 1057410797 3F06CEED 

Original plain text after decoding 752490942 2CDA19BE 

 

Table 4 Mapping of Data used in equations and waveforms 

 

Designation of Data in Equations Designation of Data in Waveforms 

       
     p_val 

       
     q_val 

           n_pram 

           n_pram 

  data_pram 

     cypher 

           d_pram 

     originalplaintext 

 

Table 5 Device Utilization of Encryption & Decryption RTL Design 

 

Device utilization Utilized Available Utilization (%) 

Number of Slice Registers 31298 44800 69 

Number of Slice LUTs 30129 44800 67 

Number of Bonded IOBs 2051 640 320 

Number of fully used LUT-FF pairs 20258 41169 49 
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Fig. 6 Waveform of CRSA Encryption phase1 as per equations 1 to 9 

 

 
 

Fig. 7 Waveform of CRSA Encryption Phase 2 according to equations 1 to 9   

 

 
 

Fig. 8 Waveform of CRSA Encryption phase 3 according to equations 1 to 9 

 

presented in Table 5. The maximum operating frequency 

reported by the Xilinx Design Suite 14.3 tool is 199 MHz 

as shown in Table 6. Therefore, the processing time for the 

complete encryption and the decryption together is about 5 

µs. The RTL view of the Commutative RSA Key 

generation is shown in Figure 12. The RTL views of 

Encryption and Decryption are not presented since details 

are too numerous to be accommodated in this paper.  

Table 6   Timing analysis for CRSA using ISE  14.3 
 

RTL Design Maximum Frequency 

(MHz) 

Key Generation 
316 

Overall CRSA 

(Encryption & Decryption) 199 
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Fig.  9 Waveform of CRSA Decryption phase 1 according to equations 1 to 10 for user 3 

 

 
 

Fig. 10 Waveform of CRSA Decryption phase 2 according to equations 1 to 10 for user 2 

 

 
 

Fig. 11 Waveform of CRSA Decryption phase 3 according to equations 1 to 10 for user 1 

 

Conclusion 

 

This paper presented a novel encryption-decryption 

system design called Commutative RSA with key 

generation realized using VHDL. This can be used for 

MIMO transceiver based public infrastructure 

communication. A scheme of parallelized Montgomery 

multiplication with high radix has been used for 

accomplishing higher rate encryption and decryption of 

RSA algorithm. It exhibits high processing speed, thus 

suited for real time applications.  
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