

 3519 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

Research Article

International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161

 ©2014 INPRESSCO
®

, All Rights Reserved

Available at http://inpressco.com/category/ijcet

Design of Commutative Cryptography Core with Key Generation for

Distributed FPGA Architecture

R. Ambika
Ȧ*

, S. Ramachandran
Ḃ
, K.R. Kashwan

Ċ

ȦVinayaka Missions University, Salem, India
ḂDept. of ECE, SJB Institute of Technology, Bangalore, India

ĊDept. of ECE, Sona College of Technology, Salem, India

Accepted 05 Oct 2014, Available online 11 Oct 2014, Vol.4, No.5 (Oct 2014)

Abstract

Data security during communication is one of the predominant issues in modern multiple transceiver based

communication. In this paper, we have presented a highly robust commutative cryptography core for distributed FPGA

architecture called commutative RSA with Key generation. The commutative RSA algorithm has been developed using

parallelization of Montgomery multiplication with high radix exponential modular multiplication scheme to suit FPGA

implementation. The architectural design not only ensures authentication among multiple transceivers or MIMO but also

reduces overheads caused due to key exchange process. The CRSA algorithm with key generation has been realized with

multiple FPGA cores using VHDL. The design has been simulated using Modelsim 5.5e and synthesized using Xilinx

Design Suite 14.3 targeted on Virtex-5, xc5vfx70t-2ff1136 FPGA and Vivado 12.3, Virtex-7, xc7vx330tffg1157-2L. The

results obtained illustrates that the proposed architecture offers high computational efficiency with minimum overheads

and memory occupancy even at higher frequency rate. The designed system works at 292 MHz in Vivado and at 199 MHz

in ISE 14.3 platforms and would be compatible with a standard real time data communication hardware interface.

Keywords: FPGA, Linear Feedback Shift Register, MIMO, Montgomery multiplication, RSA, Security

1. Introduction

1
 High speed data communication in multiple transceivers

and Multiple Input Multiple Output (MIMO) applications

demand a highly robust and secure system model that

could facilitate security. The approach of cryptography

plays a potential role in ascertaining security for Multiple

Input Multiple Output based on RSA algorithm and plays

a significant role with public key cryptography.

Confidentiality, authenticity, data integrity and its non-

repudiation are the major requirements in security. A

number of approaches and systems have been advocated

and developed for ensuring data security in competitive

multiuser scenario and among them, public key

cryptosystem has been recognized as one of the optimum

solution (William Stallings, 2003).The public key

cryptography is found to be better as compared to

symmetric-key cryptosystem for achieving

aforementioned objectives.

 A number of public key cryptosystems have been

developed, of which RSA cryptosystem (R. L. Rivest, et

al, 1978) established itself as one of the most optimum

approaches which is sufficient in delivering high

performance in multi-party communication scenario with

distributed processors. RSA can be an effective solution

for hardware assisted applications of secure

communication. In RSA algorithm, the predominant

process is the computation of modular exponentiation by

*Corresponding author: R. Ambika

repeated modular multiplication process. The Montgomery

modular multiplication algorithm (SchneierBruce, et al,

1997), (Alan Daly, et al, 2001) uses this technique and is

suited for hardware realization. Public key algorithms are

based on one way cryptosystem functions and have

limitations of key exchange overheads. Therefore there is

an inevitable need to develop schemes that could deliver

the commutative kind of behaviour. According to

commutative nature, the order in which RSA encryption is

done would not influence the decryption if it is done in

similar way or in a sequence. If this unique approach is

incorporated with normal RSA, it could be a milestone for

optimizing RSA implementation with MIMO transceiver

based communication. This paper explores the

commutative RSA (CRSA) algorithm with key generation

for realization using distributed FPGA cores.

 The rest of this paper has been organized as follows. In

Section 2, the prior work has been discussed. Section 3

discusses the Mathematical background which is followed

by Section 4 that presents Commutative RSA

Cryptosystem core details. Section 5 discusses the

experimental study and the results obtained. The last

section presents conclusion and the scope for future work.

2. Related Work

(G.D. Sutter, et al, 2011), developed a system with

enhanced Montgomery’s multiplication for performing the

LSB first and the MSB first algorithms alternately. Their

developed system model make use of the digital serial

R. Ambika et al Design of Commutative Cryptography Core with Key Generation for Distributed FPGA Architecture

3520 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

scheme, Carry Save Adder (CSA)and Carry Skip Adder.

The digital serial scheme is used for performing

Montgomery multiplication. The CSA is used for

representation of intermediate multiplication and the carry

skip addition is used for reducing the critical path. Another

uniqueness of this work is the pre-computation of the

quotient value in Montgomery’s iteration for speeding up

the operation frequency. Even if this system made a better

effort, it could not address the multiparty MIMO kind of

situation. Further, the robust commutative approaches

were not explored in this work.

 (Z. Chen, et al,2011) proposed a parallel system

implementation of Montgomery multiplication for

distributed multiple cores. This approach got success in

achieving balanced partitioning of the task. Additionally,

the authors analysed the influence overheads caused due to

inter-core communication. This work does not use the

optimum commutative communication approach and the

parallel Montgomery implementation.

 (Nadia Nedjah, et al,2006), proposed three varied

prototypes for implementing binary modular

exponentiation. The first one possessed a sequential

architecture, second preferred a parallel architecture, while

the last one considered a systolic architecture.

(Sahu, et al, 2011) presented a noble scheme for modelling

RSA public key cryptosystem that supports multiple key

sizes in the range of 128 bits, 256 bits or 512 bits. The

author employed this system with FPGA core.

 (M. Rohit, et al, 2013) made an effort and developed a

secure algorithm to mitigate the distribution of product of

two prime numbers (n). If the factors of n are hacked, it

could compromise the security provided by the RSA

algorithm.

 (Chhabra, et al, 2011) advocated a scheme that

establishes itself as more secure as compared to the

original RSA algorithm for digital signatures and

encryption in public key cryptosystems. This scheme

eliminates the requirements of transferring , the product

of two random numbers, but in essence they are large

prime numbers.

 (Jiang Huiping, et al,2011) enhanced the mechanism of

RSA coprocessor while taking into account the power

analysis for RSA coprocessor. Initially, the shadow

approach was developed with the RSA algorithm for

increasing the complicatedness for discrepancy power

analysis.

 (Xuewen Tan, et al, 2012)have developed Batch RSA-

S1 Multi-Power RSA algorithm and optimized the overall

performance of RSA decryption by adding up the load

transferring approaches and multi-prime schemes in the

Batch RSA algorithm.

 (IputHeri K, et al. 2009) proposed RSA-encryption

model using robust Pipelined radix-2 Montgomery's

multiplication architecture and in later stage they exploited

the algorithm for accomplishing higher speed and

optimum computation efficiency. This approach divides

the computation of Montgomery modular multiplication

into numerous clock cycles for accomplishing higher

speeds.

 (C. Wen, et al, 2003) developed a model with radix-4

modular multiplication algorithm that was functional on

the basis of Montgomery’s algorithm and a fast radix-4

modular exponentiation algorithm for RSA public-key

cryptosystem. The authors proved that this multiplier

performed four-times faster as compared to a direct radix-

2 implementation of Montgomery algorithm.

 (P. Fournaris, et al,2005) developed a systolic,

scalable, superfluous carry-save modular multiplier

scheme and further developed RSA encryption

architecture while taking into account the Montgomery

modular multiplication algorithm where the integrated

system was used with FPGA core.

 (Perovic, et al, 2012) proposed a system model for

RSA implementation with FPGA cores while taking key

size as 1024 bits. The authors explored the system

performance with factors like resource occupancy and

highest operational frequency.

 Numerous efforts have been made to optimize the

authentication and its optimization with RSA

cryptosystems and majority were implemented with

hardware platforms. But considering a competitive multi-

transceiver or MIMO kind of applications, these

approaches are found to be limited in terms of critical

latency, power factor and hence overall performance. Most

of these schemes are computationally intense since they

use serial Montgomery multiplication. Further, RSA

approaches suffer from reorder cryptosystem limitations.

The proposed implementation of commutative

cryptography using Parallel Montgomery multiplication

offers high processing speed and lower power

consumption. It also avoids the key exchange

complications.

3. Mathematical Background

In this section, the mathematical modeling and its

sequential implementation for Commutative RSA system

realization is presented. The CRSA algorithmic model for

key generation, commutative encryption and decryption

process at each of the three transceiver terminals are

detailed.

3.1 Key Generation

In order to generate the pseudo random number, the Linear

Feedback Shift Register (LFSR) has been used and more

precisely the Fibonacci LFSR has been taken into

consideration. It facilitates a better scenario for hardware

or multiple core implementations for distributed core

CRSA. Each output of the pseudo random number

generator is checked whether it is a prime number or not.

Using the prime numbers, the variables for encryption

exponent (e) and decryption exponent (d) are computed.

These are the commutative encryption and decryption keys

which have been further employed for creating cipher

texts C and later converted into plain text M. In order to

enhance the overall efficiency and reduce critical delay in

key generation, we have employed two parallel pseudo

random generators which are succeeded by 32 bit LFSRs.

The pseudo random bits generated are stored in shift

registers and once it gets filled, the LFSR stops further bit

generation till the register memory is available for the next

random bits. It makes the system power efficient and

R. Ambika et al Design of Commutative Cryptography Core with Key Generation for Distributed FPGA Architecture

3521 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

Fig. 1 Key Generation for Commutative RSA Algorithm

increases the speed. The mathematical approach and ASM

chart to perform key generation has been presented in

Figure 1 and Figure 2 respectively.

 Figure 2 presents the functional architecture of key

generation in Commutative RSA. In the designed scheme

of key generation, the seed data bits of size 512 bits are

fed to the key generator which ultimately generates the

1024 bits of encryption key e, decryption key d and the

parameter . Here the prime number of 1024 bits has been

generated and is fed to the Encryption and Decryption

processes. The process of Algorithm may be easily

designed using Algorithmic State Machine (ASM) charts

(S. Ramachandran, 2007) rather than by the traditional

state diagram.

3.2 Commutative Encryption

The RSA cryptosystem is one of the optimum public key

cryptography approaches. However, its overall robustness

gets limited due to one way encryption and majority of

existing RSA schemes suffer from reorder issues.

Therefore, in order to make this system least complicated

and more efficient, an approach called Commutative RSA

has been proposed. In this scheme, the order in which

encryption has been done would not affect the decryption

if it is done in the same order. The mathematical scheme

for performing this encryption is described by a pseudo

algorithm presented in Figure 3. For accomplishing a

robust and least critical delay encryption, we have

employed a modified architecture called the Parallel

Montgomery Multiplication for distributed cores. Here we

have developed a high radix parallel architecture for

Montgomery multiplication module using the Encryption

and Decryption from our earlier work (R. Ambika et al,

2013). The algorithmic development and details of this

modified Montgomery has been presented in Section 4.

Fig. 2 ASM Chart for Commutative Key Generation

Using encryption key e, the plain text M is converted to

the cipher text C. Mathematically the commutative

R. Ambika et al Design of Commutative Cryptography Core with Key Generation for Distributed FPGA Architecture

3522 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

RSA encryption algorithm can be stated as follows:

1. Prime numbers: p ,q

2. Compute n: n = p X q

3. Plain text :

4. Cipher text:

Fig. 3 Pseudo Algorithm for Commutative Encryption

3.3 Commutative Decryption

In commutative RSA, the decryption would be done in the

same fashion as was done for the Commutative

encryption. In this work, we have implemented the parallel

Montgomery modular exponential modules that decrypt

the cipher text into a plain text. In Commutative

decryption, at every individual transceiver terminal, the

plain text is obtained from cipher text exponent as shown

in Figure 4. The designed cryptosystem has been presented

in the next section.

Algorithm for Decryption

Cipher text:

Plain text:

Fig.4 Pseudo Algorithm for Commutative

Fig. 5Sequential Model for Commutative RSA Realization

4. Commutative RSA Cryptography Core

In this section, we have presented the overall system

design of the Commutative architecture of RSA and its

simulation with multiple distributed FPGA cores. The

overall system realization was done in a sequential way

with multiple cores developed with its individual

commutative cryptosystem. The sequential phases have

been presented in Figure 5.

 In commutative cryptosystem architecture, the CRSA

algorithm has been designed for every encompassing

distributed FPGA Core. The cryptography encryption as

well as decryption algorithm has been realized for each

individual transceiver. The encryption and the decryption

modules have been realized using the parallel

implementation of Montgomery Multiplication. The

design of parallel Montgomery exponential module

reduces the critical delay as well as the power

consumption and thus increases the overall efficiency of

the Commutative RSA authentication scheme.

4.1 CRSA Oriented Montgomery Parallel Multiplier

A number of researchers have advocated the basic

parallelization of the Montgomery by performing multiple

self-sufficient Montgomery Multipliers for multiple cores

in parallel (A. Moss, et al, 2007), (Marcelo E et al, 2005).

Although they enhance the throughput of the system,

unfortunately, they represent a static latency approach that

is ineffective for optimizing latency of individual

Montgomery multiplier modules. In real time applications,

the public key cryptosystems like RSA, Elliptic Curve

Cryptography (ECC) do encompass huge number of

multiplier modules. It contains higher data dependencies

and thus the static kind of latency approaches might not be

fruitful for accelerating the single instance of public key

cryptosystems like RSA, ECC or Digital Enhanced

Cordless Telecommunication Standard (DECT) cipher

(DSC). All these shortcomings can be eliminated while

taking into account of uniform task partitioning where the

single Montgomery Multiplier would be divided into

varied divisions with an assumption that all sub parts are

assigned uniform load. Similarly, a system needs higher

tolerability for allied communication delay and thus the

created inter-core communication is, in general, much

slower as compared to intra-core communication situation.

Therefore, for multiple core communication, the inter-core

communication might be a bottleneck in parallel

multipliers. The higher tolerability in delay means that the

system performance of the proposed parallel architecture

is not much affected by any inter-core communication.

The parallel Montgomery Multipliers are eminently suited

for diverse multi-core models and it makes the overall

system stable even for higher throughputs.

4.2 Parallel Montgomery Multiplier module

The parallel implementation of Montgomery

multiplication for multi-core applications is effective for

RSA cryptosystems and its applications. In a number of

cryptosystems, a series of multiplication functions

operating concurrently are required. For example, the

modular exponentiation is estimated while employing the

chain of processes like modular multiplication and

squaring. Multiplication and squaring are in general

implemented by means of an integer multiplication

followed by a modular reduction with certain predefined

modulus. In case of RSA algorithm, the modular reduction

is a pseudo random variable. Reduction in overall

computational complexity is one of the significant

contributions of Montgomery residue depiction and its

resultant multiplication algorithm (Bunimov, et al, 2002),

(Zhimin Chen, et al,2011).The design of Montgomery

 Multiplication Algorithm was presented in detail in our

earlier work (R. Ambika et al, 2013) and the same is used

in the present work. In operational Montgomery

multiplication process, initially the functional operands are

transformed into their allied Montgomery residue

representation. That is followed by performing integer

R. Ambika et al Design of Commutative Cryptography Core with Key Generation for Distributed FPGA Architecture

3523 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

multiplication and squaring. Finally, the result is converted

back into its generic integer representation.

4.3 Montgomery Multiplication with Multiple Transceiver

Majority of the Montgomery algorithms need 32 bits

precision for the computation. For implementing the

parallel Montgomery multiplication, few schemes like

bipartite (A. Moss, et al, 2007), (Marcelo E, et al, 2005)

and tripartite (Marcelo E, et al, 2008) were developed. In

this work, multiple core hardware architecture is proposed

for Commutative RSA encryption and decryption. The

developed scheme involves highly efficient

communication between incorporated multiple cores. This

is a robust and efficient CRSA approach and offers real

time functional hardware architecture.

4.4 Commutative nature of CRSA

Let the variables and represent the group members

required to perform communication over the secure plane.

Two prime variables
 and

are selected from a pseudo random number generator in

order to compute the encryption key and decryption key.

The products of two prime numbers and

 are calculated as follows:

 [(
) (

)] (1)

 [(

) (
)]

 (2)

Using these expressions, it can be found that

 (3)

 for and (4)

The key pairs called encryption key pair of and has

been achieved by following expression.

 and

(

) (5)

The is retrieved using randomly selected

variables in such a way that it is a co-prime of

 or in other terms, it can be expressed as

 (6)

where is the greatest common divisor (GCD)

function that exists between variables and .

Similarly, the decryption key pair of and is presented

in terms of:

(

) and

(

) (7)

and the property is calculated based on the

expression.

(
)

 (

) (8)

Consider as the encrypted data the encryption

operation may be expressed as:

 (9)

Likewise the resulting commutative RSA decryption

functions on the retrieved encrypted data may be

expressed as:

 (10)

5. Results and Discussions

A highly robust cryptosystem based on commutative RSA

algorithm has been designed and simulated on multiple

FPGA cores. The overall system model has been coded

using VHDL with multiple transceivers. The design is

simulated using Modelsim and synthesized using Xilinx

Design Suite 14.3.

 Frequency of operation in simulation has been set to

100 MHz. The various encryption and decryption data

values at each user’s location are computed using

equations (1) to (10) and presented in Tables 1, 2 and 3.

The data values shown in these three tables are remapped

for the VHDL RTL codes as presented in Table 4. The

original data which is required to be encrypted is shown as

data_pram in Figures 6 to 8. The encryption key is shown

as e_pram and the encrypted output data is shown as

cypher.

 The encryption starts at time 150 ns and completes

processing at 10035 ns for user 1 terminal as shown in

simulation waveforms presented in Figure 6. Similarly, for

user 2 terminal, encryption commences at time 10035 ns

and ends at 22195 ns, whereas for User 3 terminal, start

and end times are 22195 ns and 34115 ns respectively as

presented in Figures 7 and 8. The decryption timings for

the three user terminals are presented in Figures 9, 10 and

11.

 The encrypted data are input as incipher for

Decryption processing. The decryption key is different

from the encryption key and is shown as d_pram and the

decrypted output is shown as originalplaintext in the

waveforms. It may be noted that the encrypted data of user

1 will be the input data for user 2 and so on. Similarly for

the decryption. For example, user 1 data 7487875 is

encrypted as shown in Fig. 6 and decrypted as shown in

Fig. 11 recovering back the same data. This proves the

commutative nature of the algorithm and the RTL design.

The encrypted and decrypted output data have also been

verified to be correct from Cryptography calculator

http://rsatools.wforums.net/. From the waveforms, it can

be seen that the complete encryption as well as the

decryption process takes 100 clock cycles or 10 µs at 100

MHz.

 The Synthesis, Place and Route have been run on the

RTL design. The design was synthesized using Xilinx

Design Suite 14.3 targeted on Virtex-5, xc5vfx70t-2ff1136

FPGA. The design for both the encryption and the

decryption utilizes about 67% of the chip resources as

R. Ambika et al Design of Commutative Cryptography Core with Key Generation for Distributed FPGA Architecture

3524 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

Table 1: Data at User 1 Terminal

USER 1

Data Decimal Hexadecimal

p_val 59083 E6CB

q_val 33223 81C7

n_pram 1962914509 74FFB2CD

e_pram 699776239 29B5BCEF

data_pram 7487875 724183

cypher 848084699 328CBEDB

d_pram 1389794659 52D69563

Original plain text after decoding 7487875 724183

Table 2: Data at User 2 Terminal

USER 2

Data Decimal Hexadecimal

p_val 59083 E6CB

q_val 33223 81C7

n_pram 1962914509 74FFB2CD

e_pram 1154032391 44C92307

data_pram 848084699 328CBEDB

cypher 752490942 2CDA19BE

d_pram 1608356723 5FDD9373

Original plain text after decoding 848084699 328CBEDB

Table 3: Data at User 3 Terminal

USER 3

Data Decimal Hexadecimal

p_val 59083 E6CB

q_val 33223 81C7

n_pram 1962914509 74FFB2CD

e_pram 627898457 256CF859

data_pram 752490942 2CDA19BE

cypher 553018001 20F66291

d_pram 1057410797 3F06CEED

Original plain text after decoding 752490942 2CDA19BE

Table 4 Mapping of Data used in equations and waveforms

Designation of Data in Equations Designation of Data in Waveforms

 p_val

 q_val

 n_pram

 n_pram

 data_pram

 cypher

 d_pram

 originalplaintext

Table 5 Device Utilization of Encryption & Decryption RTL Design

Device utilization Utilized Available Utilization (%)

Number of Slice Registers 31298 44800 69

Number of Slice LUTs 30129 44800 67

Number of Bonded IOBs 2051 640 320

Number of fully used LUT-FF pairs 20258 41169 49

R. Ambika et al Design of Commutative Cryptography Core with Key Generation for Distributed FPGA Architecture

3525 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

Fig. 6 Waveform of CRSA Encryption phase1 as per equations 1 to 9

Fig. 7 Waveform of CRSA Encryption Phase 2 according to equations 1 to 9

Fig. 8 Waveform of CRSA Encryption phase 3 according to equations 1 to 9

presented in Table 5. The maximum operating frequency

reported by the Xilinx Design Suite 14.3 tool is 199 MHz

as shown in Table 6. Therefore, the processing time for the

complete encryption and the decryption together is about 5

µs. The RTL view of the Commutative RSA Key

generation is shown in Figure 12. The RTL views of

Encryption and Decryption are not presented since details

are too numerous to be accommodated in this paper.

Table 6 Timing analysis for CRSA using ISE 14.3

RTL Design Maximum Frequency

(MHz)

Key Generation
316

Overall CRSA

(Encryption & Decryption) 199

R. Ambika et al Design of Commutative Cryptography Core with Key Generation for Distributed FPGA Architecture

3526 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

Fig. 9 Waveform of CRSA Decryption phase 1 according to equations 1 to 10 for user 3

Fig. 10 Waveform of CRSA Decryption phase 2 according to equations 1 to 10 for user 2

Fig. 11 Waveform of CRSA Decryption phase 3 according to equations 1 to 10 for user 1

Conclusion

This paper presented a novel encryption-decryption

system design called Commutative RSA with key

generation realized using VHDL. This can be used for

MIMO transceiver based public infrastructure

communication. A scheme of parallelized Montgomery

multiplication with high radix has been used for

accomplishing higher rate encryption and decryption of

RSA algorithm. It exhibits high processing speed, thus

suited for real time applications.

References

William Stallings,(2003) Cryptography and Network Security:

Principles and Practices. 3rd Edition.

R. Ambika et al Design of Commutative Cryptography Core with Key Generation for Distributed FPGA Architecture

3527 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

Fig. 12 RTL View of CRSA Key Generation

R. L. Rivest, A. Shamir, L. Adleman, (1978), A Method for

obtaining digital signatures and public-Key cryptosystems Comm.

ACM, Vol. 21, Issue 2; pp.120-126.

SchneierBruce,CryptographieappliquéeAlgorithmesprotocoles et

codes source en C (1997). 2ème edition; International Thomson

Publishing France -Applied Cryptography-Protocols, Algorithms,

and Source Code in C - 2nd Edition..

Alan Daly, William Marnane, (2001), Efficient Architectures for

implementing Montgomery Modular Multiplication and RSA

Modular Exponentiation on Reconfigurable Logic, University

College Cork Ireland.

R. Ambika, S. Ramachandran, K. R. Kashwan,(2013), Securing

Distributed FPGA System using Commutative RSA Core; Global

Journal of Researches in Engineering Electrical and electronics

Engineering, Vol. 13, Issue 15, version 1.0, pp.47-58.

Eldridge, S.E., and Walter, C.D., (1993), ‘Hardware Implementation

of Montgomery’s Multiplication Algorithm’, IEEE Trans.

Computers. Vol. 42, No.6, pp. 693–699.

Elbirt, A.J., and Paar, C., (1999), Towards an FPGA Architecture

Optimized for Public-Key Algorithms; the SPIE Symposium on

Voice, Video and Communications.

Blum, Paar, (1999), Montgomery Exponentiation on Re-configurable

Hardware’. Proc. 14th Symposium on Computer Arithmetic, pp.

70–77.

Kim, Y.S.; Kang, W.S, (2000), Choi J.R.; Implementation of 1024-

bit processor for RSA cryptosystem’.http:/ /www.ap-asic. org/

2000/proceedings/10-4.pdf

Bunimov V, Schimmler M, Tolg B,(2002), A Complexity-Effective

Version of Montgomery’s Algorithm; Presented at the Workshop

on Complexity Effective Designs (WECD02).

Gustavo D. Sutter; Jean-Pierre Deschamps; José Luis Imaña,(2011),

Modular Multiplication and Exponentiation Architectures for Fast

RSA Cryptosystem Based on Digit Serial Computation; IEEE

transactions on industrial electronics, vol. 58, No. 7.

Zhimin Chen; Patrick Schaumont(2011), A Parallel Implementation

of Montgomery Multiplication on Multicore Systems: Algorithm,

Analysis, and Prototype; IEEE transactions on computers, Vol.

60, No. 12.

Nadia Nedjah; Luiza de MacedoMourelle, (2006), Three Hardware

Architectures for the Binary Modular Exponentiation: Sequential,

Parallel, and Systolic; IEEE transactions on circuits and

systems—i: regular papers, Vol. 53, No. 3.

Sushanta Kumar Sahu; Manoranjan Pradhan, (2011), FPGA

Implementation of RSA Encryption System; International Journal

of Computer Applications (0975 – 8887), Vol. 19– No.9.

Minni, Rohit; Sultania, Kaushal; Mishra, Saurabh; Vincent, Durai

Raj,(2013), An algorithm to enhance security in RSA, Fourth

International Conference on Computing, Communications and

Networking Technologies (ICCCNT), DOI: 10.1109/ICCCNT.

2013.6726517, pp.1-4,

Chhabra, A.; Mathur, S.,(2011), Modified RSA Algorithm: A Secure

Approach, International Conference on Computational

Intelligence and Communication Networks (CICN), pp. 545-548.

Jiang Huiping; Yang Guosheng,(2011)Resistant against power

analysis for a fast parallel high-radix RSA

algorithm; International Conference on Electric Information and

Control Engineering (ICEICE); pp. 1668-1671.

Xuewen Tan; Yunfei Li,(2012) Parallel Analysis of an Improved

RSA Algorithm, International Conference on Computer Science

and Electronics Engineering (ICCSEE), Vol.1, pp. 318-320.

IputHeri, K.; AsepBagja, N.; Purba, R.S.; Adiono, T, (2009), Very

fast pipelined RSA architecture based on Montgomery's

algorithm, International Conference on Electrical Engineering

and Informatics, ICEEI '09.5-7 Aug 2009; Vol. 02, pp. 491-495.

Jin-Hua Hong; Cheng-Wen Wu , (2003) Cellular-Array Modular

Multiplier for Fast RSA Public-Key Cryptosystem Based on

Modified Booth’s Algorithm;IEEE transactions on very large

scale integration (vlsi) systems, vol. 11, No. 3.

A. P. Fournaris; O. Koufopavlou, (2005) A new RSA encryption

architecture and hardware implementation based on optimized

Montgomery multiplication; Proc. IEEE ISCAS, pp. 4645–4648.

Perovic, N.S.;Popovic-Bozovic, M., (2012), FPGA implementation

of RSA crypto algorithm using shift and carry algorithm; 20th

Telecommunications Forum (TELFOR), pp. 1040 – 1043.

S. Ramachandran. (2007) , Digital VLSI Systems Design, Springer,

Netherlands.

N. Costigan and P. Schwabe,(2009), Fast Elliptic-Curve

Cryptography on the Cell Broadband Engine, Proc. Int’l Conf.

Cryptology in Africa: Progress in Cryptology (AFRICACRYPT

’09), pp. 368-385,

R. Szerwinski and T. Guneysu, (2008), Exploiting the Power of

GPUs for Asymmetric Cryptography, Proc. Workshop

Cryptographic Hardware and Embedded System (CHES ’08), pp-

79-99.

A. Moss, D. Page, and N.P. Smart,(2007), Toward Acceleration of

RSA Using 3D Graphics Hardware, Proc. IMA Int’l Conf.

Cryptography and Coding 2007, pp. 213-220.

Marcelo E; Kaihara; Naofumi Takagi, (2005), Bipartite modular

multiplication; In Proceedings of cryptographic Hardware and

Embedded Systems - CHES 2005, number 3659 in Lecture notes in

Computer Science, pp-.201-210. Springer-Verlag.

Marcelo E; Kaihara;Naofumi Takagi, (2008), Bipartite modular

multiplication method; IEEE Transactions on

Computers;57(2):pp.157-164, http://rsatools.wforums.net/

