

 3111 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

Research Article

International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161

 ©2014 INPRESSCO
®

, All Rights Reserved

Available at http://inpressco.com/category/ijcet

PXSS: Framework to Prevent Cross Site Scripting Attacks

Sonika
Ȧ*

 and Yogesh Kumar
Ȧ

ȦComputer Science and Engineering , Ganga Technical Campus, Soldha, India

Accepted 01 Sept 2014, Available online 01 Oct 2014, Vol.4, No.5 (Oct 2014)

Abstract

Web applications are being developed at faster pace. Fast pace development comes with the risks of failure to protect

from various cyber-attacks prevalent today. Input validation based attacks has been the leader since long time. One of

the user input validation based attack is Cross Site Scripting attack. Caring for need of developers to cope with

requirement to protect against XSS attacks we have proposed a framework called PXSS (Prevent Cross Site Scripting).

Our focus mainly over the mitigation of all types of XSS attacks like Persistent and non-persistent attacks. Our

framework has been fully evaluated to prove it significance and is available in the form of library code that can be easily

integrated with all ASP.NET based web applications. We have also taken care of performance overhead that causes slow

loading of web applications

Keywords: XSS, Input vulnerability, security.

1. Introduction

1
 Web applications have become an important part of our

day to day life. Web application have also proved their

dominance over standalone applications to provide access

to online services like E-commerce, Internet banking,

online study tutorials, e-governance, social media, online

storage services and many more. As our dependence over

web increases so does the interest of intruders attack relays

on the injection of a malicious code, in order to

compromise the trust relationship between one user and

the web application’s site. If the vulnerability is

successfully exploited, the malicious user who injected the

code may then bypass, for instance, those controls that

guarantee the privacy of its users, or even the integrity of

the application itself.

 One reason for the popularity of XSS vulnerabilities is

that developers of web-based applications often have little

or no security background. Moreover, business pressure

forces these developers to focus on the functionality for

the end user and to work under strict time constraints,

without the resources (or the knowledge) necessary to

perform a thorough security analysis of the applications

being developed. The result is that poorly-developed code,

riddled with security flaws, is deployed and made

accessible to the whole Internet. Currently, XSS attacks

are dealt with by fixing the server side vulnerability,

which is usually the result of improper input validation

routines. While being the obvious course of action, this

approach leaves the user completely open to abuse if the

vulnerable web site is not willing or able to fix the security

issue. For example, this was the case for e-Bay, in which a

*Corresponding author: Sonika

known XSS vulnerability was not fixed for months. A

complementary approach is to protect the user’s

environment from XSS attacks. This requires means to

discern malicious JavaScript code downloaded from a

trusted web site from normal JavaScript code, or

techniques to mitigate the impact of cross-site scripting

attacks.

 Two main classes of XSS attacks exist: stored attacks

and reflected attacks. In a stored XSS attack, the malicious

JavaScript code is permanently stored on the target server

(e.g., in a database, in a message forum, in a guestbook

etc.). In a reflected XSS attack, on the other hand, the

injected code is reflected off the web server such as in an

error message or a search result that may include some or

all of the input sent to the server as part of the request.

Reflected XSS attacks are delivered to the victims via e-

mail messages or links embedded on other web pages.

When a user clicks on a malicious link or submits a

specially crafted form, the injected code travels to the

vulnerable web application and is reflected back to the

victim’s browser. The reader is referred to for information

on the wide range of possible XSS attacks and the

damages the attacker may cause. There is a number of

input validations and filtering techniques that web

developers can use in order to prevent XSS vulnerabilities.

However, these are server-side solutions over which the

end user has no control.

Types of XSS

Primarily XSS attacks are categorized into two types

namely

1. Stored XSS

2. Reflected XSS

Sonika et al PXSS: Framework to Prevent Cross Site Scripting Attacks

3112 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

Reflected XSS

When user inputs accepted through HTTP request and are

echoed as HTTP response in HTML for browser

rendering. It involves all temporary issues. Stored XSS

Stored or persistent XSS denotes to all such vulnerabilities

where intruder is able to permanently inject the malicious

JavaScript code in web application. The malicious code is

saved in databases or files used to frame runtime HTTP

response to user.

XSS attack scenario

Cross site scripting can be triggered to exploit various

vulnerabilities in web applications.

 User's Cookie Theft

 Modifying the DOM of web page

 Statistics Collection

 Exploit Browser Vulnerability

 Misusing Clipboard content

 History and Search queries theft

 Post scanning and Privacy concern

XSS attacks can also be exploited without using

<script></script> tags. For example

<body onload=alert('Hello Hackers')

As well as using other attributes like onmouseover,

Onerror.

 To mitigate the impact of XSS attacks we have

developed a .Net library PXSS which mainly includes four

components User input validator, Database Sanitizer, URL

Sanitizer, Output Sanitizer which is server side solution

layer and whose runtime overhead is negligible.

2. Proposed work

Despite being intense research in security testing of web

application, there are still issues relate to security in web

applications.

Figure: 1 PXSS (Prevent Cross Site Scripting) Framework

We have analyzed some of the key fundamentals that are

making implementation of secure system infeasible and

leading to regular security breaches. We have devised a

framework of activities that must be implemented in order

to make the web application secure against XSS attacks.

Main cause of XSS is user input validation. User input

validation is the first step towards securing any application

from malicious inputs that may lead to hijack of web

applications. Our framework PXSS (Prevent Cross Site

Scripting) has 4 major components

1. User input validator

2. Database Sanitizer

3. URL Sanitizer

4. Output Validator

User Input Validator

User input validation is one of the main issue for

vulnerability towards XSS attack. Properly validating the

user input can prevent all of the XSS attacks. We have

developed a function in our code library to protect web

application against the XSS attack vectors. Our code

library is can be easily referenced by any web application

developer to validate the user inputs fields against the

malicious user input that may cause harm to integrity of

web applications. User input validation involves checking

each and every user input character to make sure that

character entered by user acceptable for the web

application use as per web application policies.

 Each user input field web application that accept input

from anonymous user or registered user must validate the

data before saving to server side. Our code library is well

acquainted with method to verify each user input field for

security of web application. public static bool

InputSanitize(string userInput) InputSanitize() accept the

user input as its parameter to validate against the specified

list of keywords which must be prevented to reach the

server side. It matches each character of input string with

the list of character in blacklist specified and return true if

none of the blacklisted character is found in the user input

string. Single occurrence of even one blacklisted character

in user input string will return false and whole of the string

is rejected by server and user is presented with the custom

error reporting the issue detected with the input field.

 We are mainly focused on XS attack vectors so we are

protecting our web application against JavaScript code that

is the main source of attack. A list of blacklisted character

is as follows:

',

;,

--,

;--,

//,

;,

/*,

*/,

@@,

@,

script,

>,

<,

<javascript>,

javascript,

<script>,

Sonika et al PXSS: Framework to Prevent Cross Site Scripting Attacks

3113 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

<script>,

&#,

:,

alert,

/,

javascri&

#x70t:alert&#x

28'XSS'),

j,

a

Figure: 2 User Input Validator Flow Diagram

Database Sanitizer

Database sanitizer is specially designed to protect web

application against persistent XSS attack i.e Stored type

XSS. Using database sanitizer we can cleanup our

database tables to remove all the infected content.

Database sanitizer works by checking each and every field

of database table against the presence of malicious content

and whenever any malicious content is found; entire row

of data is removed permanently to prevent the data from

being used to craft on the fly user client page and for

making further infection when served to users through

database access in upcoming user request to database. Due

care has been taken to sanitize the database because

database may lose some useful content if removed due to

some false positive.

 We have implemented our database sanitizer also as

part of our code library. Database sanitizer can be

accessed using the function name DatabaseSanitizer().

Database Sanitizer has following form when presented in

library.

public static bool DatabaseSanitizer(string DatabaseKeys)

It is publicly accessible to every developer using our

namespace as:

using PreventXSS;

Under the class name PXSS

boolean check=PXSS.DatabaseSanitizer(DatabaseKeys);

Similar to InputSanitize(), it also accept string as the value

from database table column data and verity it against set of

allowable characters and return Boolean value to denote

the presence and absence of malicious content.

For Example- If a user inputs the script(Java script)

Figure:3 Database Sanitizer Flow Diagram

URL Sanitizer

Sanitizing a URL against tempering is a tedious task to

work with. Crafting a valid URL involves all the character

combination that are present in our keyword from alphabet

to numeric to all special character can be used in valid

URL formatter. So rejecting a particular URL on the basis

of character it contains is not feasible from security point

of view and may result in large scale false positive

scenarios. So have not focused to setup some rules that

when applied properly by the developer will result in

bullet proof website with no URL tempering attacks. Main

cause of URL tempering involves working with Query

Strings portion of URL. Query string can contains link to

third party malicious websites as well as script code that

may alter your application functioning when consumed

without sanitization.

 According to our framework to guard against XSS

attacks we must enumerate the values that are being

supplied over the query string in our web application and

will allow only the enumerated query string values to be

accepted by web pages for processing. Enumerating the

possible values in query string will reject all other values

and safe guard our web application against XSS.

 Every enumerated query string values when used in

triggering events like database lookup or output to screen

must be sanitized using the user input validator or database

sanitizer methods.

 Adhering to all the rules will make URL tempering a

history and all our web application will be well protected.

Some of key points to safe guard URL tempering are:

1. Enumeration of Query String values

2. Sanitizing using InputSanitize() and

DatabaseSanitizer() before consuming in web

application.

Output Validator

We have carried out user input sanitization as well

database sanitization to protect against persistent and Non-

persistent attacks. Both of these provide two layer of

security. First Input sanitizer protects the application from

accepting malicious input data by validating it. Secondly,

if by some or other means adversary is able to inject

malicious content to our web server database, then our

database server will delete all the table data with malicious

content. Output validator provide a third layer of security

to make the web application secure. XSS attack mainly

target user by showing alert boxes using JavaScript code

or by collecting statistical data and other sensitive

information from user sessions.

 Output validators third layer of security is same as

database sanitizer but begins it action only when database

Sonika et al PXSS: Framework to Prevent Cross Site Scripting Attacks

3114 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

Table1: Outline of XSS techniques in literature survey

Paper

Ref.
Tool

Solution

Layer

Runtime

Overhead
Coverage Implementation Type

1. Noxes Client Side N/A All Web Proxy

2.
X.509

Certificates
Server side N/A All Firefox Browser Extension

3. Smask Server side N/A PHP,Perl and java PHP Extension

5. ForceHTTPS Client Side N/A All Firefox Browser Extension

6. JaSPIn Client Side 0.8-4.1 s All Firefox Browser Extension

7. Mamento Server side 28% Apache Web Server

8. XSSDS Server side 0 All Firefox Browser Extension

10. BLUEPRINT Server side N/A All Web Application Encoding

11. Masibty Server side N/A All Reverse Proxy

12. Noncespaces Both <2% All
Template at Web server and

Proxy for Client side

15. SWAP Server side <200% All Reverse Proxy

16. Alhambra Client Side 200% All Browser

18. L-WMxD
Webmail

Server
N/A All Standalone application

21. WebShield Client Side 1-5 s All Proxy Based

22. FlowFox Client Side 20% All Firefox Browser Extension

23. PXSS Server side <.08ms .Net Library

from persistent storage like database or flat files is used to

generate dynamic web page content. Output validator

checks this dynamically generated content against XSS

vulnerabilities. Output validator can result in false positive

if applied over the complete web page so it is restricted to

verify only the web page content that is supplied by user

or third party. It does not check the JavaScript code

provided by web application owner in static form as part

of web application.

3. Results and discussion

With the web applications having a prevalent role in our

day to day life. We are all socially connected over social

websites like Facebook, Twitter, Google Plus, LinkedIn

and many more. Most of our daily activities involve

Internet banking, emails, web search, e-governance, jobs,

e-health, business, stock trading, auctions, electronic

reading, online tutorials etc. All these come equipped with

challenges to keep all such daily usage web application

active and healthy. But there are some third parties who

are actively working to gain financial benefits and trying

to put this application down.

 XSS is among the top security threat for long time as

per various security agencies reports like SANS, MITRE,

CVE etc. One of major reason for being it so popular is the

simplicity to craft and execute. Any novice user with little

knowledge of JavaScript may practice this attack. For such

simple attack vectors various techniques has been

proposed but are not actively used by developer, either

developers are not aware of security issues or management

is not spending sufficient funds towards the security and

does not have dedicated security team. Lack of security

teams is mostly the problem for small scale organization

which does not have enough budgets.

Solution Layer

Solution Layer defines the web application tier

architecture targeted to mitigate the XSS attacks. It defines

the layer the tool designed work actively and

implemented. Solution layer could be Client side, server

side, database layer in case of 3-tier architecture. Most of

the XSS prevention tools have focused over the server side

to protect user.

Figure: 4 Classification of tool on basis of Solution Layer

Runtime Overhead

Runtime overhead is the performance overhead caused by

the tool designed to protect the application or user from

XSS attacks. It is the increase in response time due to

extra processing being executed by the tool. Performance

overhead causes delay in loading of web applications and

rendering by browser. Excess overhead may even let the

user to switch to alternate resource of information.

 We have carried out our analysis over 13 tools that

also prevent against XSS but there has a little attention

towards the runtime overhead evaluation by author.

Unavailability of runtime overhead information from tool

developer raises a question to developer and management

team, whether to use the tools or not. Runtime overhead

details the efficiency of the tools, which make it the best

Client Side

31%

Server Side

61%

Both

8%

Sonika et al PXSS: Framework to Prevent Cross Site Scripting Attacks

3115 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

choice for developer to use. Some tools have provided the

performance overhead ranges from 2% to 200%. Since

average overhead is too large. Excess runtime overhead

will lead to longer loading time of web application and

hence will not attract potential users.

Principle Technique

Principle technique is the core basis of how the XSS attack

mitigation is carried out by the tool so developed. It

defines the internal structure and logic behind the working

of the tool. Some of the prevention schemes used is

sandboxing, server side input filters, cryptography based

mechanism, secure coding, strong typing, instruction set

randomization etc.

Implementation Type

Implementation type defines the details about, how the

whole tool has been implemented to counter attack the

XSS attacks. It involves various type like Proxy based

software, Browser extension to force the policies against

XSS, standalone applications to test web application

before going live, source code based application of input

filters in web application during the web development life

cycle, configuring the web server to mitigate the XSS

attack vectors.

 How the tools have been implemented is important

from developer point of view for security enforcement. As

shown in Table 1, most of the tools are implemented as

browser extension which put the security an issue to client

shoulder instead of developer. Developer either needs to

force user to use particular browser extension for better

and safe browsing or let it to user's awareness about

security. Binding web applications to browser specific

itself is birth to new paradigm of problem. A few others

have developed Reverse proxy based tools which also

requires awareness from client side to make the browsing

secure. 4 out of 13 tools have server side implementation

of security.

Figure: 5 Classification of tool on basis of

Implementation Type

Conclusion and future scope

We have proposed a framework to prevent XSS attacks

over web applications. Our framework has separate

components to defend against each type of XSS related

security issue. PXSS (Prevent Cross Site Scripting) system

prevents reflected XSS, Stored XSS as well as Cookie

related problems due to XSS attacks. Our framework has

been implemented as code library for .NET based web

applications. Our code library can be easily integrated with

web application to utilize its fruitfulness to protect against

XSS. We have also evaluated significance of our

framework against some of real world web applications. It

provides total coverage of all types of XSS related

problems with negligible runtime overhead. It will be

available for open access to all developer to integrate with

web application for security enforcement.

 In future we will be adding the support for other web

technology and also working to developer a solution that

does not require technology expertise to integrate and with

easy to use user interface.

References

Kirda, Engin, et al. Noxes (2006) a client-side solution for

mitigating cross-site scripting attacks. Proceedings of the 2006

ACM symposium on Applied computing. ACM,

Garcia-Alfaro, Joaquin, and Guillermo Navarro-Arribas (2007)

Prevention of cross-site scripting attacks on current web

applications. On the Move to Meaningful Internet Systems :

CoopIS, DOA, ODBASE, GADA, and IS. Springer Berlin

Heidelberg, 2007. 1770-1784.

Johns, Martin, and Christian Beyerlein.(2007) SMask: preventing

injection attacks in web applications by approximating

automatic data/code separation. Proceedings of the 2007 ACM

symposium on Applied computing. ACM

Dabirsiaghi, Arshan (2008) Building and stopping next

generation XSS worms. 3rd International OWASP Symposium

on Web Application Security..

Jackson, Collin, and Adam Barth (2008.) Forcehttps: protecting

high-security web sites from network attacks. Proceedings of

the 17th international conference on World Wide Web. ACM

Raman, Preeti. JaSPIn (2008.): JavaScript based Anomaly

Detection of Cross-site scripting attacks. Diss. Carleton

University.

Jayaraman, Karthick, Grzegorz Lewandowski, and Steve J.

Chapin (2008.) Memento: A Framework for Hardening Web

Applications. Center for Systems Assurance Technical Report

CSATR-11-01.

Johns, Martin, Björn Engelmann, and Joachim Posegga. Xssds

(2008.) Server-side detection of cross-site scripting attacks.

Computer Security Applications Conference, 2008. ACSAC

2008. Annual. IEEE.

Ter Louw, Mike, Prithvi Bisht, and V. Venkatakrishnan (2008.)

Analysis of hypertext isolation techniques for XSS prevention.

Web 2.0 Security and Privacy.

Ter Louw, Mike, and V. N. Venkatakrishnan (2009.) Blueprint:

Robust prevention of cross-site scripting attacks for existing

browsers. Security and Privacy, 30th IEEE Symposium on.

IEEE

Criscione, Claudio, and Stefano Zanero. Masibty (2009.) an

anomaly based intrusion prevention system for web

applications. Black Hat Europe. Moevenpick City Center,

Amsterdam, Netherland.

Van Gundy, Matthew, and Hao Chen (2009.) Noncespaces:

Using Randomization to Enforce Information Flow Tracking

and Thwart Cross-Site Scripting Attacks. NDSS.

Likarish, Peter, Eunjin Jung, and Insoon Jo. (2009.)Obfuscated

malicious javascript detection using classification techniques.

Malicious and Unwanted Software (MALWARE), 2009 4th

International Conference on. IEEE.

Browser

Extension

36%

Proxy

Based

29%

Encoding

7%

PHP

Extension

7%

Web Server

14%

Stand alone

Application

7%

Sonika et al PXSS: Framework to Prevent Cross Site Scripting Attacks

3116 | International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014)

Robertson, William K., and Giovanni Vigna (2009.)Static

Enforcement of Web Application Integrity Through Strong

Typing. USENIX Security Symposium.

Wurzinger, Peter, et al (2009) SWAP: Mitigating XSS attacks

using a reverse proxy. Proceedings of the 2009 ICSE

Workshop on Software Engineering for Secure Systems. IEEE

Computer Society.

Tang, Shuo, et al. Alhambra: a system for creating, enforcing,

and testing browser security policies. Proceedings of the 19th

international conference on World wide web. ACM, 2010.

Bates, Daniel, Adam Barth, and Collin Jackson (2010) Regular

expressions considered harmful in client-side XSS filters.

Proceedings of the 19th international conference on World

wide web. ACM

Tang, Zhushou, et al.(2011) L-WMxD: lexical based Webmail

XSS discoverer. Computer CommunicationsWorkshops

(INFOCOM WKSHPS), 2011 IEEE Conference on. IEEE.

Mui, Raymond, and Phyllis Frankl (2011) Preventing web

application injections with complementary character coding.

Computer Security–ESORICS 2011. Springer Berlin

Heidelberg. 80-99.

Grabowski, Robert, Martin Hofmann, and Keqin Li. (2012)Type-

based enforcement of secure programming guidelines—code

injection prevention at SAP. Formal Aspects of Security and

Trust. Springer Berlin Heidelberg,. 182-197.

Li, Zhichun, et al. WebShield (2011) Enabling Various Web

Defense Techniques without Client Side Modifications. NDSS

 De Groef, Willem, et al.(2012) FlowFox: a web browser with

flexible and precise information flow control. Proceedings of

the 2012 ACM conference on Computer and communications

security. ACM

