

 3346 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

General Article

International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161

 ©2014 INPRESSCO
®

, All Rights Reserved

Available at http://inpressco.com/category/ijcet

Contingent study of Black Box and White Box Testing Techniques

Neetu Dhingra
Ȧ
 and Mayank

Ȧ*

ȦDepartment of Information Technology, BLS Institute of Technology Management, Nh-10, Bahadurgarh, Haryana (India)

Accepted 20 Sept 2014, Available online 01 Oct 2014, Vol.4, No.5 (Oct 2014)

Abstract

A high reliability and performance can be given to software by applying suitable testing techniques to them. This paper

includes the comparison between black box and white box testing techniques in order make the software reliable and

highly efficient. A contingent study is made over the testing techniques to get the solution to follow a better testing

technique at better place. The paper includes the example to specify the techniques properly and to get the better results.

Keywords: Black box, White box, Equivalence class, Cyclomatic Complexity

Introduction

1
 Software testing is as old as the hills in the history of

digital computers. The testing of software is an important

means of assessing the software to determine its quality.

Since testing typically consumes 40 - 50% of development

efforts, and consumes more effort for systems that require

higher levels of reliability, it is a significant part of the

software engineering. Modern software systems must be

extremely reliable and correct. Automatic methods for

ensuring software correctness range from static

techniques, such as (software) model checking or static

analysis, to dynamic techniques, such as testing. All these

techniques have strengths and weaknesses: model

checking (with abstraction) is automatic, exhaustive, but

may suffer from scalability issues. Static analysis, on the

other hand, scales to very large programs but may give too

many spurious warnings, while testing alone may miss

important errors, since it is inherently incomplete (Trivedi,

2012). We can define software testing as a process or a

series of processes, design to make sure that computer

code does what it was actually design to do and it doesn’t

do anything unintended.(Khan, 2011). Software testing

can be defining that as a process of executing a program

with the intent of finding errors. So, testing means that one

inspects behaviour of a program on a finite set of test cases

(a set of inputs, execution prerequisites, and presumed

outcomes developed for a particular target, like as to

employ a particular program path or to verify compliance

with a specific requirement, for which valued inputs

always prevail. In operation, the entire set of test cases is

examined as infinite, therefore conceptually there are too

many test cases even for the uncomplicated programs. In

this case, testing could demand months and months to

execute. So, how will we be able to select the most proper

set of test cases? In practice, various approaches are used

*Corresponding author: Mayank

for that, and some of them are corresponded with risk

analysis, while others with test engineering proficiency.

Testing is an action implement for assessing software

quality and for improving it. Hence, the goal of testing is

systematic detection of different classes of errors (error

can be defined as a human action that produces an

incorrect result, in a minimum amount of time and with a

minimum amount of effort. It is a process of accessing the

functionality and correctness of a software by analysis.

The major motive of testing can be assurance of quality,

estimation of reliability, validation and verification.

Software testing is an elemental constituent of software

quality assurance and represents a review of specification,

design and coding. The major target of software testing is

to affirm the quality of software system by systematically

testing the software in carefully controlled circumstances,

another aim is to recognize the completeness and

correctness of the software, and ultimately it reveals

undiscovered errors. Testing is basically a task of locating

errors. It may be:

1).Positive testing

2).Negative testing

Positive testing

 Operate application is should be operated.

 Does it behave normally?

 Use proper variety of legal test data, including data

values at the boundaries to test if it fails.

 Check out the actual test result with the expected.

 Are results correct?

 Does the application work correctly?

Negative testing

 Test for abnormal operations.

 Does the system fail/crash?

 Testing for illegal or abnormal data.

Neetu Dhingra et al Contingent study of Black Box and White Box Testing Techniques

3347 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

 Deliberately seeks to make things go wrong and to

discover/ detect.

 Does an application do what it should not?

 Does it fail to do what it should?

Principles of Testing

To make software testing effective and efficient we follow

certain principles:

1. Testing should be based on the user requirements.

2. Testing time and resources are limited.

3. Exhaustive testing is impossible.

4. Use effective resources to test.

5. Testing planning should be done early.

6. Testing should be begin in small and progress in

large.

7. Testing should be conducted by a different testing

team or external team.

8. All tests should be according to customer

requirements.

9. Assign the best person for testing.

10. Test should be planned to show software defects and

not their absence.

11. Prepare the test reports including test cases and test

results to summarize the result of testing.

12. Advance test planning is must and should be updated

timely.

13. Testing activities should start as early as possible in

the software or system development life cycle and

should be focused on defined objectives.

14. Defect clustering refers to a small number of modules

contain most of the defects discovered during before

executing testing, or are responsible for the most

operational failures.

Figure 1

Types of Testing

Software testing is involved in each stage of software life

cycle, but the way of testing conducted at each stage of

software development is different in nature and it has

different objectives (Dondeti, 2012).

 A software testing Strategy should be flexible enough

to promote a customized testing approach at same time it

must be right enough. Strategy is generally developed by

project managers, software engineer and testing specialist

(Abhijit A. Sawant, 2012).

Figure 2

Black Box Testing Technique

Black Box Testing is used when code of the module is not

available. In such situations appropriate priorities can be

given to different test cases, so that the quality of software

is not compromised, if testing is to be stopped

prematurely(Harsh Bhasin, 2014).It is a technique of

testing without having any internal working knowledge of

the application. It only examines the basic aspects of the

system and to verify that whether it is according to

customer/client requirements or not.

a) Equivalence class Partitioning: It can reduce the

number of test cases, as it split the input data of a

software unit into partition of data from which test cases

can be derived. This technique divides the input domain of

a program onto equivalence classes. It is set of valid or

invalid states for input conditions, and can be defined as:

1).An input condition specifies a range →one valid and

two invalid equivalence classes are defined.

2). an input condition needs a describe value → one valid

and two invalid

Equivalence classes are defined. An input condition

describes a member of a set one valid and one invalid →
equivalence class are defined;

 3).An input condition is in the form of Boolean one→
valid and one invalid equivalence class are defined.

b) Boundary Value Analysis: It focuses more on testing

at boundaries, or where the utmost boundary values are

Debug

Testin

g
Evaluatio

n

Reliabilit

y Model

Software

Configuration
Corrections

Errors

Error Data Rate
Expected

Results

Test

Results

Test

Configuration

Predicted

Reliability

Testing

Techniques

Black Box

Testing

White Box

Testing

Equivalence

class

Partitioning

Boundary
Value

Analysis

Cause-Effect

Graph

Decision table

Testing

Control Flow

Testing

Branch

Testing

Basic Path

Testing

Data Flow

Testing

Loop Testing

Neetu Dhingra et al Contingent study of Black Box and White Box Testing Techniques

3348 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

select. It includes minimum, maximum, just inside/outside

boundaries, error values and representative values.

In this technique one can form the test cases in the

following way:

1. An input condition describes a range bounded by values

a and b test cases should be made with values just above

and just below a and b, respectively.

2. An input condition specifies various values → test cases

should be produced to exercise the minimum and

maximum numbers;

3. Rules 1 and 2 apply to output conditions only if internal

program data structures have prescribed boundaries,

produce test cases to exercise that data structure at its

boundary.

c). Decision table testing: it is a testing technique, in

which we take condition stub and action stub. It is a good

way to deal with different combination of inputs with their

associated output. Decision tables are very much helpful in

test design technique. It helps the testing team to search

the effects of combination of different inputs and other

software that correctly implement business rules.

Table 1

Conditions Stub Conditions Entry

Actions Stub Actions Entry

d).Cause-Effect Graph: It is a testing technique, in which

testing begins by creating a graph and establishing the

relation between the effect and its causes. Identity,

negation, logic OR. One uses this technique when one

wants to translate a policy or procedure specified in a

natural language into programming language. This

technique means:

 Input conditions and actions are listed for a function an

identifier is allocated for each one of them cause-effect

graph is created this graph is changed into a decision table

the rules of this table are modified to test cases.

White Box Testing Technique: It is the detailed

investigation of internal logic and structure of the code. In

this testing it is necessary for a tester to have full

knowledge of source code (Mohd. Ehmer Khan, 2012)

a) Control Flow Testing: Control flow graphs or program

graphs that represent the control flow of programs are

widely used in the analysis of software and have been

studied for many year (GOLD, 2010) it is a structural

testing strategy that uses the program control flow as a

model control flow and favours more but simpler paths

over fewer but complicated path. Control flow testing

applies to almost all software and is effective for most

software. Testing strategy that uses the program’s control

flow as a model control flow testing favour more but

simpler paths over complicated but fewer paths. Now, we

will define various coverage methods:

Statement Coverage: It is a measure of the percentage of

statements that have been executed by test cases. Less than

100% statement coverage means that not all lines of code

have been executed we can achieve statement coverage by

identifying cyclomatic number and executing this

minimum set of test cases. An advantage of statement

coverage is that it is greatly able to isolate the portion of

program, which could not be executed.

Branch Coverage: A stronger logic coverage criterion is

known as branch coverage or decision coverage. It is

measures of the percentage of the decision point of the

program have been evaluated as both true and false in test

cases. Examples of branch coverage-DO WHILE

statements, IF statements and multiway GOTO statements.

Branch coverage is usually shown to satisfy statement

coverage. By 100% branch coverage we mean that every

control flow graph is traversed.

Condition Coverage: A criterion which is stronger than

decision coverage is condition coverage. It is a measure of

percentage of Boolean sub-expressions of the program that

have been evaluated as both true and false outcome in test

cases.

b) Branch Testing Branch testing has the objective to test

every option (true or false) on every control statement

which also includes compound decision.(when the second

decision depends upon the first decision).In branch testing,

test cases are designed to exercise control flow branches or

decision points in a unit. All branches inside the branch

are tested at least once.

c) Basis Path Testing: Basis path testing allows the test

case designer to produce a logical complexity measure of

procedural design and then uses this measure as an

approach for outlining a basic set of execution paths.

Basic path testing makes sure that each independent path

through the code is taken in a predetermined order.

1).Flow Graph Notation

2).Cyclomatic Complexity

3).Deriving Test Cases

4).Graph Matrices

d) Data Flow Testing: Data flow testing is another type

of white box testing which looks at how data moves inside

a program. In data flow testing the control flow graph is

annoted with the information about how the program

variables are defined and used. We can also define data

flow testing as testing techniques which is based on the

observation that values associated with variables can effect

program execution. Data flow testing picks enough paths

to assure that:

1. Every data object has been initialized prior to its use.

2. All defined objects have been used at least once.

Some of the major points of data flow testing are:

1).All data flow anomalies are resolved.

2).Ignore the integration problems by doing all data flow

operation on a variable within the same routine.

3).When possible use explicit (rather than implicit)

declaration of data.

e) Loop Testing: Loop testing is another type of white

box testing which exclusively focuses on the validity of

Neetu Dhingra et al Contingent study of Black Box and White Box Testing Techniques

3349 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

loop construct. Loops are easy to test unless dependencies

exist between the loops or among the loop and the code it

contain. There are four types of loops:

 Simple Loop

 Nested Loop

 Concatenated Loop

 Unstructured Loop

Working of black box and white box testing

Example of Black Box Testing Techniques

Table 2

Marks obtained Grade

80-100

60-79

50-59

40-49

0-39

DISTINCTION

1ST DIVISION

2ND DIVISION

3RD DIVISION

FAIL

C1: 0≤MATH≤100C2:0≤COMPUTER≤100

C3:0≤ENGLISH≤100

PER%=(MATH+COMPUTER+ENGLISH/300)*100

C4:80≤PER%≤100C5:60≤PER%≤79

C6:50≤PER%≤59C7:40≤PER%≤49

C8: 0≤PER%≤39

1). Boundary value Analysis (BVA)

It yields (4n+1) test cases.

N=3 (no of variables)

(4*3+1)

Table 3

Test

Cases

Math Computer English %age Expected

Output

1 0 98 98 65.33333 1st div

2 100 1 1 34 fail

3 99 1 1 33.66667 fail

4 100 5 5 36.66667 fail

5 98 2 2 34 fail

6 2 97 97 65.33333 1st div

7 10 100 100 70 1st div

8 100 0 0 33.33333 fail

9 99 2 1 34 fail

10 5 98 98 67 1st div

11 1 100 100 67 1st div

12 99 98 98 98.33333 distinction

13 100 0 0 33.33333 fail

14 97 99 99 98.33333 distinction

15 0 100 100 66.66667 1st div

=13 TEST CASES

We now draw the table which shows those 13 test cases.

Note: 8 and 13 test cases are redundant.

2). Equivalence Class Testing

Figure 3

Figure 4

Table 4

Weak normal equivalence class testing

Test

Cases

Math Computer English %age Expected

Output

1 32 33 35 33 Fail

2 68 65 62 65 1st Division

3 70 75 72 71 Distinction

4 40 42 41 40 3rd Division

5 55 55 56 55 2nd Division

Table 6

Strong robust equivalence class testing

Test

Cases

Math Computer English %age Expected

Output

1 -1 45 48 _ Invalid input of
Math

2 45 -1 48 _ Invalid input of

Computer

3 45 48 -1 _ Invalid input of
English

4 -1 -8 65 _ Invalid input

math & comp

5 -1 -8 -9 _ All invalid
input

3).Decision Table Testing

Figure 5

4). Causes and Effects

Step 1: The causes are

Neetu Dhingra et al Contingent study of Black Box and White Box Testing Techniques

3350 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

C1: 0≤MATH≤100 C2:0≤COMPUTER≤100

C3:0≤ENGLISH≤100 C4:80≤PER%≤100

C5:60≤PER%≤79 C6:50≤PER%≤59

C7:40≤PER%≤49 C8: 0≤PER%≤39

Step 2: The effects are

a1: Distinction

a2: 1st div

a3: 2nd div

a4: 3rd div

a5: Fail

a6: Impossible

Step 3: Cause-Effect graph is

Figure 6

White Box Testing Example

1). Cyclomatic Complexity

Cyclomatic complexity is probably the most widely used

complexity metric in Cyclomatic complexity is probably

the most widely used complexity metric in software

engineering. Defined by Thomas McCabe in 1976 and

based on the control flow structure of a program. It is easy

to understand, easy to calculate and it gives useful results.

It's a measure of the structural complexity of a procedure.

(Ayman Madi, 2013)

It is a Software matrix that provides a quantitative measure

of the logical complexity of a program. It is computed in

one of the three ways:

1).The Number of Regions belongs to the Cyclomatic

Complexity.

2).Cylomatic complexity: E-N+2(E is the no. of edges and

N s no. of Nodes)

3).Cylomatic complexity: P+1 (where P shows the no. of

Predicate Nodes)

Figure 7

2). Basis Path Testing (Data Flow Graph)

Basis path testing is one of the famous structural

testingcriteria. It is a methodology which searches the

program domain for suitable test data, such that after

executing theprogram with the test data, a predefined path

is reached (Yeresime Suresh, 2013)

Cyclomatic Complexity V(G) as follows:

V(G)= Enclosed Regions+1 => 4+1 => 5

V(G)= E-N+2 => 14-11+2 => 5

V(G)= P+1 => 4+1 => 5 [2,4,6,8 are predicate nodes]

As V (G) =5 by all three methods. It mean it’s a well

written code, its testability is high and cost to maintain is

low.

Five independent paths are:

Path 1: 1-2-3-11

Path 2: 1-2-4-5-11

Path 3: 1-2-4-6-7-11

Path 4: 1-2-4-6-8-9-11

Path 5: 1-2-4-6-8-10-11

Figure 8

Neetu Dhingra et al Contingent study of Black Box and White Box Testing Techniques

3351 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

DD Path Testing

From the flow graph, we can draw another graph that is

known as decision to decision (DD) path graph, our main

concentration now is on the decision nodes only.

Figure 9

DD Paths:

Path 1: A-B-C-K

Path 2: A-B-D-E-K

Path 3: A-B-D-F-G-K

Path 4: A-B-D-F-H-I-K

Path 5: A-B-D-F-H-J-K

Graph Matrix

In this testing, we convert flow graph into a square matrix

with one row and one column for every node in graph. The

objective is to trace all links of the graph at least once.

Figure 10

Figure 11

Comparison between black box and white box testing

Table 7

Conclusion

Software testing is often less formal and rigorous than it

should, and a main reason for that is because we have

struggled to define best practices, methodologies,

principles, standards for optimal software testing. To

perform testing effectively and efficiently, everyone

involved with testing should be familiar with basic

software testing goals, principles, limitations and

concepts(Abhijit A. Sawant, 2012).As we compared to

both, we find that black box testing is focus on functional

requirements of the software and it includes the tests that

are conducted at the software interface. While white box

testing guarantee that all independent path within a

module has been covered at least once and exercise

internal data structure to ensure their validity. Hence, we

conclude that white box is more efficient and reliable as it

covers maximum error in the modules and provides an

effective software product to customer as technology

upgraded day by day.

References

Abhijit A. Sawant, P. H. B. a. P. M. C., 2012. Software Testing

Techniques and Strategies. International Journal of

Engineering Research and Applications, 2(3), pp. 980-986.

Neetu Dhingra et al Contingent study of Black Box and White Box Testing Techniques

3352 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

Ayman Madi, O. K. Z. a. S. K., 2013. On the Improvement of

Cyclomatic Complexity Metric. International Journal of

Software Engineering and Its Applications, 7(2).

Dondeti, S. N. a. J., 2012. Black box and white box testing.

International Journal of Embedded Systems and Applications,

2(2).

Gold, R., 2010. Control flowgraphs and code coverage. Int. J.

Appl. Math. Comput. Sci., 20(4), pp. 739-749.

Harsh Bhasin, E. K., 2014. Black Box Testing based on

Requirement Analysis and Design Specifications. International

Journal of Computer Applications, 87(18), pp. 0975-8887.

Khan, M. E., 2011. Different Approaches to White Box Testing

Technique for Finding Errors. International Journal of

Software Engineering and Its Applications, 5(3), p. 14.

Mohd. Ehmer Khan, F. K., 2012. A Comparative Study of White

Box, Black Box and Grey Box Testing Techniques.

International Journal of Advanced Computer Science and

Applications, 3(6).

Trivedi, S. H., 2012. Software Testing Techniques. International

Journal of Advanced Research in Computer Science and

Software Engineering, 2(10).

Yeresime Suresh, S. K. R., 2013. A Genetic Algorithm based

Approach for Test Data Generationin Basis Path Testing. The

International Journal of Soft Computing and Software

Engineering, 3(3).

